
JSS Journal of Statistical Software
June 2009, Volume 30, Issue 11. http://www.jstatsoft.org/

Multi-Objective Optimal Experimental Designs for

ER-fMRI Using MATLAB

Ming-Hung Kao
University of Georgia

Abstract

Designs for event-related functional magnetic resonance imaging (ER-fMRI) that help
to efficiently achieve the statistical goals while taking into account the psychological con-
straints and customized requirements are in great demand. This is not only because of
the popularity of ER-fMRI but also because of the high cost of ER-fMRI experiments;
being able to collect highly informative data is crucial. In this paper, we develop a MAT-
LAB program which can accommodate many user-specified experimental conditions to
efficiently find ER-fMRI optimal designs.

Keywords: design efficiency, genetic algorithms, MATLAB.

1. Introduction

Event-related functional magnetic resonance imaging (ER-fMRI) is one of the leading tech-
nologies for studying human brain activity in response to mental tasks or stimuli. Before
conducting an ER-fMRI experiment, a sequence of stimuli of one or more types interlaced
with the control (rest or fixation) is prepared. This sequence of stimuli is presented to an
experimental subject while the MR scanner scans his/her brain every few seconds. The blood
oxygenation level dependent (BOLD) time series is collected from each brain voxel (a small
region of the brain) for statistical analysis. See Josephs et al. (1997), Rosen et al. (1998),
Dale (1999), and Bandettini and Cox (2000) for overviews of ER-fMRI.

One important design problem of ER-fMRI is to find an optimal sequence of the stimuli best
suited to the researcher’s needs. However, this problem is difficult due to the following reasons.
First, the design space, consisting of all possible sequences of stimuli, is enormous. Searching
over this space for a good design is hard. In addition, the flexibility of ER-fMRI allows
researchers to consider two popular statistical objectives, namely estimation and detection.
Estimation refers to the estimation of the hemodynamic response function (HRF), a function

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6303076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 Multi-Objective Optimal Experimental Designs for ER-fMRI Using MATLAB

of time describing an effect of a single, brief stimulus. Detection is to identify brain regions that
are activated by the stimuli. Considering both objectives in one study is not uncommon (see
also Wager and Nichols 2003), but this requires good multi-objective designs that efficiently
achieve these two competing goals. Moreover, statistics is not the only concern for ER-fMRI.
Psychology plays an important, even crucial, role. When a design sequence is patterned or easy
to predict, psychological effects such as habituation or anticipation can occur to contaminate
the data (Dale 1999). A good design should help to avoid these confounds. Furthermore,
customized requirements such as the required number of stimuli for each stimulus type can
also arise to make the problem even more complicated. As a result, searching for a good
multi-objective design is inevitable. We need well-defined multi-objective design criteria (MO-
criteria) for evaluating the quality of competing designs, an efficient search algorithm and a
program that implements such an algorithm.

In this paper, we develop a program using MATLAB (The MathWorks, Inc. 2006) for finding
multi-objective optimal ER-fMRI designs. Our program implements the approach proposed
by Kao et al. (2009a), which includes rigorously formulated models, well-defined MO-criteria
and a genetic algorithm (GAs). They incorporate knowledge about the performance of well-
known ER-fMRI designs to increase the effectiveness and efficiency of their approach. As
demonstrated in their paper, this approach is more efficient than the previous methods and is
flexible enough to accommodate different experimental conditions and assumptions. To make
the best use of this approach, our program allows users to specify the experimental conditions
based on their needs. The designs that we obtain can help researchers to achieve efficient
statistical inference.

The rest of the article is organized as follows. Section 2 reviews the approach proposed by Kao
et al. (2009a). Section 3 illustrates our computer codes. An example for using our program
is in Section 4, followed by conclusion and discussion in Section 5.

2. Methodology review

A typical ER-fMRI design can be viewed as an alignment of events, including the stimuli and
the control. For convenience, the symbols 0, 1, ..., Q are used to represent the events with 0
indicating the control and i a type-i stimulus, i = 1, ..., Q; Q is the total number of stimulus
types. A design, denoted by ξ, looks like ξ = {101201210...1}.

