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Abstract

Directional data is ubiquitious in science. Due to its circular nature such data cannot
be analyzed with commonly used statistical techniques. Despite the rapid development
of specialized methods for directional statistics over the last fifty years, there is only little
software available that makes such methods easy to use for practioners. Most impor-
tantly, one of the most commonly used programming languages in biosciences, MATLAB,
is currently not supporting directional statistics. To remedy this situation, we have im-
plemented the CircStat toolbox for MATLAB which provides methods for the descriptive
and inferential statistical analysis of directional data. We cover the statistical background
of the available methods and describe how to apply them to data. Finally, we analyze a
dataset from neurophysiology to demonstrate the capabilities of the CircStat toolbox.

Keywords: circular statistics, directional statistics, rayleigh test, MATLAB.

1. Introduction

Circular statistics is a subfield of statistics, which is devoted to the development of statistical
techniques for the use with data on an angular scale. On this scale, there is no designated zero
and, in contrast to a linear scale, the designation of high and low values is arbitrary. Consider
for example the case of wind directions measured in degrees — wind blowing towards 359 deg
follows almost the same path as wind blowing towards 0 deg. In addition to measurements
which are naturally measured in angles circular statistics applies also to types of data such
as time of the day, phase of the moon or day of the year that exhibit a different periodicity.

Such data is encountered in many fields of science as diverse as physics (van Doorn, Dhruva,
Sreenivasan, and Cassella 2000), geoscience (Bowers, Morton, and Mould 2000), agricultural
sciences (Aradottir, Robertson, and Moore 1997), neuroscience (Maldonado, Godecke, Gray,
and Bonhoeffer 1997; Froehler and Duffy 2002), zoology (Boles and Lohmann 2003; Cochran,
Mouritsen, and Wikelski 2004), medical research (Le, Liu, Lindgren, Daly, and Giebink 2003;
Gao, Chia, Krantz, Nordin, and Machin 2006), computer science (Hanbury 2003), psychology
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(Kubiak and Jonas 2007), criminology (Brunsdon and Corcoran 2005) or political and social
sciences (Haskey 1988; Gill and Hangartner 2008). For example, Cochran et al. (2004) investi-
gate whether the sense of orientation of night-migrating birds could be disrupted by exposing
them to strong magnetic pulses. While the animals naturally fly in northerly directions, birds
exposed to eastwards oriented magnetic fields flew westwards.

The circular nature of such data prevents the use of commonly used statistical techniques, as
these would provide wrong or misleading results. The authors thus used tools from circular
statistics to compute the average heading direction, assert the prevalence of a common heading
direction for a group of birds and compare the average heading directions of an experimentally
manipulated and a control group. The development of techniques suitable to this end started
in the early 1950es with a seminal paper by Fisher (1953). Despite the fact that circular
statistics is still in very active development, several monographs and textbook lay out a
standard repertoire of circular statistics methods (e.g., Batschelet 1981; Fisher 1995; Zar
1999; Jammalamadaka and Sengupta 2001).

It is all the more surprising that techniques for the analysis of circular data have not yet
become available as part of many commerical software products for data analysis such as
MATLAB. MATLAB is a high-level programming environment designed for numerical compu-
tations developed and marketed by The Mathworks (The MathWorks, Inc. 2007). It is highly
popular among many scientists in biomedical research and beyond, since it offers a wide range
of preimplemented functionality. Currently it is used by more than one million people (Moler
2006). More specialized add-on packages are available in the form of toolboxes. The statis-
tics toolbox (The MathWorks, Inc. 2008), for example, extends the capabilities of the core
system by providing functions for many commonly encountered problems in descriptive and
inferential statistics. Methods for the analysis of circular data, however, are not part of this,
or any other, toolbox for MATLAB. The CircStat toolbox described in this paper is intended
to provide the users of MATLAB with a comprehensive set of functions and solutions for most
common problems in descriptive and inferential statistics for circular data1.

While the software package described in this paper is currently the only one offering circular
statistics for the use with MATLAB, there are a small number of comparable toolboxes for
other languages or environments. The CircStats package for the R programming language is
most closely related to the toolbox described here (Lund and Agostinelli 2007). It offers a small
number of tests as described in (Jammalamadaka and Sengupta 2001) and has been ported
from a S-plus original version. While R is hugely popular among statisticians, MATLAB is
the most commonly used programming and data analysis environment in the engineering and
biological sciences. A similar package is available for Stata (Cox 2004). Both of these packages
are open source and freely available on the internet. In addition, Oriana is a commerically
available program which offers basic functionality for the analysis of circular data (Kovach
Computing Services 2009).

