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Abstract

Fechnerian scaling is a procedure for constructing a metric on a set of objects (e.g.,
colors, symbols, X-ray films, or even statistical models) to represent dissimilarities among
the objects “from the point of view” of a system (e.g., person, technical device, or even
computational algorithm) “perceiving” these objects. This metric, called Fechnerian, is
computed from a data matrix of pairwise discrimination probabilities or any other pairwise
measure which can be interpreted as the degree with which two objects within the set are
discriminated from each other. This paper presents the package fechner for performing
Fechnerian scaling of object sets in R. We describe the functions of the package. Fechnerian
scaling then is demonstrated on real and artificial data sets accompanying the package.
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1. Introduction

This paper discusses the R (R Development Core Team 2009) package fechner for Fechne-
rian scaling (FS) of object (or stimulus) sets. It is available from the Comprehensive R
Archive Network at http://CRAN.R-project.org/package=fechner. FS provides a theo-
retical framework for deriving so-called Fechnerian distances among objects from discrimina-
tion probabilities or other measures showing the degree with which objects are discriminated
from each other by what is generically referred to as a perceiving system. In addition to the
Fechnerian distances, F'S also identifies pairs of points of subjective equality, geodesic chains,
and geodesic loops. (These concepts are explained in detail in Section 2.)

This paper provides a brief and by necessity schematic overview of the main concepts of F'S. For
detailed discussions of the various developments in this field refer to the following literature.
The latest and most general version of FS is the dissimilarity cumulation theory (Dzhafarov
and Colonius 2007; Dzhafarov 2008a,b). This theory extends the previously proposed theories
of FS in continuous (Dzhafarov and Colonius 2005a) and discrete and discrete-continuous
(Dzhafarov and Colonius 2005b) stimulus spaces. For historical background and the relation
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of FS to traditional issues of psychophysics—for instance, Fechner (1860)’s original theory
and its experimental and theoretical critiques—see Dzhafarov (2001, 2002a,b) and Dzhafarov
and Colonius (1999, 2001). The finite, discrete version of FS, by far the most important for
practical applications, is discussed in detail in Dzhafarov and Colonius (2006a). As any data
set is necessarily finite, this is the version implemented in the package fechner and described
in the present paper.

Currently available software for F'S includes FSCAMDS (Dzhafarov and Colonius 2009), which
runs on MATLAB (The MathWorks, Inc. 2007), and a MATLAB toolbox (Rach and Colonius
2008).

The paper is structured as follows. In Section 2, we briefly review the theory of FS. In Sec-
tion 3, we present the package fechner and describe the functions therein. In Section 4, we
demonstrate FS by applying the package’s functions to real and artificial data sets accompa-
nying the package.

2. Fechnerian scaling of object sets

Let {z1,...,2,} be a set of objects endowed with a discrimination function ¢ (z;,2;). The
primary meaning of ¢ (z;, ;) in FS is the probability with which z; is judged to be different
from (not the same as) x;. For example, a pair of colors (x;, ;) may be repeatedly presented
to an observer (or a group of observers), and v (x;, ;) may be estimated by the frequency
of responses “they are different”. Or (z;,z;) may be a pair of categories, and 1 (z;,x;)
the frequency of times a randomly chosen exemplar of category z; and a randomly chosen
exemplar of category x; are judged by a person to belong to different categories. Or (z;,x;)
may be a pair of statistical models, and v (z;, z;) the probability with which model z; fails
to fit (by some statistical criterion) a randomly chosen data set generated by model z;.
Possible examples are numerous, and more can be found in Dzhafarov and Colonius (2006b).
If warranted by substantive considerations, ) (z;, z;) may represent nonlinearly transformed
probabilities, such as their logarithms or inverse normal integrals. Moreover, ¥ need not
be related to probabilities at all: one can, for example, repeatedly present a pair of colors
(xi, ;) and ask an observer for a direct numerical estimate of “how dissimilar x; and z; are”
(say, on a scale from 0 to 10), in which case 1 (z;, ;) can be the median or mean of several
numerical estimates (this procedure is commonly used for the purposes of multidimensional
scaling, MDS; see, e.g., Kruskal and Wish 1978).

It is a well-established empirical fact that ¢ (x;, ;), however obtained, is not a metric:

1) v (x4, x;) is not always zero;

(1)

(2) moreover, ¥ (x;,x;) and ¢ (z;, ;) for i # j are not generally the same;

(3) ¥ (4, 2;) is generally different from ¢ (z;, ;);

(4) and the triangle inequality is not generally satisfied either, ¥ (z;, z;) + ¢ (2, z5) may
very well be less than ¢ (z;, xy).

The only data-analytic procedure other than FS which is aimed at imposing a metric on
{z1,...,2,} based on v is nonmetric MDS (e.g., Kruskal and Wish 1978). In its common
version MDS assumes that 1 (z;,2;) is some unknown monotone transformation of a “true”
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distance d (z;,x;), and the MDS procedure searches for this transformation. No transforma-
tion, however, can deal with points (2) and (3) above, so the data have to be modified to
make MDS applicable: e.g., ¥ (z;, z;) and 1 (2, x;) are replaced with their averages, and all
“diagonal” values ¢ (z;,z;) are averaged over as well. Even then MDS may not succeed in
finding the transformation, especially since the class of allowable metrics in MDS is usually
a priori restricted to Euclidean (or so-called Minkowskian) metrics in low-dimensional spaces
of real-component vectors.

By contrast, FS deals directly with ¢-data subject to points 1-4 above, and it imposes no
a priori restrictions on the class of metrics d computed from . The only property of the
1-data which is required by FS is regular minimality (RM). This property can be formulated
in three statements:

A) for every x; there is one and only one z; such that ¢ (z;,x;) < ¥ (x;, xx) for all k # j
J j
(this x; is called the Point of Subjective Equality, or PSE, of x;);

(B) for every z; there is one and only one x; such that v (z;, x;) < ¢ (xy,x;) for all k # i
(this z; is called the PSE of x;);

(C) and z; is the PSE of z; if and only if z; is the PSE of x;.