While being presented to an experimental subject, each stimulus lasts for a short period of
time relative to the inter-stimulus interval (ISI), the fixed time interval between the onsets
of consecutive events. We note that 0s in the sequence are “pseudo-events”; they help to
calculate the onset times of stimuli. For example, with a 0 in between, the first, second and
the third stimuli (1, 1, and 2) of ξ occur, respectively, 1ISI, 3ISI, and 4ISI seconds after the
outset of the experiment. The control fills up the time period between the end of a stimulus
and the start of the next one.

Our goal is to find a best sequence of the events to efficiently achieve four popular objectives,
which are 1) estimating the HRF, 2) detecting brain activation, 3) avoiding psychological
confounds and 4) maintaining the desired frequency for each stimulus type. To define the
design criteria for the first two statistical objectives, we need to specify the underlying models.

Journal of Statistical Software 3

Models

Following previous approaches (e.g. Liu 2004a; Liu and Frank 2004; Wager and Nichols 2003),
two popular linear models are considered for the two statistical objectives; see also Friston
et al. (1995), Worsley and Friston (1995), and Dale (1999). These models are:

Y = Xh+ Sγ + e; (1)

Y = Zθ + Sγ + η, (2)

where Y is the voxel-wise BOLD time series, h = (h′1, ...,h
′
Q)′ is the parameter vector for

the HRFs of the Q stimulus types, X = [X1 · · ·XQ] is the design matrix, θ = (θ1, ..., θQ)′

represents the response amplitudes, Z = Xh0 is the convolution of stimuli with an assumed
basis, h0, of the HRF, Sγ is a nuisance term describing the trend or drift of Y , and e and η
are noise. We assume a known whitening matrix, V , such that V e and V η are white noise.
The whitening matrix can be obtained empirically from previous experiments; see also Wager
and Nichols (2003). Model (1) is typically used for estimating the HRF and model (2) is for
detecting activation. Note that, for detection problems, a basis h0 for the HRF needs to be
assumed.
To enable the use of a finite set of interpretable parameters to capture the fluctuation of the
continuous HRF over time, the discretization interval (Dale 1999) is utilized for parameterizing
the HRF in model (1). The length of the discretization interval, denoted by ∆T , is set
to the greatest value dividing both the ISI and TR; the TR is the time interval between
consecutive MR scans. The HRF parameters, captured in the vector h, then represent the
heights of the HRF for each stimulus after every ∆T seconds following the stimulus onset.
This parametrization is explained in detail in Kao et al. (2009b).

Design criterion

For the two statistical objectives, two popular optimality design criteria, namely A- and D-
optimality criteria (Atkinson et al. 2007), are considered. A-optimality aims at minimizing
the average variance of estimators of parametric functions. A D-optimal design minimizes
the generalized variance of estimators of linearly independent parametric functions, or, under
normality, it minimizes the volume of simultaneous elliptical confidence regions for these
parametric functions at any specified confidence level. The value of the design criterion for
estimating the HRF, referred to as“estimation efficiency”, is denoted by Fe. Likewise, the term
“detection power” and the notation Fd are used to indicate the value of the design criterion
for detecting activation. These criteria have the forms of Fi = rc/trace(M) for A-optimality,
or of Fi = det(M)−1/rc for D-optimality; i=d, e. Here, M = C[W ′V ′(I − PV S)VW]−C ′,
W ≡X for Fe, W ≡ Z for Fd, I is an identity matrix, PA = A(A′A)−A′ is the orthogonal
projection on the vector space spanned by the column vectors of A, A− is a generalized
inverse matrix of A, C is a matrix of estimable linear combinations of the parameters, and
rc is the number of rows of C. We note that Fe and Fd are “larger-the-better” criteria.
The third objective is to avoid psychological confounds. We would like a sequence that makes
it difficult for a subject to anticipate future stimuli based on past stimuli. Designs minimizing
the following criterion help to achieve this objective.

