
JSS Journal of Statistical Software
October 2007, Volume 21, Issue 5. http://www.jstatsoft.org/

Self- and Super-organizing Maps in R: The kohonen

Package

Ron Wehrens
Radboud University Nijmegen

Lutgarde M. C. Buydens
Radboud University Nijmegen

Abstract

In this age of ever-increasing data set sizes, especially in the natural sciences, visu-
alisation becomes more and more important. Self-organizing maps have many features
that make them attractive in this respect: they do not rely on distributional assumptions,
can handle huge data sets with ease, and have shown their worth in a large number of
applications. In this paper, we highlight the kohonen package for R, which implements
self-organizing maps as well as some extensions for supervised pattern recognition and
data fusion.
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1. Introduction

Due to advancements in computer hardware and software, as well as in measurement instru-
mentation, researchers in many scientific fields are able to collect and analyze datasets of
steadily increasing size and dimensionality. Exploratory analysis, where visualization plays a
very important role, has become more and more difficult given the increasing dimensionality
of the data. There is a real need for methods that provide meaningful mappings into two
dimensions, so that we can fully utilize the pattern recognition capabilities of our own brains.
There are many approaches to mapping a high dimensional data set into two dimensions, of
which principal component analyis (PCA, Jackson 1991) is probably the most used. However,
in many cases more than two dimensions are needed to provide a reasonably useful picture of
the data so that visualisation remains a problem. Moreover, PCA in its pure form does not
incorporate information on how objects should be compared; the standard Euclidean distance
measure is not always the optimal dissimilarity measure. Methods starting from distance or
similarity matrices, in this respect, may prove more useful. First of all, such methods scale
well to large numbers of variables, and second, by choosing an appropriate distance function
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for the data at hand, one concentrates on those aspects of the data that are most informative.

One approach to the visualization of a distance matrix in two dimensions is multi-dimensional
scaling (MDS) and its many variants (Cox and Cox 2001). This technique aims to find a
configuration in two-dimensional space whose distance matrix in some sense approaches the
original distance matrix, calculated from the high-dimensional data. The procedure may end
up in a local optimum and may have to be performed several times, which for larger numbers
of objects can be quite tedious. Moreover, there is no simple way to project new objects into
the same space.

Self-organizing maps (SOMs, Kohonen 2001) tackle the problem in a way similar to MDS, but
instead of trying to reproduce distances they aim at reproducing topology, or in other words,
they try to keep the same neighbours. So if two high-dimensional objects are very similar, then
their position in a two-dimensional plane should be very similar as well. Rather than mapping
objects in a continuous space, SOMs use a regular grid of “units” onto which objects are
mapped. The differences with MDS can be seen as both strengths and weaknesses: where in
a 2D MDS plot a distance – also a large distance – can be directly interpreted as an“estimate”
of the true distance, in a SOM plot this is not the case: one can only say that objects mapped
to the same, or neighbouring, units are very similar. In other words, SOMs concentrate on
the largest similarities, whereas MDS concentrates on the largest dissimilarities. Which of
these is more useful depends on the application.

SOMs have seen many diverse applications in a broad range of fields, such as medicine, biol-
ogy, chemistry, image analysis, speech recognition, engineering, computer science and many
more; a bibliography of more than 7,700 papers is available at the website of the university
where Teuvo Kohonen initiated the SOM research (Helsinki University of Technology – CIS
Laboratory 2007). From the same research group one can obtain C source code for SOMs
and a MATLAB-based package (Helsinki University of Technology – CIS Laboratory 2006).
For R (R Development Core Team 2007), two packages are available from the Comprehensive
R Archive Network (CRAN, http://CRAN.R-project.org/) implementing standard SOMs:
the som package, by (Yan 2004), and the class package, part of the VR package bundle
(Venables and Ripley 2002).

The latter provided the basis for the kohonen package, described in this paper and also
available from CRAN. The kohonen package features standard SOMs and two extensions
that make it possible to use SOMs for classification and regression purposes, and for data
mining. It provides extensive graphics to enable what is for us the most basic function
of SOMs, namely visualization and information packaging. A MATLAB implementation of
several of the tools discussed in this paper, written by Willem Melssen, is available from
http://www.cac.science.ru.nl/software/.