In the following, we will describe the methods implemented in the CircStat toolbox and
explain how they can be used for analysis of circular data. The exposition will be fairly
detailed as we combine a set of methods described in various different sources. First, we start
with descriptive statistics, before we cover important methods from inferential statistics and
measures of association. For illustrations and examples, we will mostly be referring to two
synthetic datasets shown in Figure 1. Both datasets are shown in raw format as well as in the

1An earlier version of this toolbox has been available from MatlabCentral (Berens and Valesco 2009b).
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Figure 1: Example datasets α (a,b) and β (c,d) used throughout the paper. Both datasets
consist of N = 20 samples. In a and c, data is shown as points on the unit circle. In b
and d, angular histograms are shown. Red lines indicate the direction and magnitude of the
mean resultant vector. Grey lines in c serve to illustrate the cosine and sine component of an
angular datapoint.

form of histograms. The dataset shown in Figure 1a and b will be called α and the dataset
shown in Figure 1c and d will be called β. Finally, we will apply the methods described in this
paper to a dataset from a neuroscientific context and use them to study orientation tuning of
single neurons. First, however, we discuss some notational conventions and cover some basic
issues.

We denote a vector of N directional observations αi as α = (α1, . . . , αN ). All functions
described in this paper take their arguments in radians. To convert angles in degrees to
angles in radians we compute

αdegree = 360 deg ·αradians

2π
. (1)

Conversions from degrees to radians and vice versa can be performed using the functions
circ_ang2rad(alpha) and circ_rad2ang(alpha).

Similarly, data such as time of the day or phase of the moon can be converted to a common
angular scale in radians by

α =
2πx
k
,

where x is the representation of the data in the original scale, α is its angular direction and
k is the total number of steps on the scale that y is measured in. For example, we have x
representing day of the year and thus k = 365, not considering leapyears for simplicity. In
addition, data with multiple modes—known as axial data—can be converted to a unimodal
sample for the purpose of certain analysis such as computation of a mean resultant vector by
(Fisher 1995, Section 2.4.). For p-axial data this results in the following mapping:

αi −→ pαi(mod2π)

Afterwards, the result of the performed computation can be transformed back to the original
scale. This operation is implemented in circ_axial.
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2. Descriptive statistics

In this section we describe the methods and functions implemented in the CircStat toolbox for
computing descriptive measures on angular data. They can be used to explore and summarize
important properties of a sample of angular data such as central tendency, spread, symmetry
or peakedness.

If not otherwise noted, all functions can also be applied to binned data if supplied with a
second optional input argument w of the same length as α. They then assume that the data
has been binned with bin center i equal to αi and wi equal to the number or fraction of
samples falling into bin i. For measures of dispersion, the bin width can be specified as an
optional third argument, which is then used for bias correction.

Mean The mean of a sample α cannot be computed by simply averaging the data points.
Consider for example calculating the mean of a set of three angles, 10 deg, 30 deg and 350 deg.
The arithmetic mean of the angles is clearly 130 deg, while all data samples point towards
0 deg.

Instead, directions are first transformed to unit vectors in the two-dimensional plane by

ri =
(

cosαi
sinαi

)
.

This is illustrated in Figure 1a and c, where all datapoints marked by circles lie on the
unit sphere. As indicated for the light blue point in Figure 1c, the x-coordinate of a point
corresponds to the cosine of the angle and the y-coordinate to the sine.

After this transformation, the vectors ri are vector averaged by

r̄ =
1
N

∑
i

ri.

The vector r̄ is called mean resultant vector. To yield the mean angular direction ᾱ, r̄ is
transformed using the four quadrant inverse tangent function. For further illustraction, see
also the example in Figure 2.

In CircStat, the mean resultant vector ᾱ of a set of datapoints can be computed by

>> alpha_bar = circ_mean(alpha);

For the example, this results in mean resultant vectors pointing towards ᾱ = 23.5 deg and
β̄ = 72.5 deg, respectively. These vectors are also shown in red.

For ease of implementation in MATLAB, the first transformation is implemented exploiting
the identity

cosα+ i sinα = exp(iα)

and the second transformation uses the MATLAB function angle. If a second and third output
argument are requested, circ_mean computes the 95% confidence intervals on the estimation
of ᾱ using circ_meanconf.
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a b c

Figure 2: Illustration of the resultant vector and the resultant vector length. In a, three
samples 60, 180, 300 deg (black) yield a resultant vector length of zero, since the points are
exactely uniformly spaced around the circle. In b, 120, 180, 240 deg result in a resultant vector
length of 2/3, with a common mean direction of π. In c, 150, 180, 210 deg yield a resultant
vector length of 0.9107 with the same mean direction. Resultant vectors are shown in grey
and can be obtained by vector addition. The light grey circle is the unit circle.

