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Abstract

Data matching is a typical statistical problem in non experimental and/or observa-
tional studies or, more generally, in cross-sectional studies in which one or more data sets
are to be compared. Several methods are available in the literature, most of which based
on a particular metric or on statistical models, either parametric or nonparametric. In
this paper we present two methods to calculate a proximity which have the property of
being invariant under monotonic transformations. These methods require at most the
notion of ordering. An open-source software in the form of a R package is also presented.
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1. Why a metric free proximity?

In social sciences researchers often need to estimate the effect of a “treatment” (like a social
program, a medical therapy, etc.) on a population of individuals. The estimation generally
entails the comparison of an outcome variable between the group of the subjects exposed to
the treatment and a “control” group which did not receive the treatment.

The evaluation of the differential treatment effect on the outcome for treated versus control
individuals has to be done given the same pre-treatment conditions (see Heckman, Ichimura,
and Todd 1997; Heckman, Ichimura, Smith, and Todd 1998). In experimental studies two
similar groups of individuals are randomly selected from a population: one is then exposed to
the treatment and the other is not. In observational studies the assignment to the treatment
is usually non-randomized and, therefore, the distributions of pre-treatment covariates are
different between the two groups. Finding control units similar to each treated individual
represents the preliminary problem of the analysis. Therefore, a technique is required for
matching observations coming from different data sets. If the match fails partially or com-
pletely, it means that the distributions of the covariates in the two groups do not overlap.
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2 Invariant and Metric Free Proximities for Data Matching

This is a case of (partial or total) lack of common support.

When there are many variables an exact match might become an unfeasible task due to
dimensionality. Hence, since the seminal paper by Cochran and Rubin (1973), many authors
have faced the matching problem and several matching techniques have been developed to
overcome this dimensionality issue (see also Rubin 1973a,b). Cochran and Rubin (1973)
proposed to solve the problem of multivariate matching using the Mahalanobis distance to
match the nearest available individuals. Later Rosenbaum and Rubin (1983) introduced the
notion of propensity score (PS) as the probability that an individual receives the treatment,
conditional on his/her covariates. Rosenbaum (1989) introduced further the notion of optimal
matching, that is a matching strategy to group treated and control units in such a way that
minimizes the overall distance between observations. More recently, Diamond and Sekhon
(2005) proposed a matching technique based on genetic algorithms.

The drawback of all unconstrained methods based on distances or propensity scores is that, if
two data sets have no common support, a match can always be found among the “less distant”
observations, but the achieved matching may be useless. In such cases, it is more effective
the use of a caliper (a radius or a bound) on the distance or on the propensity score or a mix
of the two as explained in Gu and Rosenbaum (1993).

Propensity score matching has been brought back to the attention of the statistical commu-
nity after the work of Dehejia and Wahba (1999). In their paper the authors suggest that
propensity score matching is a good device to reduce bias in the estimation of the average
treatment effect in observational studies (no matter the data sets to be matched). The debate
that followed (Dehejia and Wahba 2002; Smith and Todd 2005a,b; Dehejia 2005) was mainly
focused on the sensitivity of the match to the model used to estimate the propensity score.

To summarize, from the recent literature it emerges that propensity score methods seem to
be too sensitive to model specification but distance based methods apply properly only to
data which lie in Rk possibly under multi-normal assumptions on the distribution of the data.
Hence the need of a measure of proximity which is not related to any notion of statistical
model or does not require additional assumptions on the structure of the data. In the next
sections we present two implementations of the same idea of an invariant and metric free
proximity. The main argument behind this notion of proximity is that the proximities πij are
interpreted as the “belief of observation i and j to be equal in attributes” in the sense that
they occupy the same region of the space (whichever the structure of the space!).

We will introduce two different methods to generate a proximity. The first approach, presented
in Section 2.1 is to use regression trees to obtain rank related proximities. This is a Monte
Carlo method already known to the literature which we present for completeness. Section 2.2
shows a faster and non randomized method which is introduced for the first time in this paper.
This second method also allows for an easier interpretation of the proximities obtained. A
comparison of these two methods is presented at the end of the section. Applications to data
matching are presented in Section 3 and the corresponding package rrp, available from the
Comprehensive R Archive Network at http://CRAN.R-project.org/package=rrp, for the R
language (R Development Core Team 2008) is described in Section 4.

2. Two different algorithms

To obtain a metric free proximity, instead of defining a notion of center and fixing a radius,