Fc =
R∑

r=1

Q∑
i=1

Q∑
j=1

b|n(r)
ij − (n− r)PiPj |c.

4 Multi-Objective Optimal Experimental Designs for ER-fMRI Using MATLAB

Here, the sub-design excluding all 0s but retaining all the stimuli of the original design is
considered. In this design criterion, n is the length of the sub-design, and n

(r)
ij is the number

of times that i and j are r elements away in the sub-design; i.e., they are, respectively, the
tth and the (t+ r)th elements, t = 1, ..., (n− r). Pi is the specified proportion for the type-i
stimulus in the sub-design which may be taken as 1/Q if there is no preference, and b|a|c
is the integer part of the absolute value of a. R is a given integer; the unpredictability of
a design increases when R increases. Therefore, Fc aims at having a design with each pair
appearing a number of times that is proportional to the product of the specified proportions
for the stimuli. Designs minimizing this criterion are said to be Rth order counterbalanced
(cf. Wager and Nichols 2003).

The fourth design criterion helps to maintain the desired stimulus frequency and is also defined
on the sub-design. It is Ff =

∑Q
i=1b|ni−nPi|c, where ni is the number of the type-i stimulus

in the sub-design. Designs achieving the desired stimulus frequency minimize Ff .

With these four individual design criteria, the family of MO-criteria is then defined as

{F ∗ = wcF
∗
c + wdF

∗
d + weF

∗
e + wfF

∗
f : wi ≥ 0, i = c, d, e, f ;

∑
i

wi = 1}, (3)

where wis are weights selected based on the researcher’s emphasis in a given study, F ∗i =
Fi/max(Fi) for i = d, e and F ∗i = 1− [Fi/max(Fi)] for i = c, f . We note that, in Kao et al.
(2009a), min(Fi) is also considered when calculating F ∗i . Since these minimal values are zero,
they are omitted here. Each member of this family can serve as an objective function of the
search algorithm.

Search algorithm

The search algorithm of Kao et al. (2009a) is built upon the genetic algorithm technique
(Holland 1975, 1992). This technique is popular for solving optimization problems, in which
good solutions (parents) are used to generate better ones (offsprings). To efficiently apply
this technique to our problem, well-known results about good fMRI designs are incorporated
so that the search over the huge design space can be carried out more efficiently. The outline
of the algorithm is as follows:

Step 1. (Initial designs) Generate G initial designs consisting of random designs, an m-
sequence-based design, a block design and their combinations. Use the objective func-
tion to evaluate the fitness of each initial design.

Step 2. (Crossover) With probability proportional to fitness, draw with replacement G/2
pairs of designs to crossover — select a random cut-point and exchange the correspond-
ing fractions of the paired designs.

Step 3. (Mutation) Randomly select q% of the events from the G offspring designs. Replace
these events by randomly generated ones. Here, an event is a stimulus or the control.

Step 4. (Immigration) Add to the population another I designs drawn from random designs,
block designs and their combinations.

Step 5. (Fitness) Obtain the fitness scores of the offsprings and immigrants.

Journal of Statistical Software 5

Step 6. (Natural selection) Keep the best G designs according to their fitness scores to form
the parents of the next generation. Discard the others.

Step 7. (Stop) Repeat steps 2 through 6 until a stopping rule is met; e.g. after Mg

generations. Keep track of the best design over generations.

In Step 1, m-sequences or m-sequence-based designs are generated following Liu (2004a); see
also Buračas and Boynton (2002). These designs are well-known for their high estimation
efficiencies. Good designs for detection are block designs. A block design is a sequence where
stimuli of the same type are clustered into blocks. For example, a two-stimulus-type block
design with a block size of four can consist of repetitions of {111122220000}. Repetitions
of {1111000022220000} and {11112222} are other possible patterns. In steps 1 and 4, block
designs with various block sizes and patterns are considered. A fraction of an m-sequence-
based design or a random design is combined with a fraction of a block design to form a
mixed design. These mixed designs along with random designs are also included as part of
the initial designs and immigrants.

