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ABSTRACT

Smoothing methods that use basis functions with penalization can be formulated
as fits in a mixed model framework. One of the major benefits is that software
for mixed model analysis can be used for smoothing. We illustrate this for several
smoothing models such as additive and varying coefficient models for both S-PLUS
and SAS software. Code for each of the illustrations is available on the Internet.

Keywords: Additive mixed models; Additive models; Bivariate smoothing; General-
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1 Introduction

Smoothing methodology offers a means by which non-linear relationships can be
handled without the restrictions of parametric models. It has become a widely used
tool for data analysis and inference and its integration into complex models and use
in applications is becoming more and more pervasive.

When fitting models that involve smoothing the analyst has to choose between
programming the method herself or using customized software. The latter can be
somewhat restrictive. For example, generalized additive models can be handled in
either PROC GAM in SAS or gam() in S-PLUS; but varying coefficient models can-
not. On the other hand, self-implementation of smoothing models can be time con-
suming. In this article we demonstrate how mixed model representations of penal-
ized splines can largely alleviate this problem. Most smoothing models in common
use: nonparametric regression, kriging, additive models, varying coefficient mod-
els, additive mixed models; can be formulated as a mixed model. See, for example,
Wahba (1978), Speed (1991), Verbyla (1994), O’Connell and Wolfinger (1997), Brum-
back, Ruppert and Wand (1999). This allows for their fitting to be achieved using
software such as PROC MIXED in SAS (Littell et al., 1996) and Ime() in S-PLUS (Pin-
heiro and Bates, 2000). Mixed model software also provides automatic smoothing
parameter choice via (restricted) maximum likelihood estimation of variance com-
ponents. Finally we note that mixed model representations of smoothers allow for
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straightforward combination of smoothing with other modelling tools such as ran-
dom effects for longitudinal data. Ruppert, Wand and Carroll (2003) provides more
background and materials for the class of semiparametric regression models. Wand
(2003) is a companion article to this paper and provides more details on the connec-
tions between smoothing and mixed models.

We provide S-PLUS and SAS code that illustrates the use of mixed model soft-
ware to do smoothing for several models. Sections 2 — 8 treat increasing more so-
phisticated models, starting with the simple scatterplot smoothing, or nonparametric
regression, model and finishing with varying coefficient models. Section 9 treats user
specified amounts of smoothing, while Section 10 deals with standard error com-
putation. Extensions to other basis functions and bivariate smoothing is treated in
Sections 11 and 12. We close with discussion on generalized models in Section 13,
plotting issues in Section 14 and some closing remarks in Section 15.

All of the code given in this article is available in text files on the Internet.

2 Scatterplot Smoothing

The formulation of penalized spline scatterplot smoothers as mixed model fits is fun-
damental to the thrust of this paper. Therefore we will spend a few paragraphs ex-
plaining this connection.

The data in each panel of Figure 1 is identical, and was generated as

Y = f(:Ez) + 0.4¢;

where the z; and ¢; are random samples from the uniform distribution on (0,
and the standard normal distribution respectively. The mean function f is f(z)
sin(3wz).

In each panel, linear models of the form

1)

K
vi = Bo+ Brwi + Y up(wi — kk) 1 + & 1)
k=1

have been fitted to the data. The function

|0 T < Ky
(.’L‘ Hk)+_{:v—l£kx>l§k

represents a piecewise line with a join-point, or knot, at k. The choice of the ;s is
discussed in Section 3.
Here and throughout most of this paper we use the truncated line basis

1: Zr, (l'—lil)+,-.-,($_f€K)+
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Figure 1: How mixed
models do smoothing.
In (a) all coefficients are
fixed effects, while in
(b) the coefficients of
the knots are random
effects. The solid curve
is the estimated curve,
while the dashed curve
is the function from
which the data were
generated.

for smoothing. This is for simplicity of exposition. Other smoother bases can be used
instead and these are discussed in Section 11. However, the truncated line basis can
perform adequately in many circumstances.