Median The median direction α̂ of a sample α is the direction for which half of the data-
points fall on either side. For circular data thus the diameter of the circle that divides the data
into two equal sized groups is found. The median is the endpoint of the diameter closer to the
center of mass of the data. If N is even, it lies half-way between the two closest datapoints.
If N is odd, it falls on one of the data points.

If the datapoints are drawn from a uniform distribution or evenly spaced around the circle
there is no well-defined median direction.

In CircStat, the median of a dataset is computed by

>> alpha_hat = circ_median(alpha);

For the example, we obtain α̂ = 27 deg and β̂ = 76 deg.

The median cannot be computed for binned data.

Resultant vector length The length of the mean resultant vector is a crucial quantity for
the measurement of circular spread or hypothesis testing in directional statistics. The closer
it is to one, the more concentrated the data sample is around the mean direction. For an
example, see Figure 2. The resultant vector length is computed by

R = ‖r̄‖.

In CircStat, the resultant vector length is computed by

>> R = circ_r(alpha);

For the example, this results in Rα = 0.45 and Rβ = 0.36.
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The estimation of R is biased when binned data is used. This bias can be corrected for by
supplying the bin spacing d as a third optional argument and computing a correction factor
(Zar 1999, Equation 26.16)

c =
d

2 sin(d/2)
,

setting Rc = cR.

Variance The circular variance is closely related to the length of the mean resultant vector.
It is defined as

S = 1−R.

In contrast to the variance on a linear scale, the circular variance s is bounded in the interval
[0, 1]. It is indicative of the spread in a data set. If all samples point into the same direction,
the resultant vector will have length close to 1 and the circular variance will correspondingly
be small. If the samples are spread out evenly around the circle, the resultant vector will have
length close to 0 and the circular variance will be close to maximal. Importantly, however, a
circular variance of 1 does not imply a uniform distribution around the circle. If all samples
either point towards 0 deg or 180 deg, the resultant vector length is 0, yet the data is not
distributed uniformly around the circle.

In CircStat, the circular variance is computed using

>> S = circ_var(alpha);

In the example, we thus obtain Sα = 0.55 und Sβ = 0.64. Thus the dataset β is more spread
out than dataset β.

Standard deviation Interestingly, multiple quantities have been introduced as analogues
to the linear standard deviation. First, the angular deviation is defined as

s =
√

2(1−R).

This quantity lies in the interval [0,
√

2]. Alternatively, the circular standard deviation is
defined as

s0 =
√
−2 lnR

and ranges from 0 to ∞. Generally, the first measure is preferred, as it is bounded, but the
two measures deviate little Zar (1999).

In CircStat, the angular deviation is computed as

>> s = circ_std(alpha);

and the circular standard deviation as

>> s0 = circ_std(alpha,[],[],'mardia');

For the example, the respective values are sα = 1.05, sβ = 1.14 and s0,α = 1.26, s0,β = 1.44.
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Trigonometric moments It is possible to compute the p-th trigonometric moment of a
sample of circular data (Fisher 1995). The uncentred p-th moment is given by

m′p =
1
N

N∑
i=1

cos pαi + i
1
N

N∑
i=1

sin pαi.

Similarly, the centred trigonometric moments are obtained by calculating the moments relative
to the sample mean by

mp =
1
N

N∑
i=1

cos p(αi − ᾱ) + i
1
N

N∑
i=1

sin p(αi − ᾱ).

Similar to the mean resultant vector, m′p and mp can be decomposed into direction ᾱp and
magnitude Rp.

In CircStat, the uncentred p-th trigonometric moment can be found by calling

>> mp = circ_moment(alpha,[],p);

and the centred p-th trigonometric moment by

>> mp = circ_moment(alpha,[],p,true);

Optionally, direction and magnitude are returned as second and third output argument.

Skewness As a measure of symmetry, circular skewness can be computed as (Pewsey 2004)

b =
1
N

N∑
i=1

sin 2(αi − ᾱ).

A value close to 0 is indicative of a symmetric population around the mean direction. Alter-
natively, a standardized measure of skewness has been defined as (Fisher 1995)

b0 =
R2 sin(ᾱ2 − 2ᾱ)

(1−R)2/3

In CircStat, circular skewness is computed by

>> [b, b0] = circ_skew(alpha);

For the example, we find that both samples are relatively symmetric around their mean
directions with skewness values of bα = 0.02 and bβ = 0.04 or b0,α = −0.019 and b0,β = −0.099.