3. Code description

In this section, we describe our MATLAB program, including the input parameters, the way
to run the program and the output variables.

3.1. Input parameters

Table 1 presents all the input parameters of our program along with their default values.
Due to the complexity of ER-fMRI, a few parameters are needed for specifying experimental
conditions and assumptions, which might vary from experiment to experiment. An example
code, ‘Par_Assign.m’, is therefore provided to help to assign these parameter values. The
values are specified through the MATLAB structure Inp. Some fields of Inp are detailed below.
Descriptions for other input parameters can be found in Table 1.

Nuisance term

The nuisance term S in (1) and (2) is specified in Inp.Smat. By default, S corresponds
to a second-order Legendre polynomial drift. The degree of the polynomial can be changed
in ‘Par_Assign.m’ through the PolyOrder variable. While polynomial drift is popular (e.g.
Worsley et al. 2002; Liu 2004a), other nuisance term can also be considered.

Whitening matrix

The square of the whitening matrix, V 2, described after (2) is specified in Inp.V2. By default,
the following matrix, which corresponds to a stationary AR(1) process, is considered:

V 2 =

1 −ρ 0 ... 0 0
−ρ 1 + ρ2 −ρ ... 0 0
...

...
...

...
...

...
0 0 0 ... 1 + ρ2 −ρ
0 0 0 ... −ρ 1

 . (4)

6 Multi-Objective Optimal Experimental Designs for ER-fMRI Using MATLAB

Parameter Type Description Default
nSTYPE integer number of stimulus types (Q) 2

ISI real inter-stimulus interval; the time interval be-
tween event onsets (in seconds)

2.0

TR real time to repetition; the time interval between
MR scans (in seconds)

2.0

dT real the discretization interval, ∆T = the greatest
value dividing both the ISI and TR

2.0

nEvents integer number of events of the design 242
Smat real matrix the matrix S in models (1) and (2) 2nd-order

polynomial
V2 real matrix the square of the whitening matrix see (4)
Opt integer 0=A-optimality; 1=D-optimality 0

MOweight real array weights of the four objectives, [wc, wd, we, wf] [1
4

1
4

1
4

1
4]

basisHRF real array the basis function h0 for the HRF canonical HRF
of SPM2

durHRF real duration of the HRF (in seconds) 32.0
CX real matrix linear combinations of interest for the HRF

parameters, hij ; i = 1, ..., Q, j = 1, ..., (1 +
b K

∆T c)

I34

CZ real matrix linear combinations of interest for the ampli-
tudes, θi; i = 1, ..., Q

I2

MaxFe real max(Fe) 39.2715
MaxFd real max(Fd) 132.0670
cbalR integer the order of counterbalancing, R, for Fc 3

stimFREQ real array the desired frequency of each stimulus type
Pi; the array should sum to one

[1
2

1
2]

sizeGen integer number of designs in each GA generation; an
even number

20

qMutate real rate of mutation 0.01
nImmigrant integer number of immigrants 4
StopRule integer 1=stop the search after numITR generations;

2=stop the search when there is no significant
improvement

1

numITR integer total number of GA generations when
StopRule = 1; check the accumulated im-
provement every numITR generations when
StopRule = 2

10000

improve real when StopRule = 2, the value of δ in (5) 10−7

SaveEvery integer save results every SaveEvery generations;
0=save results after completing the search

0

Nonlinear integer 0=assume linearity; 1=incorporate nonlinear
effects

0

Table 1: Input parameters: fields of the structure Inp; e.g., use Inp.nSTYPE = 2 to assign
the number of stimulus types. Ia is the a-by-a identity matrix.

Journal of Statistical Software 7

The value of ρ is set to 0.3 and it can be changed in ‘Par_Assign.m’ through the rho variable.
Other whitening matrices can be considered as well.