Every data matrix in which the diagonal entry 1 (x;, x;) is smaller than all entries ¥ (z;, z)
in its row (k # i) and all entries ¢ (z, z;) in its column (k # 4) satisfies RM in the simplest
(so-called canonical) form. In this simplest case every object z; is the PSE of z;. (Note that
regular maximality can be defined analogously, replacing “minimal” with “maximal”. This is
required when the t-data represent closeness values rather than differences; e.g., ¥ (x;, x;)
may be the percent of times z; is judged to be the same as x;.)

It need not always be the case, however, that every x; is the PSE of x;. What makes any
(xi,xj) an ordered pair, different from (z;,;), and what makes (z;, ;) a pair rather than
a single object, is the fact that x; and z; (in particular, ; and z;), when being compared,
necessarily differ in some property which “does not count” for the comparison. For example,
if z; and x; are two colors, they must occupy two different spatial locations, or one of them
may be presented first and the other second in time. This difference in spatial or temporal
locations (generically referred to as the difference between two observation areas) does not
enter in the comparison, but it may affect the way people perceive colors, and this in turn
may lead to ¢ (z;,z;) being larger than v (x;, ;) for some distinct ¢ and j (in the same way
as it may lead to v (x4, x;) # ¥ (x5, 2;)). The matrix of ¢)-data

T X9 T3
z; 0.2 0.1 0.5
zo 0.7 0.3 0.2
z3 0.1 0.6 0.3

satisfies RM, with (x1,x2), (z2,23), and (x3,x1) being pairs of mutual PSEs. Here, the
first symbol in every pair refers to a row object (all row objects belonging to one, the “first”,
observation area) and the second symbol refers to a column object (in the “second” observation
area).

Generalizing, given a matrix of ¢ (z;, z;)-values with the rows and columns labeled by the
objects {z1,...,x,}, if (and only if) RM is satisfied, the row objects and column objects
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can be presented in pairs of PSEs (z1,zy, ), (x2, Tk, ) , - . ., (T, Tk, ), where (k1,ka, ..., ky) is a
permutation of (1,2,...,n). The FS procedure identifies and lists these PSE pairs and then
relabels them so that two members of the same pair receive one and the same label:

<I’17$k1) '_> (a17a/1) 9 (.’L'Q,ku) '_> (CLQ,CI,Q) PR | (‘rn;xkn) '_> (anyan) .

Thus, the matrix in the example above becomes

as aip as a; az as
a; 02 01 05| |a 01 05 02
a 0.7 03 02| | a 03 02 0.7
as 0.1 0.6 0.3 az 0.6 0.3 0.1

in which each diagonal entry is minimal in its row and in its column. After this relabeling

the original function 1 (z;,x;) is redefined. We present it as p;; = 1)(a;, a;) according to the
rule: if (z,zk,) — (ai,a;) and (a:j, $kj) — (aj,a;), then p;; = 9 (x,;, a:kj) (in particular,
pii = ¥ (x4, xy,)). Note that p;; is subject to the same properties 1-4 which were stipulated
above for ¢. Of course, in the simplest case (canonical form), when each z; is its own PSE, no
relabeling of objects is necessary, and p;; coincides with 9 (z;, ;). (In the package fechner the
pairs of PSEs are assigned identical labels leaving intact the labeling of the rows and relabeling
the columns with their corresponding PSEs. This is referred to as canonical relabeling.)

FS imposes a metric G on the set {ai,...,a,} in such a way that, if z; and x;y are each
other’s PSEs relabeled into a; and z; and z; are each other’s PSEs relabeled into a;, then
G (zi,z;) = G (xy,z5) = G (a;, a;). Here is how it is done. Let any finite sequence of objects,
not necessarily pairwise distinct, be called a chain. Any ordered pair of successive objects in
a chain is referred to as a link of the chain. For every pair of objects (a;,a;) we consider all
possible chains of objects (a;, ag,, ..., ax,,a;), where (ag,,...,ax,.) is a sequence chosen from
{a1,...,a,} (and r may be 0, in which case the chain inserted between a; and a; is empty).
For each such a chain we compute what is called its psychometric length (of the first kind) as

3
I

r

L(l) (aiv Ay y e v vy ALy a]) = (pk‘mkarl - pkmk‘m) )

m=0

where we put a; = ay, and a; = ag,,,. (The quantities pg, k.., — Pknk, are referred
to as psychometric increments of the first kind.) Then we find a chain (which need not
be unique) with the minimal value of LW and take this minimal value of L) for the
quasidistance GS) from a; to a; (referred to as the oriented Fechnerian distance of the
first kind). Quasidistance (quasimetric, or oriented metric) is a pairwise measure which
(1)
i
GEJI-) + Gﬁ) > GEI?? but GS) need not equal Gﬁ). (The proof that GS) is a quasidistance
is straightforward. See Dzhafarov and Colonius (2007) for the most general version.) In FS

we symmetrize this quasimetric and transform it into a metric by computing GZ(-JI») + Gﬁ)

and taking it for the “true” or “overall” Fechnerian distance G;; between a; and a;. Any

satisfies all metric properties except for symmetry: G;.” = 0 if and only if ¢ = j, and

chain (a;, ak,,...,ax,,a;) with L® (@i, ap,,...,ak,,a;) = GS-) is called a geodesic chain (of
the first kind). Then the overall Fechnerian distance G;; (see Figure 1) is the psychometric
length (of the first kind) of a geodesic loop (a;, ak,, - .., ak,,a;, ay,, ..., a,,a;), or equivalently

(aj,all,...,als,ai,akl,.. . ,akT,aj).
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Figure 1: A space consisting of 10 objects shown in an arbitrary spatial arrangement. The
psychometric length (of the first kind) L™ (2,3,4,5,8,6) of the chain connecting object 2
to object 6 (shown by solid arrows, representing the links of the chain) is computed as
(P23 — p22) + (P3a — p33) + (Pas — paa) + (P58 — ps5) + (Ps6 — pss). If this chain is the shortest
among all chains connecting object 2 to object 6, then L (2,3,4,5,8,6) is taken to be the
oriented Fechnerian distance G%) from 2 to 6. Analogously, L) (6,9,4,1,2) of the chain
connecting object 6 to object 2 (shown by dashed arrows, representing the links of the chain)
is (p69 — p66) + (p94 — pgg) -+ (p41 — p44) + (p12 — p11)~ If this chain is the shortest among all
chains connecting object 6 to object 2, then L™ (6,9,4,1,2) = GE%). Together the two chains
form a loop with the total length L) (2,3,4,5,8,6) + L (6,9,4,1,2). If the two chains are
the shortest possible, then this sum is the overall Fechnerian distance Gaog = Ggo between
objects 2 and 6.