http://CRAN.R-project.org/package=rrp
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we make use of ranks to decide whether two (or more) observations are in the same portion
of the space. For non-ordinal variables, the ranks are even superfluous. Such a rank-based
proximity is also invariant under monotonic transformations of the ranked data because ranks
are preserved in this case1. It should be noticed that the definition of rank in this paper is
generalized in the following sense: if data are raw, then ranks take the usual meaning. When
observations are coarsened into intervals, each observation is associated to the interval to
which it belongs and hence the rank of the observation is the rank of the corresponding
interval. An example of this rank assignment is given at the end of the present section.
The proximities πij are such that πij ∈ [0, 1]. Up to our algorithms, πij = 1 means that the
observations i and j are “likely to be equal”, πij = 0 means i and j are completely different
observations. When πij ∈ (0, 1) the interpretation of this value is strictly related to the
algorithm in use.
Let xi = (xi1, . . . , xip) be the vector of attributes (X1, X2, . . . , Xp) for observation i = 1, . . . , n,
where n is the sample size. Working with ranks, there is always the possibility to have extremal
data disturbing the analysis, given that we do not make use of any distance. In order to reduce
the risk, we assume that each numeric variable Xk in the data set is preliminarily discretized
by dividing the support of Xk into m intervals, so that extremal values are likely to be
isolated in cells near the border of the support of the data. After discretization, the variable
Xk is reclassified as an ordinal categorical variable. Both boolean and unordered categorical
variables are treated as unordered categorical variable. So, from now on we assume that data
consists only of categorical variables (either ordinal or not, which might have been obtained
by discretization). Once the data are ready, we proceed with rank assignments. It might
happen that, in case of discretization in m intervals, some intervals result empty. In such a
case, we assign progressive ranks to the observations keeping the information that some cells
are empty. The following example clarifies the procedure of assigning the ranks: suppose we
have the following 7 data for variable Xk: 1, 1, 1, 5, 5, 6, 8. Suppose we decided to split
the support of Xk, i.e., the interval [1, 8], in m = 4 intervals as follows: [1, 2.75], (2.75, 4.50],
(4.50, 6.25] and (6.25, 8]. No observation fall in class #2, i.e., (2.75, 4.50], and the ranks of
the data will be assigned taking this information into account, as follows:

xik 1 1 1 5 5 6 8
Rik 1 1 1 3 3 3 4

where Rik is the rank assigned to observation i along variable k. For unordered variables we
do not make use of ranks, so observations with different values will be treated as different
observations.

2.1. The RRP proximity

The RRP algorithm discussed in Iacus and Porro (2007a,b) is as follows: to each observation
i a fictitious and exogenous response variable Ui ∼ U(0, 1) is assigned, where U(0, 1) is the
uniform distribution on [0,1]. A regression tree that models the random vector (U1, . . . , Un) as
a function of the attributes (X1, X2, . . . , Xp) is grown2 yielding as a result a random, recursive

1It also means that (in the case of discretized observations) if a monotonic transformation of the data is
made, it should also be applied to the cut points of the interval considered.

2It should be stressed that this response variable U is not the outcome variable of any statistical model: U
is introduced, deus ex machina, only to have randomness in this Monte Carlo method. The use of regression
trees is merely instrumental.
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and non empty partition of the data. A proximity measure π from this random partition is
induced defining the following set of binary parameters: πij = 1 for all observations i and j
in the same leaf of the regression tree; πij = 0 otherwise. This partition and the proximity
measure entirely depend on the realization of the random vector (U1, . . . , Un): therefore the
procedure is replicated R times and the final proximity measure is defined as the average of
the πij ’s over all the replications. Regression trees works on the ranks, hence the suggested
discretization of the data is well suited for the method. The RRP algorithm is the following:

1. Choose a value of R (usually R = 250). Set r = 1.

2. while(r <= R)

(a) draw n pseudo-random numbers u1, . . . , un from the U(0, 1) law

(b) grow a regression tree ui ∼ (xi1, xi2, . . . , xip)

(c) set π(r)
ij = 1 if observation i and j are in the same terminal node, otherwise set

π
(r)
ij = 0

(d) r = r+1

3. end while

4. define ΠRRP and ∆RRP as follows:

ΠRRP =

[
πRRP

ij =
1
R

R∑
r=1

π
(r)
ij

]
, ∆RRP =

[
δRRP
ij

]
= 1−ΠRRP (1)

We call ΠRRP the RRP -proximity matrix and ∆RRP the RRP-dissimilarity matrix.

2.2. The rank-based proximity

The same idea can be exploited using directly the ranks without making use of a Monte Carlo
approach and regression trees. This second method is cleaner and for obvious reasons more
efficient. The main argument is to consider for each observation in the data set its rank for
each variable Xk and setting π(k)

ij = 1 if |Rik − Rjk| ≤ 1, i.e., observation i and j have ranks

equal or consecutive and π
(k)
ij = 0 otherwise. The final proximity is obtained by averaging

over all the variables:

1. for(k in 1:p)

if(Xk is ordered) let π(k)
ij = 1 if |Rik −Rjk| ≤ 1 and π

(k)
ij = 0 otherwise.

if(Xk is unordered) let π(k)
ij = 1 if xik = xjk and π

(k)
ij = 0 otherwise.

2. end for

3. define ΠRANK and ∆RANK as follows:

ΠRANK =

[
πRANK

ij =
1
p

p∑
k=1

π
(k)
ij

]
, ∆RANK = 1−ΠRANK (2)
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We call ΠRANK the RANK -proximity matrix and ∆RANK the RANK -dissimilarity matrix.

2.3. Comparison and properties of the two proximities

Clearly, both ∆RRP and ∆RANK are not metrics, therefore it is hard to make comparisons
with other widely used metrics (e.g., Euclidean, Mahalanobis, Manhattan), but an important
difference with respect to distances is that both dissimilarity matrices (1) and (2) should not be
used in hierarchical clustering, because all totally different (up to our methods) observations
will have the same dissimilarity, (i.e., δij = 1), making impossible to aggregate the “closest”
units. Finally, both dissimilarities are not full rank (in the sense of Little and Rubin (2002),
page 69), i.e., δij = 0 even if the condition xik = xjk is not met for all attributes k = 1, . . . , p,
due to discretization.