The bar at the base of each panel shows the location of the knots. Panel (a) is
just an ordinary least squares fit to the scatterplot; but is quite rough due to the large
number of truncated line functions being fit. Panel (b) remedies this through one
simple modification:

up ~ N(0,03). v
For 02 < oo this shrinks the uj, and leads to the smooth fit shown in Figure 1 (b).
(a) (b)
I W/ IIE/ 17/ 0/0 8/ /10 I N/ AIE/IY /I 8/ IV
00 02 04 06 08 1.0 00 02 04 06 08 1.0
fixed effects model mixed model
If we define the design matrices
X = [1 zi]i<i<n, Z = [(z; — kr)+]1<i<n
1<k<K
and set B = [Bo,B1]", u = [ug,--.,uxk]" then we can rewrite (1) and (2) as the linear
mixed model
u 0 o1 0
=XB+Z ~N - :
soxpemee v ([G][ 5 )) ®

Scatterplot smoothers of the type, where the number of basis functions is less than
the sample size, presented in this section go back at least to Parker and Rice (1985),
O’Sullivan (1986,1988), Gray (1992) and Kelly and Rice (1990). More recent references
are Eilers and Marx (1996), Hastie (1996) and Ruppert and Carroll (2000) where the
following names:



P-splines,

penalised splines,

pseudosplines, and
¢ low-rank smoothers

have been coined. Each of these are virtually synonymous.
The next two subsections explain how (3) can be fit in the S-PLUS and SAS com-
puting environments.

2.1 S-PLUS commands

For illustration of scatterplot smoothing we will use the fossil data described by
Chaudhuri and Marron (1999). However, we will multiply the response variable
(strontium ratio) by 100,000 to make the y-axis more readable.

Assign the scatterplot vectors X and y corresponding to the fossi I data-frame:

x <- fossil$age
y <- 100000*fossil$strontium.ratio

The Z matrix requires a set of knots. For now we will take them to be

knots <- seq(94,121, length=25)

Section 3 describes good default choice of the knots for general X. However, it is
important to realize that this default is not always appropriate and that selection of a

good set of knots may need to be done manually.
Read in fossil data and assign to vectors X and y.

fossil <- read.table(*"fossil.dat", header=T)
X <- fossil$age
y <- fossil$strontium.ratio

Set up using the design matrices.

n <- length(x)

X <- cbind(rep(1,n),x)
Z <- outer(x,knots,"-"")
Z <- 7Z*(Z>0)

Compute the mixed model fit using Ime ().
fit <- Ime(y -1+X,random=pdldent(T-1+2))
The estimated fixed and random coefficients and fitted values are:

beta.hat <- Fit$coef$fixed
u.hat <- unlist(fit$coef$random)
f.hat <- X%*%beta.hat + Z%*%u.hat



Figure 2: Linear
penalized spline fit to
the fossil data using
the commands of
Section 2.1.

The estimated standard deviation components are:

sig.eps.hat <- fit$sigma
sig.u.hat <- sig.eps.hat*exp(unlist(fit$modelStruct))

Figure 2 shows the scatterplot using this code. Smoother fits can be obtained
using the smoother basis functions as described in Section 11.

100000*(strontium ratio)
70720 70725 70730 70735 70740 70745 70750

95 100 105 110 115 120
age

2.2 SAS code

The following SAS code fits a linear penalized spline fit for given vectors of z; and y;
values, along with a set of knots. Note that in order to use the enclosed SAS code, it
is necessary to create the subdirectory and the referenced library name. In this case,
a library name paper pointing to subdirectory ~ /test has been created.

libname paper >~ /test’;
data paper.fossil;
infile "~ /test/fossil.dat” missover;
input age ratio;
ratio=ratio*100000;
if age ne _;
run;