Although this is not, strictly speaking, necessary for computations, it is worth noting that
we can also compute the psychometric length (of the second kind) of an arbitrary chain
(@i, apy, ... ,ak,,a;) as

m=r

L (az,apy, ... ax,,a;) = > (Phs ko — Phionki)

m=0
(where pi,.. km — Phmk, are called psychometric increments of the second kind), and then
define the quasidistance (the oriented Fechnerian distance of the second kind) Gl(-?) from a; to

a; as the minimal value of L3 across all chains inserted between a; and a;. It makes, however,
no difference for the final computation of the overall Fechnerian distance G;j, because it can
be shown (see, e.g., Dzhafarov and Colonius 2006a) that

_ D 1) _ ~® (2)
Gij = Gij +Gji = Gz‘j +sz’ .
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Figure 2: The same as Figure 1, but the loop comprised of the solid and dashed arrows (rep-
resenting the links of the loop) is now traversed in the opposite direction. The psychometric
length (of the second kind) L (6,8,5,4,3,2) is computed as (psg — pes) + (P58 — Pss) +
(P15 — p35) + (psa —paa) + (P23 —p33).  Analogously, L¥(2,1,4,9,6) is (pi2 — p22) +
(pa1 — p11) + (poa — paa) + (P9 — Po9)- It can be verified by rearranging terms that the length
L® (6,8,5,4,3,2) + L? (2,1,4,9,6) of this loop is the same as the length of the loop com-
puted in Figure 1: LM (2,3,4,5,8,6) + L) (6,9,4,1,2). As a consequence, if the loop in
Figure 1 is the shortest in the L(!) sense among all loops containing objects 2 and 6, then
so is in the L(?) sense the loop traversed in the opposite direction (and vice versa); hence

GSG) + G(%) = GgQG) + Gg) = (96, the overall Fechnerian distance between objects 2 and 6.

It also holds (in fact, the equality above is an immediate consequence of this result) that the
LM -length of any loop (@iy Qs - vy Qe @Gy Qs - -y a, G7) €quals the L) length of the same
loop traversed in the opposite direction, (a;, ar,,...,a;,a;,ak,,...,ak,a;); see Figure 2.

The package fechner computes, among other quantities (see Section 3), the value of Gj;
(referred to as G in the package) and identifies a geodesic loop (perhaps one of several possible)
for any pair of (relabeled) objects (a;, a;). It also compares the value of G;; to what we call a
generalized Shepardian index of dissimilarity S;; = pij +pji — pis — pj; (referred to as S—index
in the package).! Note that G;; < S;; for all (a;,a;). The comparison Gj; versus S;; is of
interest because it shows how different the psychometric increments p;; — p;; are from an
oriented metric. The equality G;; = S;; holds for some (a;, a;) if and only if the geodesic loop

!Shepard’s original index, in our notation, is S;; = ((1 — ps;) (1 — pjs)) / (1 — psi) (1 — pj;)) (Shepard 1957,
1987). In FS Sy; is called the generalized Shepardian index because it achieves the same goal as Sj;: it
symmetrizes the matrix about the main diagonal and equalizes all diagonal entries (although their common
value in S; is 1 rather than 0). The index S;; can be viewed as a special case of S;; if p in Si; is understood
as log (1 — p) in log S7;.
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for (a;, aj) contains no other objects, i.e., if it is (a;, a;, a;). This means that p;; —p;; is smaller
than LW (@i, ak,,...,ak,,a;) for any chain inserted between a; and a;, and that p;; — p;; is
smaller than L) (aj,ar,...,a,a;) for any chain inserted between a; and a;. (The same
statement could be equivalently formulated in terms of psychometric increments and lengths
of the second kind, pj; — p; and L(Q).) It follows that if G;; = S;; for all (as,a;), then the
values of p;; — p;; form an oriented metric, and the computation of Gj;; is reduced to simple
symmetrization: (p;; — pii) + (pji — pj;) = Sij. The greater the number of points (a;, a;) for
which G;; < S;; and the greater the differences S;; — G, the greater the “non-metricality” of
the psychometric increments p;; — p;; and the greater the “improvement” they need to become
metric. To quantify this “improvement” FS uses an ad hoc descriptive index

_ 23 (Sy — Gyy)”
RS e

(referred to as C—index in the package).

3. The R package fechner

In this section we briefly describe the functions and relevant parts of the package. How to
actually use the software is demonstrated on examples in Section 4. The description of the
package will be short, primarily focusing on the main aspects of FS, those the users may
want to know first. Detailed information about these and other matters can be found in
the comprehensive documentation files for the package in R. We do not discuss source code
because the code in fechner is straightforward, intuitive, and generously commented.

The package fechner is implemented based on the S3 system. It comes with a namespace
and consists of three external functions (functions the package exports): the main func-
tion fechner, which provides the FS computations, and the functions check.regular and
check.data for verifying the required regular minimality /maximality property and the for-
mat of the data, respectively. The package also contains internal functions (functions not
exported by the package), which basically are plot, print, and summary methods for objects
of the class “fechner”. There are two real and two artificial data sets accompanying the
package fechner (they are described and analyzed in Section 4). The package’s functionality
and output closely follow that of the software FSCAMDS (see Section 1). It was tested on
real and artificial data and yielded the same results as obtained with FSCAMDS. Detailed
descriptions of the package’s functions and data sets can be found in the documentation files
in R (for an overview, type package?fechner).