Section 2 gives a very brief description on the theory of SOMs. In Section 3 and following
sections, the kohonen package is described in some detail. Section 7 contains some plans for
the near future.

2. Theory

In a sense, SOMs can be thought of as a spatially constrained form of k-means clustering
(Ripley 1996). In that analogy, every unit corresponds to a “cluster”, and the number of
clusters is defined by the size of the grid, which typically is arranged in a rectangular or

http://CRAN.R-project.org/
http://www.cac.science.ru.nl/software/


Journal of Statistical Software 3

hexagonal fashion. Indeed, one of the training strategies for SOMs (the “batch” algorithm,
an implementation of which is found in the class package as the function batchSOM) is very
similar to k-means.
One starts by assigning a so-called codebook vector to every unit, that will play the role of
a typical pattern, a prototype, associated with that unit. Usually, one randomly assigns a
subset of the data to the units. During training, objects are repeatedly presented – in random
order – to the map. The “winning unit”, i.e., the one most similar to the current training
object, will be updated to become even more similar; a weighted average is used, where the
weight of the new object is one of the training parameters of the SOM. Also referred to as the
learning rate α, it typically is a small value in the order of 0.05. During training, this value
decreases so that the map converges. The spatial constraint mentioned before lies in the fact
that SOMs require neighbouring units to have similar codebook vectors. This is achieved by
not only updating the winning unit, but also the units in the immediate neighbourhood of
the winning unit, in the same way. The size of the neighbourhood decreases during training
as well, so that eventually (in our implementation after one-third of the iterations) only the
winning units are adapted. At that stage, the procedure is exactly equal to k-means. The
algorithm terminates after a predefined number of iterations. More information can be found
in the book of Kohonen (2001).
The algorithm is very simple and allows for many subtle adaptations. One can experi-
ment with different distance measures, different map topologies, different training parameters
(learning rate and neighbourhood), etcetera. Even with identical settings, repeated training
of a SOM will lead to sometimes even quite different mappings, because of the random initial-
isation. However, in our experience the conclusions drawn from the map remain remarkably
consistent, which makes it a very useful tool in many different circumstances. Nevertheless,
it is always wise to train several maps before jumping to conclusions.
The classical description of SOMs given above focusses on unsupervised exploratory analysis.
However, SOMs can be used as supervised pattern recognizers, too. This means that addi-
tional information, e.g., class information, is available that can be modelled as a dependent
variable for which predictions can be obtained. The original data are often indicated with
X; the additional information with Y . The oldest and simplest approach is to assess the
extra information only after the training phase; if a continuous variable is being predicted,
the mean of all objects mapped to a specific unit can be seen as the estimate for that unit. In
case of a class variable, a winner-takes-all strategy is often used. Note that in this approach –
in chemistry applications often called a Counter-Propagation Network (Zupan and Gasteiger
1999) – the dependent variable Y does not influence the mapping.
Another strategy, already suggested by Kohonen (2001), is to perform SOM training on the
concatenation of the X and Y matrices. Although this works in the more simple cases, it can
be hard to find a suitable scaling so that X and Y both contribute to the similarities that are
calculated. Melssen et al. (2006) proposed a more flexible approach where distances in X-
and Y -space are calculated separately. Both are scaled so that the maximal distance equals
1, and the overall distance is a weighted sum of both:

D(o, u) = αDx(o, u) + (1− α)Dy(o, u)

where D(o, u) indicates the combined distance of an object o to unit u, and Dx and Dy

indicate the distances in the individual spaces. Choosing α = 0.5 leads to equal weights for
both X- and Y -spaces. Scaling so that the maximum distances in X- and Y -spaces equal
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one takes care of possible differences in units between X and Y . Training the map is done as
usual; the winning unit and its neighbourhood are updated, and during training the learning
rate and the size of the neighbourhood are decreased. The final result consists of two maps:
one map for the X variables, and one for the Y variables. For supervised SOMs, one extra
parameter, the weight for the X (or Y ) space needs to be defined by the user.

This principle can be extended to more layers as well; in that case we refer to the result as
a super-organized map. For every layer a similarity value is calculated, and all individual
similarities then are combined into one value that is used to determine the winning unit:

D(o, u) =
∑

i

αiDi(o, u)

where the weights αi are scaled to unit sum. These weights are the only extra parameters
(compared to classical SOMs) that need to be defined by the user.