An advantage of the proximity defined in (2) is that it has a clear interpretation. Indeed,
πRANK

ij = q means that observation i and j have proximity π(k)
ij = 1 along q% of the variables

Xk, k = 1, . . . , p. Nevertheless, even if πRANK
ij = πRANK

ik = 0.75 means “observation i
and j and i and k are similar in 75% of the variables”, this is not necessarily the same
subset of variables. Unfortunately, the same interpretation cannot be attributed to the RRP -
proximities.

The RRP -proximity in (1) and the RANK -proximity in (2) are numerically different for
values internal to the interval (0, 1), but they both allow to identify nearly the same “twin”
observations (i.e., πij = 1) and the “completely different” units (i.e., πij = 0).

Both proximities are metric free and invariant under monotonic transformations of the data
but the rank proximity (2) is easier to understand, simplest to implement and considerably
faster to obtain.

Other approaches to data matching based on ranks (defined in the usual way) do exist. For
example, let Mk be the maximum rank for variable k and rk(i) the rank of observation i along
variable Xk, then

zk(i) =
rk(i)− 1
Mk − 1

is such that zk(i) ∈ [0, 1] is a score which is also invariant under monotonic transformation
of the data. The vector (z1(i), z2(i), . . . , zp(i)) should be used to replace (xi1, xi2, . . . , xip) in
the data matrix and then any distance based matching method could be applied on the new
matrix. Alternatively, it is possible to assign the score zi = (z1(i) + z2(i) + · · · + zp(i))/p to
each observation and treat it as an new balance score3.

The function rrp.dist in the package rrp implements the algorithm for the RRP method
and the function rank.dist implements the other algorithm. Both functions may return an
R object of class dist for memory saving and compatibility with other matching algorithms.
In the case of rank.dist the default object which is returned is a list of the same length of
the observations. Each element i of the list contains a named vector of proximities where
the names correspond to the row names j’s of the original data set for which the proximity
between observation i and the j’s are positive.

The RANK -proximity algorithm makes also possible to weight differently the variables in-
cluded in the match. If, for example, there are some hints or requirements to have stricter

3See Rosenbaum and Rubin (1983) for a definition of balance score.
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match on some of the covariates, it is possibile to redefine the proximity (2) as follows

ΠRANK =

πRANK
ij =

p∑
k=1

π
(k)
ij wk

p∑
k=1

wk

 , ∆RANK = 1−ΠRANK (3)

where wk > 0 are the weights. Obviously, the interpretation of the values of πRANK
ij ∈ (0, 1)

is less clear in this case.

3. Applications to data matching

The problem of data matching has been described in the Introduction. Several packages of
the R statistical environment (R Development Core Team 2008) implement different matching
methods. Among these, we mention MatchIt (Ho, Imai, King, and Stuart 2007) which is a
generic framework for data matching, Matching (Diamond and Sekhon 2005) which imple-
ments also genetic matching, optmatch by Hansen (2004) implements optimal full matching
as described in Rosenbaum (1991). In the next sections we present an analysis of randomly
generated data which allow for an easy interpretation of the role of the proximities in the iden-
tification of a common support and another data matching application on real data borrowed
from the econometric literature.

3.1. Application to simulated data

As an example of application we show the ability of the two proximities to identify the common
support on the test data sets presented in Figure 1. In these examples there are two groups
to be matched: in one case (up) the two groups, say A and B present a subset of observations
which have a common support and in the other case (down) the two groups are completely
separated. The upper data (called dataA in the script) is randomly generated as follows

R> require("rrp")

R> set.seed(123)

R> nt <- 200

R> nc <- 200

R> n <- nt + nc

R> theta <- runif(nt) * 2 * pi

R> r <- runif(nt) * 0.8

R> x1 <- cos(theta) * r * 1.3

R> y1 <- sin(theta) * r * 0.6

R> theta <- runif(nc) * 2 * pi

R> r <- runif(nc) * 0.8

R> x2 <- 0.5 + cos(theta) * r * 0.5

R> y2 <- sin(theta) * r * 1.4

R> dataA <- data.frame(X1 = c(x1, x2), X2 = c(y1, y2))

and the common support for these points is identified as follows
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R> tsubjects <- 1:nt

R> csubjects <- (nt + 1):n

R> treated <- c(rep(TRUE, nt), rep(FALSE, nc))

R> maxY <- max(dataA[tsubjects, 2])

R> minY <- min(dataA[tsubjects, 2])

R> idxc <- which((dataA[csubjects, 2] <= maxY) &

+ (dataA[csubjects, 2] >= minY))

R> minX <- min(dataA[csubjects[idxc], 1])

R> maxX <- max(dataA[csubjects[idxc], 1])

R> idxt <- which((dataA[tsubjects, 1] <= maxX) &

+ (dataA[tsubjects, 1] >= minX))

R> cat(paste("number of treated units in the common support:",

+ length(idxt), "\n"))

number of treated units in the common support: 62

The second set of data (called dataB in the script) is generated as follows

R> set.seed(123)