Kurtosis As a measure of peakedness, circular kurtosis can be computed as (Pewsey 2004)

k =
1
N

N∑
i=1

cos 2(αi − ᾱ).
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A large positive sample value of k close to one indicates a strongly peaked distribution.
Alternatively, a standardized measure of kurtosis has been defined as (Fisher 1995)

k0 =
R2 cos(ᾱ′2 − 2ᾱ)−R4

(1−R)2
.

The former definition is intuitively appealing, since many values close to the mean direction
lead to positive contributions to the above average due to the shape of the cosine function.
However, the latter definition has the appealing property that data generated by a von Mises
distribution, which is the circular analogue of the Normal distribution, has k0 = 0.

In CircStat, circular kurtosis is computed by

>> [k k0] = circ_kurtosis(alpha);

For the example, we find that kα = 0.42 and kβ = 0.01, such that sample β is less peaked
than sample α. If we want to compare the peakedness of the two samples to a von Mises
distribution, we find that both samples have lower kurtosis with k0,α = −0.66 and k0,β =
−1.18.

3. Inferential statistics

In this section, we describe a set of functions implemented in CircStat for inferential statistics
with angular data. The first set of functions allows to test the popular question of circular
uniformity, while other methods allow to investigate more specific hypothesis about the mean
direction of one or multiple samples. For example, researchers studying the migratory be-
havior of birds (Wiltschko and Wiltschko 1972; Cochran et al. 2004) might want to establish
that all animals from one species indeed migrate into a common direction or acertain that
two species of birds migrate into differing directions.

3.1. Testing for circular uniformity

A common question in circular statistics is whether a data sample is distributed uniformly
around the circle or has a common mean direction. There are multiple tests for this problem
that share a common null hypothesis

H0: The population is distributed uniformly around the circle

with alternative hypothesis

HA: The population is not distributed uniformly around the circle.

They differ in their efficiency to detect certain departures from uniformity, as discussed below.

Rayleigh test The Rayleigh test asks how large the resultant vector length R must be to
indicate a non-uniform distribution (Fisher 1995). It is particularly suited for detecting a
unimodal deviation from uniformity. If the data indeed is unimodal, it is the most powerful
test described in this section.
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The approximate p-value under H0 is computed as (Zar 1999, Equation 27.4)

P = exp
[√

(1 + 4N + 4(N2 −R2
n)− (1 + 2N)

]
,

where Rn = R · N . This approximation is valid up to three decimal places for N as small
as 10. The Rayleigh test can also be applied to axial data after suitable transformation.
Importantly, it assumes sampling from a von Mises distribution.
In CircStat, the Rayleigh test is performed by computing

>> p = circ_rtest(alpha);

where a small p indicates a significant departure from uniformity and indicates to reject the
null hypothesis.
For the examples, we find that at the 0.05 significance level, the null hypothesis can be rejected
for sample α (P = 0.02), while for sample β, this is not the case (P = 0.08).

Omnibus test The “omnibus test” or Hodges-Ajne test (Zar 1999) for circular uniformity
is an alternative to the Rayleigh test that works well for unimodal, biomodal and multi-
modal distributions. It is able to detect general deviations from uniformity at the price of
some statistical power. Also, it does not make specific assumptions about the underlying
distribution.
To conduct the test, the smallest number m that occur within a range of 180 deg is computed.
Under the null hypothesis, the probability of observing an m this small or smaller is

P =
1

2N−1
(N − 2m)

(
N
m

)
,

which can for N > 50 be approximated by

P '
√

2π
A

exp
(
−π2/(8A2)

)
,

where A = π
√
N

2(N−2m) .
In CircStat, the Omnibus test is performed by computing

>> p = circ_otest(alpha);

For the examples, we find that at the 0.05 significance level, the null hypothesis cannot be
rejected for either sample (P = 0.11 and P = 0.3, respectively).

Rao’s spacing test Rao’s spacing test for circular uniformity is an additional alternative
to the Rayleigh test (Batschelet 1981). It is more powerful than alternatives when the data
are neither unimodal nor axially bimodal. It is based on the idea that in an ordered sample
α = (α1, . . . , αN ) with αi+1 > αi sampled from a uniform distribution the differences between
successive samples should be approximately 360◦

N . Its test statistic is defined as

U =
1
2

N∑
i=1

|di − λ|,
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with di = αi+1 − αi, dN = 360◦ − (αN − α1) and λ = 360◦

N . The distribution of U is
computationally very complex, and we use tabled values instead of the full distribution as
computed by (Russell and Levitin 1995).