3. The kohonen package for R

The R package kohonen aims to provide simple-to-use functions for self-organizing maps and
the above-mentioned extensions, with specific emphasis on visualisation. The basic functions
are som, for the usual form of self-organizing maps; xyf, for supervised self-organizing maps,
or X-Y fused maps, which are useful when additional information in the form of, e.g., a
class variable is available for all objects; bdk, an alternative formulation called bi-directional
Kohonen maps; and finally, from version 2.0.0 on, the generalisation of the xyf maps to more
than two layers of information, in the function supersom. These functions can be used to
define the mapping of the objects in the training set to the units of the map.

After the training phase, one can use several plotting functions for the visualisation; the
package can show where objects are mapped, has several options for visualizing the codebook
vectors of the map units, and provides means to assess the training progress. Summary
functions exist for all SOM types. Furthermore, one can easily project new data into the
trained map; this provides possibilities for property estimation.

Several data sets are included in the kohonen package: the wine data from the UCI Ma-
chine Learning repository (Asuncion and Newman 2007), near-infrared spectra from ternary
mixtures of ethanol, water and iso-propanol, measured at different temperatures described
by Wülfert et al. (1998), and finally a set of microarray data, the well-known yeast data
from Spellman et al. (1998). The wine data set contains information on a set of 177 Italian
wine samples from three different grape cultivars; thirteen variables (such as concentrations
of alcohol and flavonoids, but also color hue) have been measured. The yeast data are a
subset of the original set containing 6178 genes, that are assumed to be related to the yeast
cell cycle. The set contains 800 genes for which, using six different synchronisation methods,
time-dependent expressions have been measured. A summary of the functions and data sets
available in the package is given in Table 1.

Below, we will elaborate on the different stages in an exploratory analysis using self-organizing
maps. We will use the data sets available in the package, so that the reader can easily
reproduce and extend these examples. The all-important visualisation possibilities of the
package are introduced along the way.
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Function name Short description
som standard SOM
xyf supervised SOM: two parallel maps
bdk supervised SOM: two parallel maps (alternative formulation)
supersom SOM with multiple parallel maps
plot.kohonen generic plotting function
summary.kohonen generic summary function
map.kohonen map data to the most similar unit
predict.kohonen generic function to predict properties
wines wine data: a 177-by-13 matrix
nir NIR spectra of 95 ternary mixtures
yeast microarray data of the yeast cell cycle

Table 1: The main functions and data sets in the kohonen package, version 2.0.0.

4. Creating the maps

The different types of self-organizing maps can be obtained by calling the functions som, xyf
(or bdk), or supersom, with the appropriate data representation as the first argument(s).
Several other arguments provide additional parameters, such as the map size, the number of
iterations, etcetera. The object that is returned can then be used for inspection, plotting,
mapping, and prediction.

4.1. Self-organizing maps: Function som

The standard form of self-organizing maps is implemented in function som. To map the 177-
sample wine data set to a map of five-by-four hexagonally oriented units, the following code
can be used. First, we load the package (from now on, we assume the package is loaded),
and then the data, which are subsequently autoscaled because of the widely different ranges
(especially the proline concentration, variable 13, deviates). The fourteenth variable is a class
variable and is not used in the mapping; it will be used later for visualisation purposes. To
allow readers to exactly reproduce the figures in this paper, we set a random seed, and then
train the network.

R> library("kohonen")

Loading required package: class

R> data("wines")

R> wines.sc <- scale(wines)

R> set.seed(7)

R> wine.som <- som(data = wines.sc, grid = somgrid(5, 4, "hexagonal"))

R> plot(wine.som, main = "Wine data")

The result is shown in Figure 1. The codebook vectors are visualized in a segments plot,
which is the default plotting type. High alcohol levels, for example, are associated with wine
samples projected in the bottom right corner of the map, while color intensity is largest in
the bottom left corner. More plotting types will be discussed below.
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Figure 1: A plot of the codebook vectors of the 5-by-4 mapping of the wine data.