R> theta <- runif(nt) * 2 * pi

R> r <- runif(nt) * 0.8

R> x1 <- cos(theta) * r * 1.3

R> y1 <- sin(theta) * r * 0.6

R> theta <- runif(nc) * 2 * pi

R> r <- runif(nc) * 0.8

R> x2 <- 1.5 + cos(theta) * r * 0.5

R> y2 <- sin(theta) * r * 1.4

R> dataB <- data.frame(X1 = c(x1, x2), X2 = c(y1, y2))

In order to study the common support we introduce an index based on the proximity matrix.
This is index is denoted by S(λ), λ ∈ [0, 1], and defined as follows:

S(λ) =
#
{
i ∈ T : max

j∈B
πij ≥ λ

}
nA

, 0 ≤ λ ≤ 1,

where nA is the number of observation from group A and A and B are, respectively, the set of
indeces of observations from group A and B. For fixed λ, the function S(λ) is the proportion
of units in group A that have a proximity greater or equal λ with some units in group B4.
Note that S(λ) is a non increasing function of λ and it rapidly goes to zero if no unit in A
has been found similar to units in group B. Making use of the rrp.dist function in package
rrp, we obtain the RRP -proximity matrix for both data sets5 in Figure 1.

4Note that, in observational studies only one of the two groups matter. Usually, A is the set of indexes of
the treated units and B the set of indexes of the control group.

5In both cases, each numeric variable is discretized in 14 intervals, hence 15 cutpoints are needed in the
script.
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R> MyCut <- 15

R> dati1 <- dataA

R> dati2 <- dataB

R> for (i in 1:2) dati1[, i] <- ordered(cut(dataA[, i],

+ seq(min(dataA[, i], na.rm = TRUE), max(dataA[, i], na.rm = TRUE),

+ length = MyCut), include.lowest = TRUE))

R> for (i in 1:2) dati2[, i] <- ordered(cut(dataB[, i],

+ seq(min(dataB[, i], na.rm = TRUE), max(dataB[, i], na.rm = TRUE),

+ length = MyCut), include.lowest = TRUE))

R> lambda <- seq(0, 1, length = 50)

R> nl <- length(lambda)

R> set.seed(123)

R> D1 <- rrp.dist(dati1, msplit = 5, cut.in = 0, asdist = TRUE)

R> P1 <- 1 - as.matrix(D1)

R> px1 <- P1[tsubjects, csubjects]

R> S1 <- numeric(nl)

R> for (l in 1:nl) S1[l] <- sum(apply(px1, 1, function(x)

+ (length(which(x >= lambda[l])) > 0)))/nt

R> set.seed(123)

R> D2 <- rrp.dist(dati2, msplit = 5, cut.in = 0, asdist = TRUE)

R> P2 <- 1 - as.matrix(D2)

R> px2 <- P2[tsubjects, csubjects]

R> S2 <- numeric(nl)

R> for (l in 1:nl) S2[l] <- sum(apply(px2, 1, function(x)

+ (length(which(x >= lambda[l])) > 0)))/nt

In both cases, we calculated the curve S(λ) whose graph is also represented in Figure 1.

R> par(mar = c(5, 4, 1, 1))

R> par(mfrow = c(2, 2))

R> plot(dataA, col = treated + 2, pch = ifelse(treated, 18, 17),

+ xlim = c(-1.5, 2), ylim = c(-1.5, 1.5))

R> rect(minX, minY, maxX, maxY, lty = 3)

R> plot(lambda, S1, type = "l", ylim = c(0, 1), xlab = expression(lambda),

+ ylab = expression(S(lambda)))

R> plot(dataB, col = treated + 2, pch = ifelse(treated, 18, 17),

+ xlim = c(-1.5, 2), ylim = c(-1.5, 1.5))

R> plot(lambda, S2, type = "l", ylim = c(0, 1), xlab = expression(lambda),

+ ylab = expression(S(lambda)))

For the non overlapping case S(λ) goes toward zero as soon as λ > 0. In the top-left plot
of Figure 1, a small rectangle was depicted. This rectangle contains the observations in the
“plausible” common support defined as the intersection of the smallest rectangle including all
units from group A and the smallest rectangle which includes all units from group B. A related
notion of common support which involves the convex hull of the observations was introduced
in King and Zeng (2006). The units in the plausible common support, coincide with the units
actually matched by our method, i.e., for which the proximity is 1. Applying the RANK -
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Figure 1: Overlapping (up) and disjoint (down) data sets. In the disjoint case, the curve S(λ)
rapidly goes to zero for λ > 0.

proximity algorithm on the same data sets in Figure 1 and using the same discretization, we
obtain a new proximity matrix.