In CircStat, Rao’s spacing test is performed by

>> p = circ_raotest(alpha);

For the examples, we find that, at the 0.05 significance level, the null hypothesis cannot be
rejected for either sample (P ≥ 0.05).

V test The V test for circular uniformity is similar to the Rayleigh test with the difference
that under the alternative hypothesis HA is assumed to have a known mean direction ᾱA. It
is important that the mean direction has to been known in advance, i.e., before any look at
the data is taken. The test statistic is computed as (Zar 1999)

V = Rn cos(ᾱ− ᾱA),

where Rn as above. Approximate critical values for the quanitity

V

√
2
N

can be obtained from the one tailed normal deviate Zα(1). Due to the additional information
used, the V test is more powerful than the Rayleigh test. The additional power comes at a
certain cost: Not rejecting the null hypothesis in this case leaves it open whether the cause
for that failure was insufficient evidence for non-uniformity or a different mean direction than
ᾱA.

In CircStat, the V test is performed by

>> p = circ_vtest(alpha,0);

Testing for violations of uniformity assuming a mean direction of 0 deg results in a rejection
of the null hypothesis for α (P = 0.045), but not β (P = 0.25). In the latter case we thus
do not know whether the reason for not rejecting the null hypothesis was that the preferred
direction was misspecified or because the sample is indeed uniformly distributed around the
circle.

3.2. Tests concerning mean and median

This section covers a more diverse set of tests concerning various hypotheses about the mean
or median direction. For example, they can be used to place confidence intervals on the mean
direction, test for specific mean or median direction or for symmetry around the median.

Confidence Intervals for the Mean Direction We compute the (1 − δ)%-confidence
intervals for the population mean (Zar 1999, Equations 26.23-26.26). For R ≤ 0.9 and R >
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√
χ2
δ,1/2N , we compute

d = arccos


√

2N(2R2
n−Nχ2

δ,1)

4N−χ2
δ,1

Rn

 ,
where Rn = R ·N . For R > 0.9, we compute

d = arccos


√
N − (N2 −R2

n) exp(χ2
δ,1/N)

Rn

 .
In both cases, the lower confidence limit of the mean is found by L1 = ᾱ − d and the upper
confidence limit by L2 = ᾱ+ d.

In CircStat, 95%-confidence intervals are found either by calling

>> [alpha_bar ul ll] = circ_mean(alpha);

or by computing

>> d = circ_confmean(alpha, 0.05);

and computing the confidence limits as described above.

For the example, we can assert that the true population mean likely lies in the interval
341.5− 65.43 deg and 12.73− 132.27 deg, respectively for datasets α and β.

One sample test for the mean angle Similar to a one sample t-test on a linear scale,
we can test whether the population mean angle is equal to a specified direction.

H0: The population mean angle ᾱ is equal to ᾱ0.
HA: The population mean angle ᾱ is not equal to ᾱ0, i.e., ᾱ 6= ᾱ0.

The test at significance level δ is performed by checking whether ᾱ0 ∈ [L1, L2], where L1is
the lower 1 − δ confidence limit on the population mean and L2 the upper confidence limit
(Zar 1999).

In CircStat, this test is performed by

>> p = circ_mtest(alpha,ang2rad(90));

For the example dataset α, we thus can reject the null hypothesis that the true population
mean is equal to 90 deg, while we do not have sufficient evidence to reject the hypothesis that
it is equal to 0 deg.
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Significance of the median angle A nonparametric test with

H0: The population median angle α̂ is equal to α̂0.
HA: The population median angle α̂ is not equal to α̂0, i.e., α̂ 6= α̂0.

is performed by applying the binomial test (Zar 1999). To this end, the number n of samples
falling on either side of a diameter through α̂0 are counted. The p-value for observing this
sample under H0 is found by computing the probability of observing n or more out of N
samples falling on one side of the diameter under a binomial distribution B(N, p) with p = 0.5.

In CircStat, this test is performed by

>> p = circ_medtest(alpha,ang2rad(90));

For the example dataset α, we thus can reject the null hypothesis that the true population
mean is equal to 105 deg, while we do not have sufficient evidence to reject the hypothesis
that it is equal to 25 deg.

Symmetry around median angle A simple test of symmetry of a sample around the
median can be performed by computing the circular distance di of each point from the median
and subjecting the di to a Wilcoxon signed-rank test (Zar 1999). It has the hypothesis set

H0: The underlying distribution is symmetrical around α̂.
HA: The underlying distribution is not symmetrical around α̂.