The som function has several parameters. Default values are available for all of them, except
the first, the data. Because the training parameters appear in the other SOM functions as
well, we mention them briefly below.

grid: the rectangular or hexagonal grid of units. The format is the one returned by the
function somgrid from the class package.

rlen: the numer of iterations, i.e. the number of times the data set will be presented to the
map. The default is 100;

alpha: the learning rate, determining the size of the adjustments during training. The de-
crease is linear, and default values are to start from 0.05 and to stop at 0.01;

radius: the initial size of the neighbourhood, by default chosen in such a way that two-thirds
of all distances of the map units fall inside this number. The size of the neighbourhood
decreases linearly during training; after one-third of the iterations only the winning unit
is being adapted and the algorithm corresponds to k-means.

init: optional matrix of codebook vectors. If it is not given, randomly selected objects from
the data are used. This feature can be useful when re-training a map with new data.

toroidal: by default, FALSE. If TRUE, the edges of the map are not real edges, and data are
actually mapped to a torus. Put differently: opposite map edges are joined together.
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KeepData: default value equals TRUE. However, for large data sets it may be too expensive to
keep the data in the som object, and one may set this parameter to FALSE.

The result of the training, the wine.som object, is a list. The most important element is
the codes element, which contains the codebook vectors as rows. Another element worth
inspecting is changes, a vector indicating the size of the adaptions to the codebook vectors
during training. This can be used to assess whether the number of iterations is sufficient.

4.2. Supervised mapping: The xyf function

Supervised mapping, where a dependent variable (categorical or continuous) is available,
is implemented in the xyf function of the kohonen package. An example using the NIR
data included in the package is shown below: for every ternary mixture, we have a near-
infrared spectrum, as well as concentrations of the three chemical compounds (summing to
1). Moreover, every sample is measured at five different temperatures. The aim in the example
below is to model the water content (the second of the three concentrations). Of the three
chemicals, water has the largest effect on the NIR spectra. We start by loading the data and
attaching the data frame so that objects spectra, composition and temperature become
directly available. Parameter xweight indicates how much importance is given to X; here it
is set to 0.5 (X and Y are equally important), also the default value in xyf.

R> data("nir")

R> attach(nir)

R> set.seed(13)

R> nir.xyf <- xyf(data = spectra,

+ Y = composition[,2],

+ xweight = 0.5,

+ grid = somgrid(6, 6, "hexagonal"))

R> par(mfrow = c(1, 2))

R> plot(nir.xyf, type = "counts", main = "NIR data: counts")

R> plot(nir.xyf, type = "quality", main = "NIR data: mapping quality")

This leads to the output shown in Figure 2. In the left plot, the background color of a unit
corresponds to the number of samples mapped to that particular unit; they are reasonably
spread out over the map. Four of the units are empty: no samples have been mapped to
them. The right plot shows the mean distance of objects, mapped to a particular unit, to the
codebook vector of that unit. A good mapping should show small distances everywhere in
the map.
An object generated by the xyf function has a few elements not found in the unsupervised
case. The most important difference is the codes element, which itself now is a list containing
the codebook vectors for both the X and Y maps. In the example above, the codebook matrix
for Y only has one column (corresponding to the concentration of water). In addition, the
changes element is now a matrix rather than a vector, with a column for both X and Y .
An alternative method, called Bi-Directional Kohonen mapping (Melssen et al. 2006) has been
implemented in the bdk function; there, the meaning of the xweight parameter is slightly
different – consult the manual page for details. Since the results are usually very similar to
the ones obtained with the xyf implementation we will focus for the remainder of the paper
on xyf.
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Figure 2: Counts plot of the map obtained from the NIR data using xyf (left plot). Empty
units are depicted in gray. The right plot shows the quality of the mapping; the biggest
distances between objects and codebook vectors are found in the bottom left of the map.

In case the dependent variable contains class information, we can present that to the xyf
function in the form of a class matrix, where every column corresponds to a class, and where
every object is represented by a row of zeros and one“1”. The distance employed in such a case
is the Tanimoto distance rather than the Euclidean distance. To convert between a vector of
class names and a class matrix, the functions classvec2classmat and classmat2classvec
are available. We could, e.g., train a map using the NIR spectra with temperature as a class
variable:

R> set.seed(13)

R> nir.xyf2 <- xyf(data = spectra,

+ Y = classvec2classmat(temperature),

+ xweight = .2, grid = somgrid(6, 6, "hexagonal"))

Note that in this case we put more emphasis on the Y variable to enforce a spatial grouping
of the different temperatures; for this data set it is necessary to do that since the influence of
temperature on the spectra is only small.