R> S <- function(lambda, P, group) {

+ g2 <- which(!group)

+ g1 <- which(group)

+ f <- function(x) {

+ if (lambda == 0)

+ return(TRUE)

+ nm <- as.numeric(names(x))

+ idx <- match(g2, nm)

+ idx <- as.numeric(na.omit(idx))

+ length(which(x[idx] >= lambda)) > 0

+ }

+ sum(as.numeric(lapply(P[g1], f)))/length(g1)

+ }



10 Invariant and Metric Free Proximities for Data Matching

R> D3 <- rank.dist(dati1, asdist = FALSE)

R> gn <- function(x) S(x, D3, treated)

R> S3 <- sapply(lambda, gn)

R> D4 <- rank.dist(dati2, asdist = FALSE)

R> gn <- function(x) S(x, D4, treated)

R> S4 <- sapply(lambda, gn)

Figure 2 shows the curves S(λ) for the same data sets obtained with RRP (left) and with
rank-based algorithm (right). Plots are generated as follows

R> par(mar = c(5, 4, 1, 1))

R> par(mfrow = c(2, 2))

R> plot(lambda, S1, type = "l", ylim = c(0, 1), xlab = expression(lambda),

+ ylab = expression(S(lambda)))

R> plot(lambda, S3, type = "l", ylim = c(0, 1), xlab = expression(lambda),

+ ylab = expression(S(lambda)))

R> plot(lambda, S2, type = "l", ylim = c(0, 1), xlab = expression(lambda),

+ ylab = expression(S(lambda)))

R> plot(lambda, S4, type = "l", ylim = c(0, 1), xlab = expression(lambda),

+ ylab = expression(S(lambda)))

What emerges is that the two proximity matrices contain the same information about the
observations in the two data sets which actually match.

3.2. An econometric example

Many matching algorithms have been tested against the Lalonde data set. These data (LL
in the following) are taken from the National Supported Work (NSW) Demonstration, a
job training program implemented during the Seventies in the United States and analysed
by Lalonde (1986). From April 1975 to August 1977 the program was carried out as a
randomized experiment: some applicants were assigned to the program while some others,
randomly chosen, were assigned to a control group and not allowed to participate to the
program. The program provided training to the participants for 12-18 months and helped
them in finding a job. As an effect, the program was supposed to yield an increase in the
earnings of participants: therefore, real earnings in 1978 is the outcome variable of the analysis.
Several pre-treatment variables were registered about the applicants (both participants and
control individuals): age (age), years of education (education), marital status (married),
lack of an high school diploma (nodegree), ethnic indicators (black, hispanic) and real
earnings in 1974 (re74) and 1975 (re75). Two indicator variables u74 and u75 are included
in the analysis to signal unemployement in 1974 and 1975. We will not discuss here the
problem of the estimation of average treatment effect for these data which were considered
by many authors (see Dehejia and Wahba 1999, 2002; Smith and Todd 2005a,b; Dehejia
2005) including Iacus and Porro (2007a,b) for the RRP algorithm. In this section, we just
show the performance of the two methods proposed in this paper on the data set. In his
study, Lalonde used several non-experimental control groups, coming from the Panel Study of
Income Dynamics (PSID) and the Current Population Survey-Social Security Administration
File (CPS) and tried to replicate the experimental target. He concluded that methods based
on non-experimental data cannot correctly estimate the effect of the randomized experiment,
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Figure 2: Overlapping (up) and disjoint (down) data sets. The curve S(λ) obtained from the
RRP -proximity (left) and from the RANK -proximity (right). The curvature is different, but
both methods identify the same number of units in the common support.

consequently shedding some doubts on the reliability of these procedures. In more recent
years, Dehejia and Wahba (1999, 2002) tried to show that the matching method based on
propensity scores can be successful in replicating the experimental average treatment effect
estimated by Lalonde even in a non-experimental context. To this aim, they selected from
the experimental sample used by Lalonde a subsample (DW sample) made of 185 treated and
260 control units. As a non-experimental control group, they used a sample of 2490 units
coming from PSID6. Many authors (see cited references) argued about the real possibility of
matching the DW and PSID data. The application of the RRP and RANK -proximity provides
evidence of the fact that DW and PSID data sets cannot be matched. Next R code performs
such analysis:

R> require("rrp")

R> data("DWvsPSID")

6It is the PSID-1 sample used in Lalonde (1986).
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R> n <- dim(DWvsPSID)[1]

R> ctr <- which(DWvsPSID$treated == 0)

R> trt <- which(DWvsPSID$treated == 1)

R> group <- (DWvsPSID$treated == 1)

R> DWvsPSID$u74 <- factor(DWvsPSID$re74 > 0)

R> DWvsPSID$u75 <- factor(DWvsPSID$re75 > 0)

R> DWvsPSID$black <- factor(DWvsPSID$black)

R> DWvsPSID$married <- factor(DWvsPSID$married)

R> DWvsPSID$nodegree <- factor(DWvsPSID$nodegree)

R> DWvsPSID$hispanic <- factor(DWvsPSID$hispanic)

R> str(DWvsPSID)

'data.frame': 2675 obs. of 12 variables:
$ treated : num 1 1 1 1 1 1 1 1 1 1 ...
$ age : int 33 33 35 42 22 27 22 42 41 35 ...
$ education: int 12 12 9 9 12 13 12 14 14 8 ...
$ black : Factor w/ 2 levels "0","1": 1 2 2 2 1 1 1 2 1 2 ...
$ married : Factor w/ 2 levels "0","1": 2 2 2 2 1 2 2 2 1 2 ...
$ nodegree : Factor w/ 2 levels "0","1": 1 1 2 2 1 1 1 1 1 2 ...
$ re74 : num 0 20280 13602 0 6760 ...
$ re75 : num 0 10941 13831 3059 8456 ...
$ re78 : num 12418 15953 12804 1294 12591 ...
$ hispanic : Factor w/ 2 levels "0","1": 1 1 1 1 1 1 2 1 1 1 ...
$ u74 : Factor w/ 2 levels "FALSE","TRUE": 1 2 2 1 2 2 2 1 1 2 ...
$ u75 : Factor w/ 2 levels "FALSE","TRUE": 1 2 2 2 2 2 2 1 1 2 ...