The Wilcoxon signed-rank test asks whether the median of the circular distances di is zero.

In CircStat, testing for symmetry around the median angle is performed by

>> p = circ_symtest(alpha);

For the two datasets in the example, the null hypothesis cannot be rejected (P = 0.84 and
P = 0.79), in line with the measurements of skewness close to zero above.

3.3. Paired and multisample tests

In this section, we will describe three methods for two- or multisample analysis concerning
the mean or median direction with one or two factors. In the one-factor case, a parametric
as well as a non-parametric test are available, while the two-factor case is covered only by
a parametric test. We will use a new example , where we draw 30 samples each from three
von Mises distributions with concentration parameter κ = 10 and preferred direction θ̄1 = π,
θ̄2 = π + 0.25 and θ̄3 = π + 0.5.

One-factor ANOVA or Watson-Williams test The Watson-Williams two- or multi-
sample test of the null hypothesis is a circular analogue of the two sample t-test or the
one-factor ANOVA. Thus, it assesses the question whether the mean directions of two or
more groups are identical or not.



Journal of Statistical Software 13

H0: All of s groups share a common mean direction, i.e., ᾱ1 = · · · = ᾱs.
HA: Not all s groups have a common mean direction.

The test statistic is calculated via (Watson and Williams 1956; Stephens 1969)

F = K
(N − s)

(∑s
j=1Rj −R

)
(s− 1)

(
N −

∑s
j=1Rj

) ,
where R is the mean resultant vector length when all samples are pooled and Rj the mean
resultant vector length computed on the jth group alone (similar to total variance and within
group variance in the ANOVA setting). The correction factor K is computed from

K = 1 +
3

8κ
,

where κ is the maximum likelihood estimate of the concentration parameter of a von Mises
distribution with resultant vector length rw. We compute κ via the approximation given by
Fisher (1995, Section 4.5.5). Here, rw is the mean resultant vector length of the s resultant
vectors rj computed for each group individually. The obtained value of the test statistic is
then compared to a critical value at the δ level obtained from Fδ(1),1,N−2.

The Watson-Williams test assumes underlying von Mises distributions with equal concentra-
tion parameter, but has proven to be fairly robust against deviations from these assumptions
(Zar 1999). The sample size for applying the test should be at least 5 for each individual
sample. If binned data is used, bin widths should be no larger than 10 deg. Note that re-
jecting the null hypothesis only provides evidence that not all of the s groups come from a
population with equal mean direction, not if all groups have pairwise differing mean directions
or evidence of which of the groups differ.

In CircStat, the Watson-Williams test can be performed in two ways. For two samples,

>> p = circ_wwtest(alpha, beta);

compares the two samples directly, while

>> p = circ_wwtest(alpha, idx);

uses idx to assign individual samples αi to the groups. If a second output argument is
requested, no ANOVA table is printed but rather returned as a cell structure.

We first apply the test to our example datasets θ1 and θ2, which we find to show a highly
significant difference in their mean preferred directions (P < 0.001). Next we test for difference
between any of the group means of θ1, θ2 and θ3, which we find also to be highly significantly
different (P < 10−10).

Multi-sample test for equal median directions We can test a similar nonparametric
hypothesis, namely for equal medians among s groups of samples, using a test suggested by
Fisher (1995). It is a circular analogue to the Kruskal-Wallis test.
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H0: Any of s samples share a common median direction, i.e., α̂1 = · · · = α̂s.
HA: Not all s samples have a common median direction.

We first compute the total median direction α̂ by pooling all groups. Then we compute the
number mi of samples within the ith group, whose angular distance d(αij , α̂) to the total
median is negative, where αij indicates the jth sample from the ith group. The test statistic
is computed as

P =
N2

M(N −M)

s∑
i=1

m2
i

ni
− NM

N −M
.

Here, ni are the number of samples in each group. The obtained statistic is compared to the
upper 1− δ-percentile of a χ2

s−1- distribution.

Similar caveats regarding the interpretation of the results hold as for the Watson-Williams
test. The test should not be used if any ni < 10.

In CircStat, this test can be performed in two ways. For two samples,

>> p = circ_cmtest(alpha, beta);

compares the two samples directly, while

>> p = circ_cmtest(alpha, idx);

uses idx to assign individual samples αi to the groups.

For the example, we find that the two groups θ1 and θ2 have a significantly different median
orientations (P = 0.005).