Whether the dependent data should be seen as categorical or continuous is governed by the
input parameter contin. By default, this is FALSE (indicating a categorical variable) when
all row sums of Y equal 1; Y is then seen as a classification matrix. Note that when we want
to model the concentrations of the three chemicals simultaneously, the Y matrix also sums
to 1. Obviously, this is not a classification problem, and we can prevent the function from
thinking it is by providing contin = TRUE.

We can add information to the plot by showing where every object is mapped, e.g., by
plotting a symbol or a label. For the NIR data, we can make the symbol size dependent on the
temperature at which the sample has been measured. In the left plot of Figure 3, the locations
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Figure 3: Supervised SOMs for the NIR data. The left plot shows the mapping of spectra
when the XYF map has been trained with the water content as the y-variable; the radius
of the circles indicate the temperature at which spectra have been measured. The right plot
does the opposite: temperature is used as y-variable and is visualized using the background
colors, and the radii of the circles indicate water content.

of the circles indicate the units onto which samples have been mapped – thus indicating an
estimation of the water content – and the circle radii indicate measurement temperatures. The
right plot shows the reverse situation: there, the map has been trained to predict temperature.
Thus, the position of a circle says something about the expected temperature at which that
sample has been measured, and the water concentration is indicated by the circle radius. This
plot is obtained using the following code (adapted from the manual page of the xyf function):

R> water.predict <- predict(nir.xyf)$unit.prediction

R> temp.xyf <- predict(nir.xyf2)$unit.prediction

R> temp.predict <- as.numeric(classmat2classvec(temp.xyf))

R> par(mfrow = c(1, 2))

R> plot(nir.xyf, type = "property", property = water.predict,

+ main = "Prediction of water content", keepMargins = TRUE)

R> scatter <- matrix(rnorm(length(temperature)*2, sd=.1), ncol=2)

R> radii <- (temperature - 20)/250

R> symbols(nir.xyf$grid$pts[nir.xyf$unit.classif,] + scatter,

+ circles = radii, inches = FALSE, add = TRUE)

R> plot(nir.xyf2, type = "property", property = temp.predict,

+ palette.name = rainbow, main = "Prediction of temperatures")

R> scatter <- matrix(rnorm(nrow(composition)*2, sd=.1), ncol=2)



10 kohonen: Self- and Super-organizing Maps in R

X

30
40

50
60

70

Y

Figure 4: Plots of codebook vectors for the xyf mapping of IR spectra (X) and temperature
(Y ).

R> radii <- 0.05 + 0.4 * composition[,2]

R> symbols(nir.xyf2$grid$pts[nir.xyf2$unit.classif,] + scatter,

+ circles = radii, inches = FALSE, add = TRUE)

The plot functions themselves use the property argument to show the unit predictions in
a background color; we have chosen a different palette in the second plot to distinguish also
graphically between the prediction of a continuous variable in the left plot and a categorical
variable in the right plot. Circles are added using the symbols function. Their location
contains two components: first, the position of the unit onto which a sample is mapped
(contained in the unit.classif list element), and, second, a random component within that
unit. The keepMargins = TRUE argument, which prevents the original graphical parameters
from being restored is needed here (the plotting functions may change margins, for example,
to accomodate all units in the figure and allow for a title or a legend), since the circles need to
be added to the correct position in the figure. Another application of setting keepMargins =
TRUE is to find out the unit number by the combination of the identify function and clicking
the map.
The plots in Figure 3 show that the modelled parameter, indicated with the background
colors, indeed has a spatially smooth (or coherent) distribution. Moreover, in the prediction
of the water content (the left plot in the figure), the samples are ordered in such a way
that the low temperatures (the small circles) are located close together, as are the samples
measured at high temperatures. In the right plot, this is even more clear. Within one color
(one measurement temperature), there is a gradient of water concentrations.
In Figure 4 another use of the codebook vectors is shown. The R code to generate these
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figures is quite simple:

R> par(mfrow = c(1, 2))

R> plot(nir.xyf2, "codes")

For large numbers of variables, the default behaviour is to make a line plot rather than a
segment plot, which leads to the spectra-like patterns to the left. By comparing the codebook
vectors with Figure 3 we can immediately associate spectral features with water content. In
the right plot, the codebook vectors of the dependent variable (in this case the categorical
temperature variable) are shown. These can be directly interpreted as an indication of how
likely a given class is at a certain unit. Note that in some cases, such as at the boundaries
between the higher temperatures, the classification of a unit is pretty uncertain.