We remove the group variable and re78

R> DWvsPSID <- DWvsPSID[-c(1, 9)]

We now calculate the RANK -proximity. A list will be returned.

R> px <- rank.dist(DWvsPSID, cut.in = 20)

and identify the twins between treated and control units:

R> thr <- 0.9

R> trt.m <- NULL

R> ctr.m <- NULL

R> for (i in trt) {

+ tmp <- as.numeric(names(which(px[[i]] > thr)))

+ tmp <- tmp[tmp %in% ctr]

+ if (length(tmp) > 0) {

+ trt.m <- c(trt.m, i)

+ ctr.m <- unique(c(ctr.m, tmp))

+ }
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+ }

R> ctr.m <- sort(ctr.m)

R> trt.m <- sort(trt.m)

If we now look at the summary statistics for the pre-matched treated and control units

R> summary(DWvsPSID[trt, ])

age education black married nodegree re74
Min. :17.00 Min. : 4.00 0: 29 0:150 0: 54 Min. : 0
1st Qu.:20.00 1st Qu.: 9.00 1:156 1: 35 1:131 1st Qu.: 0
Median :25.00 Median :11.00 Median : 0
Mean :25.82 Mean :10.35 Mean : 2096
3rd Qu.:29.00 3rd Qu.:12.00 3rd Qu.: 1291
Max. :48.00 Max. :16.00 Max. :35040

re75 hispanic u74 u75
Min. : 0 0:174 FALSE:131 FALSE:111
1st Qu.: 0 1: 11 TRUE : 54 TRUE : 74
Median : 0
Mean : 1532
3rd Qu.: 1817
Max. :25142

R> summary(DWvsPSID[ctr, ])

age education black married nodegree re74
Min. :18.00 Min. : 0.00 0:1866 0: 333 0:1730 Min. : 0
1st Qu.:26.00 1st Qu.:11.00 1: 624 1:2157 1: 760 1st Qu.: 10776
Median :33.00 Median :12.00 Median : 18417
Mean :34.85 Mean :12.12 Mean : 19429
3rd Qu.:44.00 3rd Qu.:14.00 3rd Qu.: 26450
Max. :55.00 Max. :17.00 Max. :137149

re75 hispanic u74 u75
Min. : 0 0:2409 FALSE: 215 FALSE: 249
1st Qu.: 9847 1: 81 TRUE :2275 TRUE :2241
Median : 17903
Mean : 19063
3rd Qu.: 26497
Max. :156653

and the post-match observations

R> summary(DWvsPSID[trt.m, ])

age education black married nodegree re74
Min. :17.00 Min. : 8.00 0: 4 0:35 0:20 Min. : 0
1st Qu.:21.00 1st Qu.:10.00 1:37 1: 6 1:21 1st Qu.: 0
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Median :23.00 Median :11.00 Median : 1291
Mean :23.32 Mean :11.07 Mean : 3667
3rd Qu.:25.00 3rd Qu.:12.00 3rd Qu.: 5506
Max. :35.00 Max. :12.00 Max. :20280

re75 hispanic u74 u75
Min. : 0.0 0:41 FALSE:17 FALSE:17
1st Qu.: 0.0 1: 0 TRUE :24 TRUE :24
Median : 334.0
Mean : 1974.3
3rd Qu.: 2842.8
Max. :13830.6

R> summary(DWvsPSID[ctr.m, ])

age education black married nodegree re74
Min. :18.00 Min. : 8.00 0: 5 0:23 0:15 Min. : 0
1st Qu.:21.00 1st Qu.:10.00 1:27 1: 9 1:17 1st Qu.: 0
Median :23.00 Median :11.00 Median : 3037
Mean :24.25 Mean :10.81 Mean : 4281
3rd Qu.:25.25 3rd Qu.:12.00 3rd Qu.: 6897
Max. :34.00 Max. :12.00 Max. :18613

re75 hispanic u74 u75
Min. : 0 0:32 FALSE: 9 FALSE: 9
1st Qu.: 0 1: 0 TRUE :23 TRUE :23
Median : 3778
Mean : 3919
3rd Qu.: 5662
Max. :16113

we can see the effectiveness of the match. After the match the distributions of treated and
control units looks more similar between the two groups. Unfortunately, as it can be seen,
the observations involved in the match are only a few of the original ones:

pre-match treated=185, controls=2490

post-match treated=41, controls=32

showing that reliable match can only be attained for an extremely small subset of the data.
The same results can be obtained using the RRP -proximity as shown in Iacus and Porro
(2007b).

4. A brief account about the software

This section is intended to be a short introduction to the rrp package for the R language (R De-
velopment Core Team 2008). For this reason, it reviews also functions related to applications
of the proximities not discussed in the above: the interested reader can refer to Iacus and Porro
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(2007a,b) for further details. We assume that the reader has some knowledge of the R language
even if the code should appear understandable to non R experts too. The package is available
from the Comprehensive R Archive Network at http://CRAN.R-project.org/package=rrp.