Two-factor ANOVA or Harrison-Kanji test In a similar fashion to the one-factor
ANOVA, we can also test for the influence of two factors simultaneously. Such a two-factor
ANOVA method for circular data has been introduced by (Harrison, Kanji, and Gadsden
1986; Harrison and Kanji 1988). In addition to potential effects of the two factors, we can
also study the impact of their interactions on the population means.

The test developed by Harrison and Kanji (1988) treats two situations separately: First, when
the pooled sample concentration parameter κ is larger than two. Second, when it is smaller
than two. Since the respective test statistics and their derivation is somewhat lengthy, we
refer to Harrison and Kanji (1988) for details.

In CircStat, the two-factor ANOVA can be performed in the following way:

>> [p, table] = circ_hktest(alpha,idp,idq,true);

Here, alpha contains the whole sample, while idp and idq indicate the respective level of the
two factors. The last argument ensures that the effect of interactions is tested for as well.

To illustrate the test, we use θ1 and θ2. Factor A indicates whether a sample belongs to θ1 or
θ2. Factor B is assigned randomly to the samples of θ1 and θ2. We test for effects of factors
A and B as well as their interactions. Since the joint κ ≈ 7.5, the large κ method is used. As
expected from the setup, we find a significant effect of factor A (P < 0.001), but no effect of
factor B and no interaction effect.
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Figure 3: (a) Datasets α and β plotted against each other as if they had been obtained as
paired samples. (b) α (red) and β (black) plotted against their indices 1, . . . , 20. β shows a
slightly higher linear association with its index, since it is less peaked.

4. Measures of association

In this section, we describe two functions implemented in CircStat that can be used to study
questions of association where angular data is involved. The first kind of situation is where
the correlation between two circular variables is to be assessed, as for example in Berens,
Keliris, Ecker, Logothetis, and Tolias (2008), where we used to two different signal—multi-unit
spiking activity and local field potentials—and computed the preferred orientation of a visual
stimulus for both of them. We used circular-circular correlation to study the relationship
between the two signals. The second situation is where the association between a linear and
a circular variable is of interest. In Berens et al. (2008), we might have been interested in the
relationship between preferred orientation of a site and position of the stimulus on the screen.
For illustrations in this section, we resort again to the example shown in Figure 1.

Circular-circular correlation Correlation between two directional variables can be as-
sessed by computing a correlation coefficient ρcc (Jammalamadaka and Sengupta 2001, p. 176)
by

ρcc =
∑

i sin(αi − ᾱ) sin(βi − β̄)√∑
i sin2(αi − ᾱ) sin2(βi − β̄)

,

where α and β denote two samples of angular data and ᾱ the angular mean. Significance of
this correlation can be assessed by computing a p-value for ρcc. Under the null hypothesis of
no correlation, the test statistic

t =
√
f · ρcc,

follows a standard normal distribution. The term f is given by

f = N

∑
i sin2(αi − ᾱ)

∑
i sin(βi − β̄)∑

i sin2(αi − ᾱ) sin2(βi − β̄)
.

In CircStat, the correlation between two circular samples is computed by
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>> [c,p] = circ_corrcc(alpha, beta);

For the example datasets α and β, this results in a highly significant correlation of ρcc = 0.67
with P = 0.007 as both samples are ordered (see Figure 3a).

Circular-linear correlation The linear association between a directional random variable
α and a linear variable x can be assessed by correlating x with cosα and sinα individually
. To this end, we define the correlation coefficients rsx = c(sinα, x),rcx = c(cosα, x) and
rcs = c(sinα, cosα), where c(x, y) is the Pearson correlation coefficient. Then the circular-
linear correlation ρcl is defined as (Zar 1999, Equation 27.47)

ρcl =

√
r2cx + r2sx − 2rcxrsxrcs

1− rcs2
.

A p-value for ρcl is computed by considering the test statistic Nρ2, which follows a χ2-
distribution with two degrees of freedom.

In CircStat, the correlation between a circular and a linear samples is computed by

>> [c,p] = circ_corrcl(alpha, x);

In the example, if we correlate α and β with their indices 1:20, we obtain a slightly higher
correlation for β (ρβcl = 0.71 vs. ραcl = 0.64) with both correlations being significant (P β =
0.006, Pα = 0.017 (see Figure 3b). This is because α is somewhat more peaked than β.

5. The von Mises distribution

The most common unimodal circular distribution is the von Mises distribution VM(µ, κ),
which can be considered a circular analogue of the normal distribution. Its probability density
function if given by

p(α;µ, κ) =
1

2πI0(κ)
exp (κ cos(α− µ)) ,

where I0 is the modified Bessel function of order zero.