Variables Description
bestList the best design achieved
bestLists the designs achieved over generations
bestOVF the maximum of the objective function that we achieve

OVF the values of the objective function achieved over GA generations
bestidvF [F ∗c , F

∗
d , F

∗
e , F

∗
f] of the best design that we achieve

idvF [F ∗c , F
∗
d , F

∗
e , F

∗
f] over GA generations

timespend CPU time spent for the search (in seconds)

Table 2: Output variables: fields of the structure Out ; e.g., Out.bestList contains the best
design achieved.

Linear combinations of parameters

Linear combinations of the parameters of interest are specified in Inp.CX for model (1) and
in Inp.CZ for model (2). These fields are, by default, set to identity matrices, allowing the
study of individual stimulus effects. The number of columns for Inp.CX equals to the length
of h. For a K-second HRF (by default, K = 32), the length of h is Q(1 + bK/∆T c). The
number of columns for Inp.CZ is Q, corresponding to the length of θ.

In addition to setting Inp.CX and Inp.CZ to identity matrices, researchers might also be
interested in pairwise contrasts between stimulus types. Kao et al. (2009b) provides a sys-
tematic study of designs for convex combinations of these two interests. The example code,
‘Exp_combinedInterest.m’, is provided here for the case where equal weights are assigned to
both interests.

Maximal values of the individual criteria

Values of max(Fe) and max(Fd) are assigned through Inp.MaxFe and Inp.MaxFd, respectively.
These values are used to standardize Fe and Fd before combining them into an MO-criterion.
Theoretical values of max(Fe) and max(Fd) are generally not available. We therefore ob-
tain numerical approximations by performing “pre-runs” of our program. For approximating
max(Fe), we use Inp.MaxFe = 1 and Inp.MOweight = [0 0 1 0]; i.e., we = 1 in (3). This is
equivalent to using the non-standardized Fe as the objective function. The Fe-value achieved
by the design that we obtain approximates max(Fe). Similarly, we can use Inp.MaxFd =
1 and Inp.MOweight = [0 1 0 0] to find the optimal design for detection and to numer-
ically approximate max(Fd). These approximates can then be specified in Inp.MaxFe and
Inp.MaxFd for further searches for multi-objective optimal designs. ‘PreRun_Fe.m’ is an ex-
ample code for approximating max(Fe) and ‘PreRun_Fd.m’ is for max(Fd). The maximal
values of the other two criteria, Fc and Ff , are automatically calculated in our program.

Basis for the HRF

We need to assume a basis for the HRF when using model (2). A popular choice is the
canonical HRF of SPM2 (The Wellcome Trust Centre for Neuroimaging 2003), a popular

8 Multi-Objective Optimal Experimental Designs for ER-fMRI Using MATLAB

software for fMRI. This basis is a combination of two Gamma distributions. In our program,
we use this canonical HRF, scaled to have a maximum of one, as the default setting for h0.
The parameters, such as the time-to-peak and time-to-onset, used to create the canonical HRF
can also be altered in ‘Par_Assign.m’. By changing Inp.basisHRF, other basis functions can
be considered as well.

Stopping rules

We consider two stopping rules. The first stopping rule terminates the search after Mg

generations. The second stopping rule is inspired by Liefvendahl and Stocki (2006). This
second method considers the accumulated improvement of the design efficiency from the
`n + 1st generation to the (` + 1)nth generation; ` = 0, 1, 2, Denote the accumulated
improvement by [F ∗(ξ∗(`+1)n) − F ∗(ξ∗`n+1)], we stop the search at the (` + 1)nth generation
when the following condition is met (for given n and δ):

F ∗(ξ∗(`+1)n)− F ∗(ξ∗`n+1) ≤ δ[F ∗(ξ∗n)− F ∗(ξ∗1)]. (5)

To use the first stopping rule, we set Inp.StopRule = 1, and Inp.numITR = Mg. By setting
Inp.StopRule = 2, the second stopping rule is considered. In this case, we set Inp.numITR
to n (say, 100) and Inp.improve to δ (e.g., 10−7).