/*******************************/

/*generate knots vector */

/*******************************/



data paper.knots;
do i=0 to 24;
knots=94+((121-94)/24)*1i;
output;
end;
run;
data dataw;
set paper.fossil;
m=1;
run;
data ktl;
set paper.knots nobs=nk;
call symput(’nkt”,nk);
run;
proc transpose data=paper.knots prefix=knots
var knots;
run;
data paper.knotst;
set knotst;
m=1;
run;

/********************************/

/* creating the Z matrix */

/********************************/

data dataw;
merge dataw paper.knotst;
by m;
%let nk=&nkt;
array Z (&nk) Z1-Z&nk;
array knots (&nk) knotsl-knotsé&nk;
do k=1 to &nk;
Z(k)=age-knots(k);
if Z(k) < 0 then zZ(k)=0;
end;
drop knotsl-knots&nk _name_;
run;
ods output CovParms=paper.varcomp;

/********************************/

/* fitting the mixed model */

/********************************/

out=knotst;



proc mixed;
model ratio = age / solution outp=paper.yhat;
random Z1-Z&nk / type=toep(l) s;

run;

/********************************/

/* plotting the smoothed curve */
/********************************/
proc sort;

by age;
run;
symboll v=circle c=black i=
symbol2 v=point c=blue i=
goptions device=xcolor;
proc gplot;

plot ratio*age pred*age / overlay;
run;

1=1;
1=2;

3 Default Knot Specification
A reasonable default rule for the knot locations is:
ki = {(k + 1)/(K + 2)}th sample quantile of the unique z;’s 4)

fork=1,...,K.
A simple default choice of K that usually works well is

K = max (5, min (1 x number of unique z;’s, 35)) . (5)

See Ruppert (2002) for further discussion on default knot specification.

3.1 S- PLUS commands

The default choice of knots corresponding to (4) and (5) can be generated using the
following S-PLUS function:

default.knots <- function(x,num.knots)

{
if (missing(num.knots))
num.knots <- max(5,min(floor(length(unique(x))/4),35))
return(quantile(unique(x),seq(0,1, length=
(num_knots+2))[-c(1, (hum_knots+2))]))
}



3.2 SAScode

The following SAS code obtains the default set of knots for given vector of z; val-
ues. This algorithm does not produce identical knots that are generated by the Splus
algorithm; however, as long as the underlying knots capture the variable’s distribu-
tion, the smoothing results are quite similar. The algorithm selects a knot at every
tifth value, and limits the number of knots generated. The option of specifying the
number of knots to be selected is also allowed.

%macro default_knots(librefknots=,data=,knotdata=,varknots=,numknots=);
proc sort data=&data (keep=&varknots) out=ql;
by &varknots;

run;
data qg2;
set ql;

by &varknots;
if first_&varknots;
run;
data &librefknots. .&knotdata;
set g2 nobs=n;
knotsp=int(n/5);
if knotsp>=35 then kmx=35; else
if knotsp<35 then kmx=knotsp;
%if &numknots ne Y%then %do;
ktemp=&numknots;
if 1 <= ktemp <= 35 then kmx=ktemp;
%end;
kintrvl=round(n/kmx) ;
knotsok=mod(_n_,kintrvl);
knots=&varknots;
if knotsok=0 or _n_=n-1 then output;
keep knots;
run;
%mend;

4 Simple Semiparametric Regression
An example of a simple semiparametric regression model is
log(yield;) = Bo + f1PL; + f(density;) +¢;, 1<i<n,

where the yield; and density; respectively refer to the yields (g/plant) and den-
sities of white Spanish onion plants (plants/m?) grown in two locations: Purnong
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Landing and Virginia, South Australia. The variable PL; is an indicator defined as

0 if ith measurement is from Virginia
PL; = e . .
1 if ith measurement is from Purnong Landing.

These onions data are taken from Ratkowsky (1983). A detailed semiparametric anal-
ysis of the data is given by Young and Bowman (1995).

We use the phrase “simple semiparametric” because the model has a paramet-
ric component (location term) and a nonparametric component (density term). Such
models are also commonly referred to as “partially linear” (e.g. Hérdle, Liang and
Gao, 2000). The special case where the parametric component is binary is sometimes
called a “binary offset model”. The fitting of this model is a trivial extension of the
content of Section 2: add a column to the X matrix corresponding to the offset indi-
cators (the PL; in the onions example).