4.3. Super-organized maps: Data fusion with supersom

Instead of one set of independent variables and one set of dependent variables, one may have
several data types for every object. The super-organized map introduced here accounts for
individual data types by using a separate layer for every type. Thus, when three types of
spectroscopy have been performed on a set of samples for which class information is present
as well, we could train a map using four layers. The first three would be continuous, and the
codebook vectors for these maps would resemble spectra, and the fourth would be discrete
where the codebook vectors can be interpreted as class memberships. A weight is associated
to every layer to be able to define an overall distance of an object to a unit. Again, this
allows much more flexibility than just concatenating the individual vectors corresponding to
the different data entitites for every sample. Obvious choices for the weights are to set them
all equal (the default in the kohonen package), or to set them according to the number of
variables in the indicidual data sets.

We show an example, based on the well-known yeast cell-cycle data of Spellman et al. (1998).
The mapping of these data, based on the four synchronisation methods with the largest
numbers of time points, is shown in Figure 5. The yeast data set, included in the kohonen
package, are already in the correct form: a list where each element is a data matrix with one
row per gene. Note that the numbers of variables in the matrices need not be equal. The R
code to generate the plot is as follows:

R> data(yeast)

R> set.seed(7)

R> yeast.supersom <- supersom(yeast, somgrid(8, 8, "hexagonal"),

+ whatmap = 3:6)

Warning message:

removing 45 NA objects from the training data

in: supersom(yeast, somgrid(8, 8, "hexagonal"), whatmap = 3:6)

R> classes <- levels(yeast$class)

R> colors <- c("yellow", "green", "blue", "red", "orange")

R> par(mfrow = c(3, 2))

R> plot(yeast.supersom, type = "mapping",

+ pch = 1, main = "All", keepMargins = TRUE)

R> for (i in seq(along = classes)) {
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Figure 5: Mapping of the 800 genes in a eight-by-eight superSOM, based on the alpha,
cdc15, cdc28 and elu data (with equal weights for each of the four layers). The top left plot
shows the position of all 800 genes; the other plots show the same mapping split up over the
five cell-cycle stages.
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+ X.class <- lapply(yeast,

+ function(x) subset(x, yeast$class == classes[i]))

+ X.map <- map(yeast.supersom, X.class)

+ plot(yeast.supersom, type = "mapping", classif = X.map,

+ col = colors[i], pch = 1, main = classes[i], keepMargins = TRUE,

+ bgcol = gray(0.85))

+ }

The first and second elements of the yeast data, containing only two variables each, are
not used in this mapping. This is indicated using the whatmaps argument of the supersom
function; an alternative to achieve this is to explicitly define the weights for these entities as
zero. The warning message indicates that for 45 genes, at least one of the elements in the
yeast list contains only missing values; these genes have been removed from the data prior to
training the superSOM. They are retained in the data, however, and may be mapped later,
where the missing information will simply be ignored. The class labels, corresponding to five
stages in the cell cycle, and coloring in the figure are chosen to match that of Spellman et al.
(1998). The five classes are concentrated at specific areas in the map, and the order in the
map (starting at the top right and traversing the map clockwise) corresponds with the cell
cycle.

The keepMargins argument in the code generating Figure 5 is used to decide whether the
original set of graphical parameters, in particular figure margins, must be restored or not. If
keepMargins is FALSE (the default), a new figure will be plotted in the same way as before
plotting the SOM. If, on the other hand, keepMargins is set to TRUE, the coordinate system of
the map is retained. In that case, one can add symbols to the map, or use the locator function
in R to find the number of a particular unit, for example. The easiest way to subsequently
generate a new plot with the default settings is to open a new graphics window.

5. Inspecting the maps

5.1. Queries and summaries

Generic print and summary methods are available: the print.kohonen function state the size
of the map, the training method and whether or not the training data have been included in the
map object. If the data are included, the summary.kohonen method provides information on
the data, as well as an indication of the mapping quality, as estimated by the average distance
of an object to its corresponding codebook vector. Of course, the individual elements of the
map objects can be inspected to obtain more detailed information.