In CircStat, this density can be evaluated using

>> p = circ_vmpdf(alpha,mu,kappa);

To generate samples from VM(µ, κ), we use an algorithm described by (Fisher 1995, p. 49).

In CircStat, samples can be drawn using

>> p = circ_vmpdf(mu,kappa,1000);

Finally, we can estimate the parameters of a von Mises distribution via maximum likelihood
as µ̂ = ᾱ and κ̂ via the approximation given by Fisher (1995, Section 4.5.5).

In CircStat, parameters are estimated as

>> [mu kappa] = circ_vmpar(alpha);
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a b c

Figure 4: Orientation tuning curves of three neurons recorded in the primary visual cortex
of an awake macaque monkey, while the monkey was watching a visual stimulus consisting of
sinusoidal gratings at any of eight different orientations. Neurons were recorded extracellularly
using tetrodes. Black lines indicate the orientation tuning curves of the neurons, red lines the
mean resultant vectors.

6. Application to neuroscience

In this section, we provide an exemplar analysis of a set of angular data as it occurs frequently
in neuroscience. Individual neurons recorded in the visual cortex of many animals show
orientation tuning, i.e., they respond more vigorously to stimuli of a certain orientation. We
analyze the tuning properties of three neurons recorded2 in the primary visual cortex of an
awake monkey (Figure 4).

The dataset consists of a vector θ of eight orientations 0, 22.5, . . . , 167.5 deg that were shown
to the animal during the experiment and vectors si (i = 1, 2, 3) containing the number of
action potentials that were emitted by neuron i in response to a particular orientation. To
subject this dataset to analysis with the methods described in this paper, we treat it as if the
spikes had been binned to the presented orientations using θ as the angular variable and si
as the associated weights. Since the data is axial, we multiply each orientation by two. In
Figure 4, we show the responses of the three neurons as a function of orientation.

Visually, we find that all three neurons show clear orientation tuning, where neuron 4a is
tuned to almost the opposite direction as neurons 4b and c. Accordingly, the angular mean of
neuron 4a lies almost 180 deg opposite of the angular mean of the other two neurons (for an
overview over descriptive measures see Table 1). We confirm that the deviations from circular
uniformity are highly significant for all three neurons, both when assessed with the Rayleigh
test and the Omnibus test (P < 10−10). Using the Watson-Williams test, we detect significant
differences between the preferred orientation of the three cells (P = 0.0002, F = 12.89,
3 groups). To determine which cells have significantly different preferred orientations, we
perform pairwise comparisons between cells. We find that neurons 4b and 4c dot not have
significantly different preferred orientations (P = 0.339). Comparisons between the other
pairs yield highly significant p-values, but violate the assumptions of the Watson-Williams
test concerning the shared resultant vector length.

2This dataset has been collected for other studies of our laboratory (Tolias, Ecker, Siapas, Hoenselaar,
Keliris, and Logothetis 2007; Berens et al. 2008). A detailed description of the experimental methods used,
the experimental paradigm and the background of the experiments can be found in any of these papers.
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Measure Cell 1 Cell 2 Cell 3
ᾱ 135.0 deg −52.0 deg −47.8 deg
L1 123.0 deg −56.9 deg −54.6 deg
L2 147.0 deg −47.0 deg −40.9 deg
S 0.742 0.268 0.194
s 1.218 0.731 0.622
s0 1.646 0.789 0.656
b 0.042 0.005 −0.048
b0 −0.052 0.013 0.136
k 0.159 0.510 0.603
k0 −4.961 0.225 0.016
N 643 353 141

Table 1: Results from descriptive statistics for the three neurons studied in Section 6. Ab-
breviations conform to those introduced in Section 2.

Upon initial inspection, neuron 4a seems to be more broadly tuned to orientation than the
two other cells. As measured by the angular deviation s, neuron 4c is the most narrowly
tuned cell, followed by neuron 4b. Cell 4a has almost twice the angular deviation the the
two other neurons. All cells have symmetric tuning curves, with normalized skewness values
b0 between 0.136 and −0.052. Neurons 4a is much less peaked than a comparable von Mises
distribution as indicated by the low value of k0.

7. Conclusion

In this paper, we described the CircStat toolbox for performing statistical analysis of circular
and directional data in MATLAB. The functions cover a wide range of applications from
descriptive and inferential statistics. We supply the reader with parametric and nonparametric
methods for testing a variety of hypothesis about circular data including testing of circular
uniformity as well as one- and two-factor ANOVA testing. We believe that this toolbox will
make circular statistics available to a wider range of researchers, especially in applied fields
of biomedical research.
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