3.2. Running the code

The m-file ‘Par_Assign.m’ can directly be used to perform the search for optimal designs.
With user-specified parameter values, this m-file calls the subroutine fMRIMOD(Inp) to start
the search. Our program requires subroutines from SPM2 (The Wellcome Trust Centre for
Neuroimaging 2003) and mttfmri (Liu 2004b, see also Liu 2004a). From SPM2, we need
‘spm_Gpdf.m’ and ‘spm_hrf.m’ to calculate the canonical HRF. From mttfmri, we apply
‘gen_mseq.m’, ‘qadd.m’, ‘qmult.m’, ‘mseq2.m’ and ‘return_mtaps.m’ to generate m-sequence-
based designs, and ‘stimpatch.m’ for plotting the final design. These m-files are freely
downloadable from The Wellcome Trust Centre for Neuroimaging (2003) and Liu (2004b),
respectively.

3.3. Output variables

The output variables of our program are listed in Table 2. The best design achieved by
our program is contained in Out.bestList and its design efficiency is Out.bestOVF. Our
program also tracks the best designs over generations (Out.Lists) and their design efficiencies
(Out.OVF). The value for each individual criterion F ∗i is also provided. Time spent on the
search is recorded, too.

4. An example

An illustrative example is described in this section. We consider ISI = TR = ∆T = 2s, so
that Inp.ISI = 2.0, Inp.TR = 2.0 and Inp.dT = 2.0. The number of stimulus types is set
to Q = 2 (Inp.nSTYPE = 2). A total of 242 events (stimuli plus the control) are included
in the design sequence; i.e., Inp.nEvents = 242. A second-order polynomial drift and the

Journal of Statistical Software 9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
36.5

37

37.5

38

38.5

39

39.5

Generation

F
e−

va
lu

e

Figure 1: The design achieved by our program for estimation and Fe-values achieved over GA
generations.

AR(1) noise with the correlation coefficient of 0.3 are assumed for models (1) and (2). A-
optimality criterion (Inp.Opt = 0) is used for both statistical objectives, including estimation
and detection.

The canonical HRF, scaled to have a maximum of one, is used as the basis function h0 of
model (2); see also Wager and Nichols (2003); Wager et al. (2005). After discretization using
∆T , this basis is assigned to Inp.basisHRF. Following the default setting of the canonical
HRF, the duration of the HRF in model (1) is K = 32s, so that Inp.durHRF = 32.0. The
number of parameters contained in each hi of model (1) is therefore 17(= 1 + bK/∆T c), and
the length of h is 34. To investigate individual stimulus effects, we set Inp.CX = eye(34)
and Inp.CZ = eye(2); they are identity matrices.

For algorithmic parameters, we use the first stopping rule to terminate the search after Mg =
10, 000 generations. Each generation consists of G = 20 designs. The mutation rate is q = 1%
and the number of immigrants is set to I = 4. Therefore, Inp.StopRule = 1, Inp.numITR =
10000, Inp.sizeGen = 20, Inp.qMutate = 1 and Inp.nImmigrant = 4.

We implement our simulations by using MATLAB (version 7.3) on a Linux cluster with 64-bit
AMD Opteron, dual-processor, mix of single-core node and dual-core node; each core has
2GB RAM and the Linux operating system is 2.6.9-78.0.5.ELsmp.

We first find the (near-)optimal design for estimating the HRF by setting Inp.MOweight =
[0 0 1 0] and Inp.MaxFe = 1. The resulting design is presented in Figure 1 along with
the curve of the achieved efficiencies over generations. In Figure 1, each bar in the design
indicates an event. Different colors represent different event types with blue indicating the

10 Multi-Objective Optimal Experimental Designs for ER-fMRI Using MATLAB

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
126

127

128

129

130

131

132

133

Generation

F
d−

va
lu

e

Figure 2: The design achieved by our program for detection and Fd-values achieved over GA
generations.

control. This design looks rather random and its Fe-value is 39.2715. The CPU time spent
for this search is 0.23 hours.