5.2. Plotting

Several plotting functions have already been shown in the examples above; in particular,
plotting types codes, counts, property, quality and mapping. For more examples and
possibilities with these plotting types, consult the manual pages of the package.

One general plot showing the training progress has not yet been mentioned. During training,
the codebook vectors are becoming more and more similar to the closest objects in the data
set. Visualisation of this process can be used to optimize training parameters; for instance, it
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Figure 6: Training progress, as measured by the average distance of an object with the
closest codebook vector unit. Left plot: unsupervised mapping of the wine data using som;
middle plot: supervised mapping of the NIR data using xyf; and right plot: super-organized
mapping of the yeast data using supersom.

may appear that more iterations are needed to obtain convergence. For every layer, one curve
is shown: unsupervised som objects lead to one curve, supervised xyf and bdk objects yield
two curves, and supersom objects can yield multiple curves. In the case of more than two
curves, these are scaled individually so that the whole y-range of the plot is used; a separate
axis is shown on the right. Three examples, based on the maps created above are shown in
Figure 6. In all three cases, one can see the effect of the neighbourhood shrinking to include
only the winning unit; this is the case after one-third of the iterations. After that stage, the
training is merely fine-tuning. The plots are obtained with the following code:

R> graphics.off()

R> par(mfrow = c(1, 3))

R> plot(wine.som, type = "changes", main = "Wine data: SOM")

R> plot(nir.xyf, type = "changes", main = "NIR data: XYF")

R> plot(yeast.supersom, type = "changes", main = "Yeast data: SUPERSOM")

Many other plots can be made using these basic functions. Especially the property plots are
very versatile. Indeed, the counts and quality plotting types internally calculate the number
of mapped objects and the mean similarity per unit, and use these as property argument in
a property plot.

6. Extra topics

6.1. Mapping

Once a map is trained, we can use it to project new data using the map.kohonen function.
This function calculates (perhaps weighted) distances of the new data points to the codebook
vectors and assigns the data to the closest unit. It is used internally in the training phase when
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the data are stored in the map object: the unit.classif list element mentioned in relation
to Figure 3. The function returns a list. The most important elements are the unit.classif
and distances elements; these contain the indices of the winning units, and the distances to
these winning units, respectively.

The function provides an extra layer of flexibility: even when som and xyf maps cannot be
trained when missing values are present, they may be present when mapping new data. In
the case of more than one layer (xyf and supersom) one can even tinker with the weights
and the maps involved; by default, these are equal to the training parameters, but one can
explicitly provide other values for the mapping phase. This makes it possible, e.g., to assess
which of the layers has the biggest influence on the position of objects, or to try out “what
if” scenarios quickly, without having to repeat the training phase.

6.2. Prediction

The predict.kohonen function takes a trained map and a set of new objects, maps them to
the corresponding winning units, and returns the dependent variable associated with these
units. For supervised maps (xyf and bdk), this information is already stored in the map.
For SOMs and superSOMs, the user should provide data that can be used for calculating
the predictions per unit. If the training data are stored in the map, the user only needs to
provide the corresponding data for the dependent variable (using the trainY argument); if
no training data are stored, the user should provide both trainX and trainY data. Examples
are shown below for the yeast data. The first mapping uses only the alpha synchronisation
element to predict cell cycle phase class.

R> set.seed(7)

R> training.indices <- sample(800, 400)

R> training <- rep(FALSE, 800)

R> training[training.indices] <- TRUE

R> yeast.ssom1 <- supersom(lapply(yeast, function(x) subset(x, training)),

+ somgrid(4, 6, "hexagonal"),

+ whatmap = 3)

Warning message:

removing 6 NA objects from the training data

in: ...