The main function of the package is fechner:

fechner (X, format = c("probability.different", "percent.same", "general"),
compute.all = FALSE, check.computation = FALSE)

This function provides the FS computations (see Section 2), in two variants, termed “short”
and “long”. The short computation (compute.all = FALSE) returns a list, of the class
“fechner”, containing such information as the pairs of PSEs, the canonical representation
of the data in which regular minimality /maximality is satisfied in the canonical form and the
rows and columns are canonically relabeled, the S—index, and most importantly, the over-
all Fechnerian distances and geodesic loops. The long computation (compute.all = TRUE)
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additionally yields intermediate results, such as the psychometric increments, the oriented
Fechnerian distances, and the geodesic chains, and it also allows to check the equality

(¢ +65) - (¢ +6P) =0

(check.computation = TRUE). This equality must hold by theory (see Section 2).

The function fechner takes a square matrix or a data frame of numeric data (X; e.g., discrim-
ination probabilities), which must be in one of the following formats: probability-different,
percent-same, or general. The data have to be a matrix or a data frame with the same
number of rows and columns, and the data have to be numeric (no infinite, undefined, or
missing values are allowed). This is the general data format. The probability-different and
percent-same formats, in addition, require that the data lie in the intervals [0, 1] and [0, 100],
respectively. In the percent-same format, the data are automatically transformed prior to the
analysis using the transformation (100 — X')/100.

The only property of the data which is required by FS is regular minimality /maximality (see
Section 2). For the percent-same format the data must satisfy regular maximality, for the
probability-different and general formats, regular minimality. This property can be checked
using the function check.regular:

check.regular (X, type = c("probability.different", "percent.same",
"reg.minimal", "reg.maximal"))

This function takes a square matrix or a data frame of numeric data (X; see fechner above)
and returns a list consisting of the canonical representation of the data, the pairs of PSEs, a
character string saying which check was performed (regular minimality or regular maximality),
and a logical indicating whether the original data are already in the canonical form. The values
"reg.minimal" and "reg.maximal" can be specified to force checking for regular minimality
and regular maximality, respectively, independent of the data set used.

The data format can be checked using the function check.data:
check.data(X, format = c("probability.different", "percent.same", "general"))

This function takes a square matrix or a data frame of numeric data (X; see fechner above)
and returns a matrix of the data with rows and columns labeled. The labeling is as follows:

o If the data are entered without any labeling of the rows and columns, check.data does
the labeling automatically: as al,bl,...,z1, a2,b2,...,22, etc., up to a9,09,...,29 if
the data size does not exceed 234 x 234, or if the data size is larger than 234 x 234, the
labeling is v1,v2,...,vN, where N X N is the dimensionality of the data (and N > 234).

e If the data are entered with either row or column labeling (but not both), the row or
column labels are assigned to the columns or rows, respectively.

o If the data are entered with row and column labeling, the same labeling must be used
for both. If this is the case, the labeling is adopted.

The interdependencies among these three functions of the package are as follows. The function
fechner calls the function check.regular, which in turn calls check.data. In particular,
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in the function fechner the specified data format and regular minimality /maximality are
checked, and the rows and columns of the canonical representation matrix are canonically
relabeled based on the labeling provided by check.data. That is, using the check.data
labeling, the pairs of PSEs are assigned identical labels leaving intact the labeling of the rows
and relabeling the columns with their corresponding PSEs (see Section 2).

The function fechner returns an object (x or object) of the class “fechner”, for which S3
plot, print, and summary methods are provided. The plot method

plot(x, level = 2)

graphs the results obtained in the FS analyses. It produces a scatterplot of the overall
Fechnerian distance G versus the S—index (for off-diagonal pairs of stimuli/objects), with
rugs added to the axes and jittered (amount = 0.01 of noise) to accommodate ties in the S—
index and G values. The diagonal line y = «x is provided for a visual reference in estimating
the differences between the two types of values, as a measure of “non-metricality” of the
psychometric increments (see Section 2). The level of comparison (an integer greater than or
equal to 2) refers to the minimum number of links in geodesic loops for the pairs of stimuli
considered for the comparison. That is, choosing level n means that the comparison involves
only those S—index and G values that correspond to the geodesic loops containing not less
than n links. Normally the differences between the S—index and G values are greater for pairs
of objects having geodesic loops with more links (see Figures 3 and 4). The print method

print (x)

prints the main results obtained in the F'S analyses, which are the overall Fechnerian distances
and the geodesic loops. The summary method

summary (object, level = 2)

outlines the results obtained in the F'S analyses. It returns a list consisting of the pairs of
objects and their corresponding S—index and G values, the value of the Pearson correlation
coefficient between them, the value of the C-index (as an ad hoc measure of the “improve-
ment” the psychometric increments need to become metric; see Section 2), and the level
of comparison chosen. Detailed summary information such as individual object pairs and
their corresponding S—index and G values can be accessed through assignment. (Note that
the summary method returns an object of the class “summary.fechner”, for which a print
method is provided.)

4. Examples

The package fechner contains two real (morse and wish) and two artificial (regMin and
noRegMin) data sets. We use these data sets to demonstrate the functions of the package.

4.1. The data sets

morse: Rothkopf (1957)’s Morse code data of discrimination probabilities among 36 auditory
Morse code signals for the letters A, B, ..., Z and the digits 0,1,...,9. The morse data frame
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consists of 36 rows and 36 columns, representing the Morse code signals presented first and
second, respectively. Each number, an integer, in the data frame gives the percentage of
subjects who responded “same” (choosing between “same” and “different”) to the row signal
followed by the column signal. Each signal consists of a sequence of dots and dashes. A chart
of the Morse code letters and digits can be found in Wikipedia (2009).

wish: Wish (1967)’s Morse-code-like data of discrimination probabilities among 32 auditory
Morse-code-like signals. The wish data frame consists of 32 rows and 32 columns, representing
the Morse-code-like signals presented first and second, respectively. Each number, a numeric,
in the data frame gives the relative frequency of subjects who responded “different” (choosing
between “same” and “different”) to the row signal followed by the column signal. The 32
Morse-code-like signals in Wish (1967)’s study were 5-element sequences 17 P1To P13, where
T stands for a tone (short or long) and P stands for a pause (1 or 3 units long). The stimuli
are labeled A, B, ..., Z,0,1,...,5, in the order they are presented in Wish (1967)’s article.

regMin and noRegMin: Artificial data of fictitious discrimination probabilities among 10 stim-
uli. The regMin and noRegMin data frames consist of 10 rows and 10 columns, representing
the fictitious stimuli presented in the first and second observation area, respectively. Each
number, a numeric, in the data frames is assumed to give the relative frequency of perceivers
responding “different” to the row stimulus followed by the column stimulus. These artificial
data sets are included as examples of a case when regular minimality holds in the non-canonical
form (regMin) and a case when regular minimality is violated (noRegMin). They differ only
in one entry: in the ninth row and the tenth column.