One of the main function of the package is rrp.dist which generates a dissimilarity matrix,
say D (the proximity can be obtained as 1 - D). This matrix can be used in further analysis.
The rrp.dist function accepts several parameters. The ones relevant to the applications of
this paper are

rrp.dist(X, msplit = 10, Rep = 250, cut.in = 15, asdist = FALSE)

where X is the data matrix, msplit is the minimum split parameter7 (by default 10) which
corresponds to the same argument in the rpart package, Rep is the number of RRP replications
(by default 250), cut.in is the number of equally spaced cut points (by default 15) used to
split the support of numeric variables of X, i.e., the number of intervals equals to cut.in -1.
The parameter asdist specifies if the return value should be an R object of class dist. If
asdist is set to FALSE (the default value) the return value is an object of class externalptr
(external pointer) for which coercion methods exist in the package. This choice was made to
increase efficiency in presence of big data sets and to speed up the algorithm because the dist
object is allocated in memory only once and it is not passed (and hence copied) back and forth
between successive R calls. The function XPtrToDist converts an external pointer to a dist
object and newXPtr creates a brand new external pointer object. For example newXPtr(n, k
= 0) creates an external pointer of class XPtr (a class specific to the rrp package) as if it was
a dist object of size n and initializes it with zeroes.

R> a <- newXPtr(10, 5)

R> a

<pointer: 0x8dabb90>
attr(,"class")
[1] "externalptr" "XPtr"
attr(,"Size")
[1] 10

R> str(a)

Classes 'externalptr', 'XPtr' <externalptr>
- attr(*, "Size")= num 10

Then XPtrToDist can perform the conversion, i.e.:

R> (XPtrToDist(a))

1 2 3 4 5 6 7 8 9
2 5

7The minimum split parameter is the minimal number of observations that must exist in a node, in order
for a split to be attempted.

http://CRAN.R-project.org/package=rrp
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3 5 5
4 5 5 5
5 5 5 5 5
6 5 5 5 5 5
7 5 5 5 5 5 5
8 5 5 5 5 5 5 5
9 5 5 5 5 5 5 5 5
10 5 5 5 5 5 5 5 5 5

R> as.dist(matrix(5, 10, 10))

1 2 3 4 5 6 7 8 9
2 5
3 5 5
4 5 5 5
5 5 5 5 5
6 5 5 5 5 5
7 5 5 5 5 5 5
8 5 5 5 5 5 5 5
9 5 5 5 5 5 5 5 5
10 5 5 5 5 5 5 5 5 5

The functions addXPtr(d, x, k) and mulXPtr(d, x, k) perform summation and multipli-
cation of elements of the XPtr object allowing to specify indexes (almost) as if they were
matrix in the following way:

R> M <- matrix(0, 5, 5)

R> d <- newXPtr(5, 0)

R> x <- list(1:3, 4:5)

R> addXPtr(d, x, c(-1, +1))

which is the equivalent of (apart for the diagonal elements)

R> M[1:3, 1:3] <- M[1:3, 1:3] - 1

R> M[4:5, 4:5] <- M[4:5, 4:5] + 1

Indeed, we have

R> (XPtrToDist(d))

1 2 3 4
2 -1
3 -1 -1
4 0 0 0
5 0 0 0 1

R> as.dist(M)
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1 2 3 4
2 -1
3 -1 -1
4 0 0 0
5 0 0 0 1

The rrp package also contains the addDist function which applies to true dist objects and
the functions setDist and setXPtr to set elements of dist and XPtr objects respectively.
Also, the function applyXPtr which is a function of type apply* is available in the package.
The function rank.dist has a similar interface to rrp.dist. The most relevant parameters
are the following:

rank.dist(X, cut.in = 0, thr = 0.75, weights, asdist = FALSE)

The thr argument is a threshold below which the value of the proximity is not retained by
the algorithm. The argument weights is a vector of weights which by default is a vector of
one’s and asdist when set to FALSE (the default) returns a list with the same length of the
observations. Each element of the list is a named vector containing the proximities greater or
equal to thr. The names of the vector correspond to the row names of X for the observations
for which the proximity is greater or equal thr. Each vector is also sorted in decreasing order
to allow for fast nearest neighbor classification. The choice of returning a list instead of an
external pointer was made because for the rank-based proximity (2) it is quite easy to choose
a reasonable threshold for the proximities, hence the corresponding dist (or XPtr) object
is essentially a sparse vector. In our experience, the list representation is more efficient in
terms of memory occupation for big data sets.

4.1. Other useful functions of the package

We now show an example of classification on the Iris dataset. We remind that the Iris data
set contains 4 measurement variables and 1 class variable (called Species). We randomly
sample 10 observations as test set and use the remaining observations as training set. The
dissimilarity matrix is built on the whole data set by excluding the class variable (which is
variable number 5) from the data matrix.

R> require("rrp")

R> data("iris")

R> str(iris, strict = "cut", width = 70)

'data.frame': 150 obs. of 5 variables:
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 ..