R> ssom1.predict <- predict(yeast.ssom1,

+ newdata = lapply(yeast,

+ function(x) subset(x, !training)),

+ trainY = subset(classvec2classmat(yeast[[7]]),

+ training))

R> prediction1 <- factor(classmat2classvec(ssom1.predict$prediction),

+ levels=levels(yeast$class))

R> confus1 <- table(subset(yeast$class, !training), prediction1)

R> confus1

prediction1

M/G1 G1 S G2 M

M/G1 22 25 0 10 6

G1 10 127 1 6 0
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S 0 10 5 11 1

G2 1 4 6 41 10

M 16 5 1 36 44

R> sum(diag(confus1))

239

In total, 239 of the 400 genes in the test set have been classified correctly on the basis of
their alpha-synchronized expression profile. If we include more information, we would expect
this number to go up. Therefore, we train a second map using three other synchronisation
methods, cdc15, cdc28 and elu, as well.

R> yeast.ssom2 <- supersom(lapply(yeast, function(x) subset(x, training)),

+ somgrid(4, 6, "hexagonal"),

+ whatmap = 3:6)

Warning message:

removing 21 NA objects from the training data

in: ...

R> ssom2.predict <- predict(yeast.ssom2,

+ newdata = lapply(yeast,

+ function(x) subset(x, !training)),

+ trainY = subset(classvec2classmat(yeast[[7]]),

+ training))

R> prediction2 <- factor(classmat2classvec(ssom2.predict$prediction),

+ levels=levels(yeast$class))

R> confus2 <- table(subset(yeast$class, !training), prediction2)

R> confus2

prediction2

M/G1 G1 S G2 M

M/G1 24 22 0 0 17

G1 7 130 5 3 0

S 0 4 14 10 0

G2 0 3 7 38 14

M 1 1 0 9 91

R> sum(diag(confus2))

297

Adding the extra three layers in the second mapping leads to 58 more correctly classified
genes, an improvement of fifteen percent points in error rate. Especially the predictions for
the classes M and S have improved.

6.3. Relations between different methods

The functions som and xyf can be seen as special versions of supersom, applied with a list
containing one and two data matrices, respectively. The som function, in particular, is mainly
retained to keep compatibility with previous versions of the package; it has the disadvantage
that it can not handle missing values, whereas supersom can. The xyf function, on the
other hand, has extra functionality compared to supersom: if the Y variable is a class matrix
(i.e., represents a categorical rather than continuous variable), the Tanimoto distance is used



Journal of Statistical Software 17

instead of the Euclidean distance. In our experience, this gives slightly better classification
results. Again, the xyf function has the disadvantage that it does not handle missing values.
Both xyf and som are, because of their greater simplicitly, slightly faster than supersom
although this will hardly be relevant in practical applications.

7. To do

The package can (and hopefully will) be extended in several directions. First of all, different
similarity measures should be implemented for all mapping types, such as the Tanimoto dis-
tance, correlation, or even specialized measures. An example is the weighted cross-correlation
(WCC), useful in cases where spectral features show random shifts. The latter measure,
in combination with SOMs, has been implemented in a separate R package called wccsom
(Wehrens et al. 2005), and has proved useful in mapping X-ray powder diffractograms. For
supersom, it should eventually be possible to assign a useful distance measure to every layer
in a map; thus, the need for a separate xyf function would disappear as well.

When data sets and the corresponding maps are large, or the similarity measure takes a lot of
computation time (as in the WCC case), training can be a time-consuming process. In such
cases, it is worthwhile to start training with a small map that increases in size, rather than a
large map where the size of the neighbourhood is decreased. After adding the extra units, the
codebook vectors for the new units are initialized through interpolation, and a new round of
training begins. An example has been implemented in function expand.som from the wccsom
package (Wehrens and Willighagen 2006). Eventually, the wccsom package should be merged
into the kohonen package.

One major snag in using SOMs and analogues lies in the number of parameters influencing
the mapping: learning rate, map size and topology, similarity functions, etcetera. Although
the conclusions drawn from the mapping in many cases are fairly robust for different settings,
one would like to have as few parameters as possible. One parameter that can be dispensed
with by using another algorithm is the learning rate, by using the already mentioned batch
algorithm. This, in principle, could be extended to the other SOM variants as well. Not only
is there one fewer parameter to be set, it is usually quicker as well.

Several ways to enhance the graphical capabilities of the package can be explored as well. One
example that would be potentially useful is to have an arbitarary center unit in the case of
toroidal maps. Interpretation of these maps can be much easier when the focus of attention
can be placed in the middle of the map, so that apparent but in fact non-existent edges can
be ignored. Other plans include plots showing the smoothness of the map – i.e. the similarity
between neighbouring units.
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