4.2. Checking data format and regular minimality /maximality

The data set morse is in the percent-same format, the wish data set is in the probability-
different format (the R output is omitted, for typographic reasons):

R> check.data(morse, format = "percent.same")
R> check.data(wish, format = "probability.different")

The following code describes an example matrix without labeling of the rows and columns,
in the general format; check.data does the labeling automatically:

R> (X <- ((-1) * matrix(1:16, nrow = 4)))

[,11 [,21 [,3] [,4]
t,] -1+ -5 -9 -13
[2,] -2 -6 -10 -14
[3,] -3 -7 -11 ~-15
4,] -4 -8 -12 -16

R> check.data(X, format = "general")

al b1 c1 di
al -1 -5 -9 -13
bl -2 -6 -10 -14
cl -3 -7 -11 -15
dli -4 -8 -12 -16
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The data set wish satisfies regular minimality in the canonical form:

R> check.regular(wish)$check

[1] "regular minimality"

R> check.regular(wish)$in.canonical.form
[1] TRUE

The data set morse satisfies regular maximality in the canonical form:

R> check.regular (morse, type "percent.same")$check

[1] "regular maximality"

R> check.regular(morse, type = "percent.same")$in.canonical.form

[1] TRUE

For typographic reasons only, in the remainder we consider small subsets of these stimulus
sets, chosen to form “self-contained” subspaces: a geodesic loop for any two elements of such a
subset (computed using the complete data set) is contained entirely within the subset. (Note
that the results obtained in the F'S analyses restricted to self-contained subspaces are the same
as the results obtained from the entire stimulus sets. See below.) For instance, a particular
self-contained 10-code subspace of the 36 Morse codes consists of the codes for the letter B
and the digits 0,1,2,4,5,...,9.

R> indices <- which(is.element (names(morse), c("B", c(0, 1, 2, 4:9))))
R> f.scal.morse <- fechner(morse, format = "percent.same")
R> f.scal.morse$geodesic.loops[indices, indices]

B 1 2 4 5 6 7 8 9 0
B B B1B B2B B46B B5B B6B B676B B67876B B6789B  BO6B
1 1B1 1 121 141 151 161 1781 181 191 101
2 2B2 212 2 242 252 262 272 282 2192 21092
4 46B4 414 424 4 454  46B4 474 4784 494 404
5 5B5 515 525 545 5 56Bb5 575 585 595 505
6 6B6 616 626 6B46 6B56 6 676 67876 678976 606
7 T6B67 7817  T27 747 757 767 7 787 7897 789097
8 876B678 818 828 8478 858 87678 878 8 898 8908
9 9B6789 919 9219 949 959 976789 9789 989 9 909
0 06BO 010 09210 040 050 060 097890 0890 090 0

This part of the morse data satisfies regular maximality in the canonical form:

R> (morse.subspace <- morse[indices, indices])
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B 1 2 4 5 6 7 8 9 0
84 12 17 40 32 74 43 17 4 4
584 63 8 10 8 19 32 57 55
14 62 89 20 5 14 20 21 16 11
19 5 26 89 42 44 32 10 3 3
45 14 10 69 90 42 24 10 6 b5
80 15 14 24 17 88 69 14 5 14
33 22 29 15 12 61 85 70 20 13
23 42 29 16 9 30 60 89 61 26
14 57 39 12 4 11 42 56 91 78
3 50 26 11 5 22 17 52 81 94

O ©OW 00 NO O N+~

R> check.regular(morse.subspace, type = "reg.maximal")$in.canonical.form
[1] TRUE

We see that the Morse code discrimination probability data violate constant self-dissimilarity.
For example, the Morse code for digit 1 was judged different from itself by 16% of respondents,
but only by 6% for digit 0. Symmetry is violated as well: The digits 4 and 5, for instance,
were judged to be different in 58% of cases when 4 was presented first, but in only 31% when
4 was presented second. Since the subspace is self-contained, the geodesic loops and overall
Fechnerian distances obtained in the FS analysis restricted to the self-contained subspace
are the same as the geodesic loops and overall Fechnerian distances obtained from the entire
stimulus set:

R> f.scal.subspace.mo <- fechner (morse.subspace, format = "percent.same")
R> identical(f.scal.morse$geodesic.loops[indices, indices],

+ f.scal.subspace.mo$geodesic.loops)

[1] TRUE

R> identical (f.scal.morse$overall.Fechnerian.distances[indices, indices],
+ f.scal.subspace.mo$overall.Fechnerian.distances)

(1] TRUE

Similarly, a self-contained 10-code subspace of the 32 Morse-code-like signals consists of the
codes for S,U, W, X,0,1,...,5. This part of the wish data satisfies regular minimality in the
canonical form. Nonconstant self-dissimilarity and non-symmetry are also manifest in these
Morse-code-like signals data.

R> indices <- which(is.element (names(wish), c("S", "U", "W", "X", 0:5)))
R> (wish.subspace <- wish[indices, indices])

S U W X 0 1 2 3 4 5
S 0.06 0.16 0.38 0.45 0.35 0.73 0.81 0.70 0.89 0.97
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U 0.28 0.06 0.44 0.24 0.59 0.56 0.49 0.51 0.71 0.69
W 0.44 0.42 0.04 0.11 0.78 0.40 0.79 0.55 0.48 0.83
X 0.64 0.71 0.26 0.03 0.86 0.51 0.73 0.27 0.31 0.44
0 0.34 0.55 0.56 0.46 0.06 0.52 0.39 0.69 0.39 0.95
1 0.84 0.75 0.22 0.33 0.70 0.03 0.69 0.17 0.40 0.97
2 0.81 0.44 0.62 0.31 0.45 0.50 0.07 0.41 0.35 0.26
3 0.94 0.85 0.44 0.17 0.85 0.19 0.84 0.02 0.63 0.47
4 0.89 0.73 0.26 0.20 0.65 0.38 0.67 0.45 0.03 0.49
51.00 0.94 0.74 0.11 0.83 0.95 0.58 0.67 0.25 0.03
R> check.regular(wish.subspace, type = "reg.minimal")$in.canonical.form
[1] TRUE