We then search for the best design for detecting activation. We set (Inp.MOweight = [0 1
0 0]) and Inp.MaxFd = 1. As presented in Figure 2, the resulting design looks like a block
design. This design starts with five 0s, followed by eight stimuli of the first type and nine
stimuli of the second type. The Fd-value achieved by this design is 132.0670. We spend 0.13
hours of CPU time on this search.

We can also assign equal weights to the four objectives to search for a multi-objective optimal
design; i.e., Inp.MOweight = [1/4 1/4 1/4 1/4]. The maximal values of Fe and Fd are
approximated numerically; i.e., Inp.MaxFe = 39.2715 and Inp.MaxFd = 132.0670. For Fc,
we require a third-order counterbalancing property (R = 3), so that Inp.cbalR = 3. For
Ff , equal frequencies for the two stimulus types are required; i.e., Pi = 1/2, i = 1, 2, and
Inp.stimFREQ = [1/2 1/2]. Note that, when assigning Inp.stimFREQ, we do not take into
account the number of the control event. Therefore, the actual frequency of each stimulus
type in this example is less than 1/2. The number of the control event is decided by the
GA search based on other requirements (design criteria). In our experience, the number of
the control event is greatly influenced by the linear combinations of parameters of interest;
see also, Kao et al. (2009b). The actual stimulus frequency of our designs agrees with the
approximated optimal stimulus frequency of Liu and Frank (2004).

The parameter values for this last search are the same as those listed in Table 1 and those in
‘Par_Assign.m’. This search requires 0.42 hours of CPU time.

Journal of Statistical Software 11

5. Conclusion and discussion

Optimal designs are crucial to the success of ER-fMRI experiments. Due to the nature of ER-
fMRI, planning a good design is very complicated. Therefore, an efficient program that helps
to find such good designs is called for. In this paper, we develop a program using MATLAB to
search for multi-objective optimal experimental designs for ER-fMRI. The algorithm utilized
in our program is proposed by Kao et al. (2009a), which is shown to outperform the previous
approaches. We describe the use of our program. An example is provided for illustration. In
addition to default settings, we allow the users to assign the parameter values so that our
program can achieve designs best suited to the researcher’s needs.

The approach considered in this article is built upon popular linear models. However, the
assumption of linearity may be invalid when the stimuli are very close, and a ‘saturation’ in
the accumulated BOLD response is observed (Wager et al. 2005). To take into account such
a nonlinear effect, Wager and Nichols (2003) propose to use two to replace the elements of
the matrix Z in model (2) that are greater than two. This is also allowed in our program by
setting Inp.Nonlinear to 1. Developing a more sophisticated method for incorporating such
nonlinear effects can be useful.

Acknowledgments

Thanks are due to Professors J. Stufken and A. Mandal, N. Lazar and L. Seymour for their
support and helpful discussions. The author is also thankful to two anonymous referees for
their comments and suggestions, which resulted in an improvement of this work.

References

Atkinson AC, Donev AN, Tobias RD (2007). Optimum Experimental Designs, with SAS.
Oxford University Press, Great Britain.

Bandettini PA, Cox RW (2000). “Event-Related fMRI Contrast When Using Constant In-
terstimulus Interval: Theory and Experiment.” Magnetic Resonance in Medicine, 43(4),
540–548.

Buračas GT, Boynton GM (2002). “Efficient Design of Event-Related fMRI Experiments
Using m-Sequences.” NeuroImage, 16(3), 801–813. Part 1.

Dale AM (1999). “Optimal Experimental Design for Event-Related fMRI.” Humman Brain
Mapping, 8(2-3), 109–114.

Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SCR, Frackowiak RSJ, Turner R
(1995). “Analysis of fMRI Time-Series Revisited.” NeuroImage, 2(1), 45–53.

Holland JH (1975). Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. University of Michigan
Press, Ann Arbor.