R> set.seed(123)

R> test <- sample(1:150, 10)

R> test
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[1] 44 118 61 130 138 7 77 128 79 65

R> train <- (1:150)[-test]

R> D <- rrp.dist(iris[, -5])

The function rrp.dist gives some feedback about the ongoing iterations (suppressed in this
case). Once the matrix is obtained, we can use the rrp.class function to perform the nearest
neighbor classification. The interface of the function is easy to use.

rrp.class(x, cl, train, test, k = 1)

The function can be called by passing the dissimilarity matrix D (parameter x), the true class
for the training set (cl), the vector of indexes corresponding to the training (train) and
the test sets (test). By default the function performs a nearest neighbor classifier using k=1
neighbors. As a result, a vector of predicted classes is returned and we tabulate it against the
vector of true classes. The result is as follows:

R> pred <- rrp.class(D, iris$Species[train], train, test)

R> table(pred, iris$Species[test])

pred setosa versicolor virginica
setosa 2 0 0
versicolor 0 4 0
virginica 0 0 4

and, in this (rather fortunate) case, we obtain no missclassification. The package also contains
the function rrp.predict function useful for continuous response variables. We provide here
a working example using the birth weight data. The reader might want to refer to help for the
data set for a description of the variables. The following code preprocesses the birtwt data
in order to obtain a proper data matrix to handle. This example is borrowed from Venables
and Ripley (2002).

R> require("MASS")

R> data("birthwt")

R> attach(birthwt)

R> race <- factor(race, labels = c("white", "black", "other"))

R> ptd <- factor(ptl > 0)

R> ftv <- factor(ftv)

R> levels(ftv)[-(1:2)] <- "2+"

R> bwt <- data.frame(bwt, age, lwt, race, smoke = (smoke > 0), ptd,

+ ht = (ht > 0), ui = (ui > 0), ftv)

R> detach()

R> rm(race, ptd, ftv)

Once the data are ready, we select the test and the training set and run rrp.dist (some
output is omitted)
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R> set.seed(123)

R> n <- dim(bwt)[1]

R> test <- sample(1:n, 15)

R> train <- (1:n)[-test]

R> D <- rrp.dist(bwt[, -1])

With the dissimilarity matrix in hands, we can proceed to prediction using rrp.predict,
which has an interface consistent with rrp.class:

rrp.predict(x, y, train, test, k = 1)

where the only difference is in that y is the vector of the response variable of the training set
units. Therefore,

R> true.wht <- bwt$bwt[test]

R> pred.wht <- rrp.predict(D, bwt$bwt[train], train, test)

R> mean(pred.wht - true.wht)

[1] -28.2

where -28.2 is the average bias after prediction.

The other function we review is rrp.impute which is used for data imputation. The function
requires both the data matrix data containing missing values and the RRP -dissimilarity
matrix D. If the dissimilarity matrix is not passed to the function, it will be calculated inside
the function itself:

rrp.impute(data, D = NULL, k = 1, msplit = 10, Rep = 250, cut.in = 15)

This function returns a copy of the matrix data after imputation, called new.data, and a
copy of the dissimilarity matrix D. Data in made using a nearest neighbor algorithm on the
proximity matrix. The following is an example of missing data imputation for the Iris data
set in which 10 observations are chosen at random and for each of these 10, two missing values
are imputed choosing randomly 2 over 5 covariates:

R> data("iris")

R> X <- iris

R> n <- dim(X)[1]

R> set.seed(123)

we generate missing data in 10 observations

R> miss <- sample(1:n, 10)

R> for (i in miss) X[i, sample(1:5, 2)] <- NA

R> X[miss, ]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
44 5.0 NA 1.6 0.6 <NA>
118 7.7 3.8 NA NA virginica
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61 NA 2.0 3.5 NA versicolor
130 NA NA 5.8 1.6 virginica
138 6.4 NA 5.5 NA virginica
7 4.6 3.4 NA 0.3 <NA>
77 6.8 2.8 4.8 NA <NA>
128 6.1 3.0 NA NA virginica
79 6.0 2.9 NA 1.5 <NA>
65 NA NA 3.6 1.3 versicolor

We now run the rrp.impute function on the data and look at the data (x$new.data) after
imputation:

R> x <- rrp.impute(X)

R> x$new.data[miss, ]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
44 5.0 3.4 1.6 0.6 setosa
118 7.7 3.8 6.4 2.0 virginica
61 5.0 2.0 3.5 1.0 versicolor
130 7.2 3.2 5.8 1.6 virginica
138 6.4 2.8 5.5 2.1 virginica
7 4.6 3.4 1.6 0.3 setosa
77 6.8 2.8 4.8 1.7 versicolor
128 6.1 3.0 4.8 1.8 virginica
79 6.0 2.9 4.2 1.5 versicolor
65 5.8 2.7 3.6 1.3 versicolor

It is interesting to look at the original full data as well:

R> iris[miss, ]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
44 5.0 3.5 1.6 0.6 setosa
118 7.7 3.8 6.7 2.2 virginica
61 5.0 2.0 3.5 1.0 versicolor
130 7.2 3.0 5.8 1.6 virginica
138 6.4 3.1 5.5 1.8 virginica
7 4.6 3.4 1.4 0.3 setosa
77 6.8 2.8 4.8 1.4 versicolor
128 6.1 3.0 4.9 1.8 virginica
79 6.0 2.9 4.5 1.5 versicolor
65 5.6 2.9 3.6 1.3 versicolor

These examples can be run directly using the commands example section of each R command
in the package rrp. The functions rank.class, rank.predict and rank.impute have not yet
been implemented in the current version of the rrp package (2.6) although there is a plan to
write these functions for the RANK -proximity.
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