The data set regMin satisfies regular minimality in non-canonical form and so is canonically
transformed and relabeled:

R> regMin

vi v2 v3 Vv4 Vs Ve Vr V8 V9 V10

Vi 0.21 0.36 0.62 0.49 0.93 0.93 0.92 0.98 0.97 0.18
V2 0.34 0.20 0.43 0.68 0.74 0.94 0.90 0.80 0.92 0.51
V3 0.14 0.26 0.19 0.39 0.65 0.91 0.88 0.69 0.87 0.39
V4 0.19 0.36 0.21 0.15 0.68 0.94 0.86 0.69 0.86 0.46
V6 0.37 0.34 0.18 0.45 0.35 0.97 0.54 0.48 0.91 0.77
V6 0.63 0.73 0.22 0.55 0.21 0.79 0.51 0.56 0.94 0.90
V7 0.87 0.98 0.81 0.90 0.55 0.29 0.32 0.81 0.76 0.98
V8 0.91 0.86 0.54 0.86 0.28 0.56 0.27 0.52 0.67 0.94
V9 0.56 0.87 0.42 0.69 0.31 0.92 0.68 0.14 0.68 1.00
V10 0.93 0.90 0.82 0.88 0.76 0.75 0.44 0.49 0.27 0.98

R> check.regular(regMin)

$canonical.representation
vi v2 V3 Vv4 V5 Ve V7 V8 V9 V10

Vi 0.18 0.36 0.21 0.49 0.62 0.93 0.93 0.92 0.98 0.97
V2 0.51 0.20 0.34 0.68 0.43 0.74 0.94 0.90 0.80 0.92
V3 0.39 0.26 0.14 0.39 0.19 0.65 0.91 0.88 0.69 0.87
V4 0.46 0.36 0.19 0.15 0.21 0.68 0.94 0.86 0.69 0.86
V6 0.77 0.34 0.37 0.45 0.18 0.35 0.97 0.54 0.48 0.91
V6 0.90 0.73 0.63 0.55 0.22 0.21 0.79 0.51 0.56 0.94
V7 0.98 0.98 0.87 0.90 0.81 0.55 0.29 0.32 0.81 0.76
V8 0.94 0.86 0.91 0.86 0.54 0.28 0.56 0.27 0.52 0.67
Vo9 1.00 0.87 0.56 0.69 0.42 0.31 0.92 0.68 0.14 0.68
V10 0.98 0.90 0.93 0.88 0.82 0.76 0.75 0.44 0.49 0.27
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$canonical.transformation
observation.area.l observation.area.2 common.label

1 Vi V10 Vi
2 V2 V2 V2
3 V3 Vi V3
4 V4 V4 Vi
5 V5 V3 V5
6 Vé V5 V6
7 V7 V6 V7
8 V8 V7 V8
9 Vo V8 Vo
10 V10 V9 V10
$check

[1] "regular minimality"

$in.canonical.form
[1] FALSE

The data set noRegMin satisfies neither regular minimality nor regular maximality:

R> noRegMin

vi v2 Vv3 Vv4 Vs Ve Vr V8 V9 V10

Vi 0.21 0.36 0.62 0.49 0.93 0.93 0.92 0.98 0.97 0.18
V2 0.34 0.20 0.43 0.68 0.74 0.94 0.90 0.80 0.92 0.51
V3 0.14 0.26 0.19 0.39 0.65 0.91 0.88 0.69 0.87 0.39
V4 0.19 0.36 0.21 0.15 0.68 0.94 0.86 0.69 0.86 0.46
V6 0.37 0.34 0.18 0.45 0.35 0.97 0.54 0.48 0.91 0.77
V6 0.63 0.73 0.22 0.55 0.21 0.79 0.51 0.56 0.94 0.90
V7 0.87 0.98 0.81 0.90 0.55 0.29 0.32 0.81 0.76 0.98
V8 0.91 0.86 0.54 0.86 0.28 0.56 0.27 0.52 0.67 0.94
V9 0.56 0.87 0.42 0.69 0.31 0.92 0.68 0.14 0.68 0.05
V10 0.93 0.90 0.82 0.88 0.76 0.75 0.44 0.49 0.27 0.98

R> check.regular(noRegMin, type = "reg.minimal")

regular minimality is violated: entry in row #1 and column #10
is minimal in row #1 but not in column #10

R> check.regular(noRegMin, type = "reg.maximal")

regular maximality is violated: entry in row #2 and column #6
is maximal in row #2 but not in column #6

4.3. The main function for Fechnerian scaling

The function fechner is the main function of the package and provides the F'S computations.
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Fechnerian scaling analysis using the short computation

R> f.scal.subspace.wi <- fechner (wish.subspace,

+ format = "probability.different", compute.all = FALSE,
+ check. computation = FALSE)
R> f.scal.subspace.wi

overall Fechnerian

S
.00
.32
.72
.89
.57
.19
.12
.28
.19
.38

OO WD, O X = g Wm
R P PR, P OOO0OOO0O
B, B, Ok, OO O OO

o
(0]
o
Q.
o
w0
=
n mn o

Usu
WSW
XSUX
0S0
1wSU1
2 2USU2
3 3XSUX3
4 4WSUX4

= O X = g Wn

U

.32
.00
.76
.79
.89
.07
.80
.16
.07
.28

lo

0

31
4

W
.72
.76
.00
.30
.19
.55
.22
.67
.58
.79

OO O O OO OO

ops:
U
SUS
U
WUw
XWUX
SUSO
1WU1
202
WUX3
WUX4

5 BXSUX5 5XWUX5

distances:

X 0 1
0.89 0.57 1.19 1
0.79 0.89 1.07 0
0.30 1.19 0.55 1
0.00 1.23 0.67 0
1.23 0.00 1.13 0
0.67 1.13 0.00 1
0.94 0.71 1.09 0
0.39 1.43 0.31 1
0.45 0.95 0.72 0
0.49 1.32 1.08 0