12 Multi-Objective Optimal Experimental Designs for ER-fMRI Using MATLAB

Holland JH (1992). Adaptation in Natural and Artificial Systems: An Introductory Anal-
ysis with Applications to Biology, Control, and Artificial Intelligence. Complex adaptive
systems, 1st MIT Press edition. MIT Press, Cambridge, Massachusetts.

Josephs O, Turner R, Friston K (1997). “Event-Related fMRI.” Human Brain Mapping, 5(4),
243–248.

Kao MH, Mandal A, Lazar N, Stufken J (2009a). “Multi-Objective Optimal Experimental
Designs for Event-Related fMRI Studies.” NeuroImage, 44(3), 849–856.

Kao MH, Mandal A, Stufken J (2009b). “Optimal Design for Event-Related Functional Mag-
netic Resonance Imaging Considering Both Individual Stimulus Effects and Pairwise Con-
trasts.” Statistics and Applications. To appear (Special Volume in Honour of Professor
Aloke Dey).

Liefvendahl M, Stocki R (2006). “A Study on Algorithms for Optimization of Latin Hyper-
cubes.” Journal of Statistical Planning and Inference, 136(9), 3231–3247.

Liu TT (2004a). “Efficiency, Power, and Entropy in Event-Related fMRI with Multiple Trial
Types: Part II: Design of Experiments.” NeuroImage, 21(1), 401–413.

Liu TT (2004b). mttfmri: Multiple Trial Type fMRI MATLAB Toolbox. University of
California at San Diego, Center for Functional Magnetic Resonance Imaging. URL
http://cfmriweb.ucsd.edu/ttliu/mttfmri_toolbox.html.

Liu TT, Frank LR (2004). “Efficiency, Power, and Entropy in Event-Related fMRI with
Multiple Trial Types: Part I: Theory.” NeuroImage, 21(1), 387–400.

Rosen BR, Buckner RL, Dale AM (1998). “Event-Related Functional MRI: Past, Present,
and Future.” PNAS, 95(3), 773–780.

The MathWorks, Inc (2006). MATLAB – The Language of Technical Computing, Ver-
sion 7.3. The MathWorks, Inc., Natick, Massachusetts. URL http://www.mathworks.
com/products/matlab/.

The Wellcome Trust Centre for Neuroimaging (2003). SPM2 – Statistical Parametric Map-
ping. The Wellcome Trust Centre for Neuroimaging at the University College London,
London, United Kingdom. URL http://www.fil.ion.ucl.ac.uk/spm/software/spm2/.

Wager TD, Nichols TE (2003). “Optimization of Experimental Design in fMRI: A General
Framework Using a Genetic Algorithm.” NeuroImage, 18(2), 293–309.

Wager TD, Vazquez A, Hernandez L, Noll DC (2005). “Accounting for Nonlinear BOLD
Effects in fMRI: Parameter Estimates and a Model for Prediction in Rapid Event-Related
Studies.” NeuroImage, 25(1), 206–218.

Worsley KJ, Friston KJ (1995). “Analysis of fMRI Time-Series Revisited – Again.” NeuroIm-
age, 2(3), 173–181.

Worsley KJ, Liao CH, Aston J, Petre V, Duncan GH, Morales F, Evans AC (2002). “A
General Statistical Analysis for fMRI Data.” NeuroImage, 15(1), 1–15.

http://cfmriweb.ucsd.edu/ttliu/mttfmri_toolbox.html
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://www.fil.ion.ucl.ac.uk/spm/software/spm2/

Journal of Statistical Software 13

Affiliation:

Ming-Hung Kao
Department of Statistics
University of Georgia
Athens, GA 30602-1952, United States of America
E-mail: jasonkao@uga.edu

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 30, Issue 11 Submitted: 2008-10-31
June 2009 Accepted: 2009-04-21

mailto:jasonkao@uga.edu
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Methodology review
	Code description
	Input parameters
	Running the code
	Output variables

	An example
	Conclusion and discussion