W X 0

SWS SUXS S0S
UWU UXWU USOSU
W WXW WSOW
XWX X X0X
OWSO 0X0 0
1wl 1WX31 101
2XW2 2X2 202
31WX3  3X3 3013
4WX4  4X4 404
5XWX5 5X

.12
.80
.22
.94
.71
.09
.00
.16
.92
.74

.28
.16
.67
.39
.43
.31
.16
.00
.84
LT7

O OO P OFr OO K -

1

.19
.07
.58
.45
.95
.72
.92
.84
.00
.68

O OO OO OO O K-

2

SU1WS SU2US

X

Uiwu
WiW
31WX
010
1
212
313
414

5 5025 5X3135

U2u
W2XW
X2X
020
121
2
323
424
525

.38
.28
.79
.49
.32
.08
.74
17
.68
.00

QO O OO rFr r OO K~

3 4 5
SUX3XS SUX4WS SUX5XS
UX31WU UX4WU UX5XWU
WX31W  WX4W WX5XW
X3X X4X X5X
0130 040 0250
131 141 135X31
232 242 252

3 3X4X3  35X3

4X3X4 4 454
5X35 545 5

These are the overall Fechnerian distances and the geodesic loops for the self-contained 10-
The geodesic chain from stimulus S to
stimulus 3, for instance, when using psychometric increments of the first kind, is (S, U, X, 3),
and that from 3 to S is (3, X,S). When using psychometric increments of the second kind,
the geodesic chains are the same, but should be read from right to left: (S, X,3) from S to
3, and (3, X,U,S) from 3 to S. The oriented Fechnerian distances (psychometric lengths of
the geodesic chains) of the first and second kind are computed under the long computation
(discussed later).

code subspace of the 32 Morse-code-like signals.

The information provided using the short computation, an overview:

R> attributes(f.scal.subspace.wi)

$names

[1] "points.of.subjective.equality"

"canonical.representation"
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[3] "overall.Fechnerian.distances" "geodesic.loops"
[5] "graph.lengths.of.geodesic.loops" "S.index"

$computation
[1] "short"

$class
[1] "fechner"

For instance, the S—index:

R> f.scal.subspace.wi$S.index

S U W X 0 1 2 3 4 5

S 0.00 0.32 0.72 1.00 0.57 1.48 1.49 1.56 1.69 1.88
U 0.32 0.00 0.76 0.86 1.02 1.22 0.80 1.28 1.35 1.54
W 0.72 0.76 0.00 0.30 1.24 0.55 1.30 0.93 0.67 1.50
X 1.00 0.86 0.30 0.00 1.23 0.78 0.94 0.39 0.45 0.49
0 0.57 1.02 1.24 1.23 0.00 1.13 0.71 1.46 0.95 1.69
11.48 1.22 0.556 0.78 1.13 0.00 1.09 0.31 0.72 1.86
21.49 0.80 1.30 0.94 0.71 1.09 0.00 1.16 0.92 0.74
3 1.56 1.28 0.93 0.39 1.46 0.31 1.16 0.00 1.03 1.09
4 1.69 1.35 0.67 0.45 0.95 0.72 0.92 1.03 0.00 0.68
51.88 1.54 1.50 0.49 1.69 1.86 0.74 1.09 0.68 0.00

Fechnerian scaling analysis using the long computation

An overview of the information computed under the long computation, which additionally
yields intermediate results and also allows for a check of computations:

R> f.scal.subspace.long.wi <- fechner(wish.subspace,

+ format = "probability.different', compute.all = TRUE,
+ check.computation = TRUE)

R> attributes(f.scal.subspace.long.wi)

$names

[1] "points.of.subjective.equality" "canonical.representation"

[3] "psychometric.increments.1" "psychometric.increments.2"

[5] "oriented.Fechnerian.distances.1" "overall.Fechnerian.distances.1"

[7] "oriented.Fechnerian.distances.2" "overall.Fechnerian.distances.2"

[9] "check" "geodesic.chains.1"

[11] "geodesic.loops.1" "graph.lengths.of.geodesic.chains.1"
[13] "graph.lengths.of.geodesic.loops.1" '"geodesic.chains.2"

grap g g 1% g
[15] "geodesic.loops.2" "graph.lengths.of.geodesic.chains.2"

[17] "graph.lengths.of.geodesic.loops.2" "S.index"

$computation
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[1] ":LOIlg"

$class
[1] "fechner"

The oriented Fechnerian distances (psychometric lengths of the geodesic chains) of the first
kind are:

R> f.scal.subspace.long.wioriented.Fechnerian.distances.1

S U W X 0 1 2 3 4 5

S 0.00 0.10 0.32 0.28 0.29 0.60 0.53 0.52 0.56 0.69
U 0.22 0.00 0.38 0.18 0.51 0.50 0.43 0.42 0.46 0.59
W 0.40 0.38 0.00 0.07 0.69 0.36 0.75 0.31 0.35 0.48
X 0.61 0.61 0.23 0.00 0.83 0.41 0.70 0.24 0.28 0.41
0 0.28 0.38 0.50 0.40 0.00 0.46 0.33 0.60 0.33 0.52
1 0.59 0.57 0.19 0.26 0.67 0.00 0.66 0.14 0.37 0.59
2 0.59 0.37 0.47 0.24 0.38 0.43 0.00 0.34 0.28 0.19
30.76 0.74 0.36 0.15 0.83 0.17 0.82 0.00 0.43 0.45
4 0.63 0.61 0.23 0.17 0.62 0.35 0.64 0.41 0.00 0.46
5 0.69 0.69 0.31 0.08 0.80 0.49 0.55 0.32 0.22 0.00

The psychometric length of the first kind for the geodesic chain (S,U, X, 3) from S to 3 is
Ggg = 0.52, and of the geodesic chain (3, X, S) from 3 to S it is G:(;g) = 0.76. The psychometric
length G(523) of the second kind for the geodesic chain (5, X, 3) from S to 3 is

R> f.scal.subspace.long.wi$oriented.Fechnerian.distances.2["S", "3"]
[1] 0.72

and the psychometric length G%) of the geodesic chain (3, X, U, S) from 3 to S is

R> f.scal.subspace.long.wi$oriented.Fechnerian.distances.2["3", "S"]
[1] 0.56

The psychometric lengths of both kinds for the geodesic loops add up to the same value,
Gs3 = 1.28, as they should, because by theory G;; = GS-) + Gg;) = Gg) + G;?). Geodesic
loops are concatenations of geodesic chains, hence the following equality of graph-theoretic
(edge/link based) lengths of chains and loops holds:

R> identical (f.scal.subspace.long.wi$graph.lengths.of.geodesic.chains.1 +

+ t(f.scal.subspace.long.wi$graph.lengths.of.geodesic.chains.1),
+ f.scal.subspace.long.wi$graph.lengths.of.geodesic.loops.1)

(1] TRUE

17
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The check for whether the overall Fechnerian distance of the first kind is equal to the overall
Fechnerian distance of the second kind; the difference, by theory a zero matrix (an excerpt is
shown):

R> f.scal.subspace.long.wi$check[[1]][1:4, 1:4]

S U W X
S 0.000000e+00 0.000000e+00 0.000000e+00 -1.110223e-16
U 0.000000e+00 0.000000e+00 0.000000e+00 1.110223e-16
W 0.000000e+00 0.000000e+00 0.000000e+00 5.551115e-17
X -1.110223e-16 1.110223e-16 5.551115e-17 0.000000e+00

Or, the logical indicating whether this matrix of differences is equal to the zero matrix up to
machine precision:

R> f.scal.subspace.long.wi$check[2]

$are.nearly.equal
[1] TRUE

4.4. Plotting and summarizing

Objects of the class “fechner” can be plotted or summarized. Plotting the “fechner” object
f.scal.morse (computed based on the entire Morse code data set; see Section 4.2)

R> plot(f.scal.morse)

gives the scatterplot shown in Figure 3.

Rugs are added to the axes and jittered (amount = 0.01 of noise) to accommodate ties in
the S—index and G values. The plot is for all (off-diagonal) pairs of stimuli (with geodesic
loops containing at least 2 links). If comparison is to involve only those S—index and G values
that have geodesic loops containing not less than 4 links, the argument level must be set 4
(Figure 4):

R> plot(f.scal.morse, level = 4)

The corresponding summary of the “fechner” object f.scal.morse, including the Pearson
correlation coefficient and the C—index:

R> summary(f.scal.morse)
number of stimuli pairs used for comparison: 630
summary of corresponding S-index values:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.180 1.260 1.520 1.435 1.670 1.850
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Scatterplot "(overall) Fechnerian distance G versus S-Index"
(for comparison level 2, with diagonal line y = x)
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Figure 3: G versus S-index for Morse code data (all stimuli pairs).

summary of corresponding Fechnerian distance G values:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.180 1.203 1.490 1.405 1.660 1.850

Pearson correlation: 0.9764753
C-index: 0.002925355
comparison level: 2

In particular, detailed summary information can be accessed through assignment:

R> detailed.summary.mo <- summary(f.scal.morse, level = 4)
R> str(detailed.summary.mo, vec.len = 2)

List of 4
$ pairs.used.for.comparison:'data.frame': 63 obs. of 3 variables:
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Scatterplot "(overall) Fechnerian distance G versus S-Index"
(for comparison level 4, with diagonal line y = x)
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Figure 4: G versus S-index for Morse code data (specific stimuli pairs).

..$ stimuli.pairs : chr [1:63] "B.J" "B.K"
..$ S.index : num [1:63] 1.41 1.17 1.58 1.17 1.51
..$ Fechnerian.distance.G: num [1:63] 1.28 0.86 1.39 0.98 1.44 ...
$ Pearson.correlation : num 0.87
$ C.index : num 0.0219
$ comparison.level : num 4

- attr(*, "class")= chr "summary.fechner"

For instance, the pair of stimuli (B, J) and the corresponding S—index and G values can be
retrieved through:

R> detailed.summary.mo$pairs.used.for.comparison([1, ]

stimuli.pairs S.index Fechnerian.distance.G
1 B.J 1.41 1.28

To verify that obtained information:



Journal of Statistical Software

R> f.scal.morse$graph.lengths.of.geodesic.loops["B", "J"]
(1] 4

R> f.scal.morse$S.index["B", "J"]

[1] 1.41

R> f.scal.morse$overall.Fechnerian.distances["B", "J"]

[1] 1.28

5. Conclusion

We have introduced the package fechner for performing Fechnerian scaling (F'S) of object
sets in the R language and environment for statistical computing and graphics. The package
has functions for checking the required data format and the regular minimality /maximality
property, a fundamental property of discrimination in psychophysics. The main function of
the package provides the F'S computations, in the short and long variants. We have described
the functions of the package fechner and demonstrated their usage on real and artificial data
sets accompanying this package.

By contributing the package fechner in R we hope to have established a basis for computa-
tional work in this field. Interactive visualization and computational statistics approaches
can be utilized in post-Fechnerian analyses to make the results obtained by FS (e.g., over-
all Fechnerian distances and geodesic loops) more explorable and interpretable. We plan to
extend this package to incorporate such graphics as the matrix visualization, in particular
combined with seriation, the fluctuation diagram variant of the mosaic plot, or the parallel
coordinates plot—all as far as possible, interactively linked. (Available R packages providing
for such graphics are, for example, seriation, Hahsler, Hornik, and Buchta 2008, and iplots,
Urbanek and Wichtrey 2009.) These visualization approaches could be used in conjunction
with post-Fechnerian analyses based on multidimensional scaling (MDS) or cluster analysis
(CA), as described by Dzhafarov and Colonius (2006a). Various MDS, dimensionality reduc-
tion, and CA techniques, as well as such methods as principal component analysis or factor
analysis, are envisioned to be explored for their applicability to FS in greater depth. The
package fechner will have to be extended to incorporate such approaches.

The realization of FS in R may also prove valuable in applying current or conventional statis-
tical methods to the theory of FS. For instance, the determination of confidence regions (e.g.,
for overall Fechnerian distances) and hypothesis testing (e.g., testing for RM) in F'S are likely
to be based on resampling methods. Such an endeavor would involve extensive computer
simulation, something R would be ideally suited for.
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