4.1 S-PLUScommands

onions <- read.table('onions.dat",header=T)

dens <- onions$density

log.yield <- log(onions$yield)

location <- onions$location

Set up design matrices for a binary offset model.

X <- cbind(rep(1, length(dens)) ,dens, location)

knots <- default._knots(dens)
Z <- outer(dens,knots,"-"")
Z <- 7*(Z>0)

Obtain the fit using mixed model function Ime().

fit <- Ime(log.yield™-1+X, random=pdldent(T-1+2))
beta.hat <- Ffit$coef$Fixed

u.hat <- unlist(Fit$coef$random)

Extract the estimated standard deviation components.

sig.eps.hat <- fit$sigma

sig.u.hat <- sig.eps.hat*exp(unlist(fit$modelStruct))

4.2 SAS code

The following SAS code fits the above simple semiparametric regression model.
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libname paper *~/test’;
data paper.onions;
infile "~ /test/onions.dat” missover;
input density yield location;
logyield=log(yield);
if density = . then delete;
run;
%include "default knots.macro';
%default_knots(librefknots=paper,data=paper.onions,
knotdata=onionsknots,varknots=density);
data dataw;
set paper.onions (keep=logyield density location);
m=1;
run;
data kt1;
set paper.onionsknots nobs=nk;
call symput(’nkt’”,nk);
run;
proc transpose data=paper.onionsknots prefix=knots out=knotst;
var knots;
run;
data paper.knotst;
set knotst;
m=1;
run;
data dataw;
merge dataw paper.knotst;
by m;
%let nk=&nkt;
array Z (&nk) Z1-7&nk;
array knots (&nk) knotsl-knotsé&nk;
do k=1 to &nk;
Z(k)=density-knots(k);
if Z(k) < 0 then Z(k)=0;
end;
drop knotsl-knots&nk _name_;
run;
ods output CovParms=paper.varcomp;
proc mixed;
model logyield = location density / solution outp=paper.yhat;
random Z1-Z&nk / type=toep(l) s;
run;
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5 Additive Models

An example of an additive model is

/mortality, = By + BTSP; + fi(t) + fo(temperature,) + f3(humidity,) +¢&; (6)

where, for day ¢, mortality, is the number of deaths, TSP; is the number of Total
Suspended Particles, temperature, is the temperature and humidity, is the humid-
ity for the city of Milan, Italy. Here we will fit just one year of data, so 1 < ¢ < 365.
An additive model differs from a simple semiparametric model in that there may
be several nonparametric components entering the model additively. Model (6) has
three nonparametric components.
Design matrices appropriate for fitting (6) are

1 TSP; 1 temperature; humidity;

1 TSP, 2 temperature, humidity,

1 TSP3¢5 365 temperaturesq; humidityygs
and

Z=[(t—x})+ (temperature,—k3)y (humidity, — K}):]i<t<sos-
1<k<K, 1<k<Ka 1<k<Ks
Here x}, k2 and «} are knot sequences of lengths K, K> and Kj for handling ¢,
temperature and humidity respectively.
The random effects have covariance matrix

o?lg, O 0
Cov(u) = 0 03Ig, O
0 0 ollg,

where Ix denotes the K x K identity matrix.

5.1 S-PLUS commands

milanmort <- read.table("milanmort.dat",header=T)

year._.num <- 1
subinds <- (365*(year.num-1)+1):(365*year.num)
milanmort <- milanmort[subinds,]

y <- sgrt(milanmort$resp.mort)
1 <- milanmort$day.num

2 <- milanmort$mean.temp

-3 <- milanmort$rel _.humid

4 <- milanmort$TSP
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Set up design matrices.

X <- cbind(rep(1,length(y)),x.1,x.2,x.3,%x-4)

knots.1l <- default.knots(x.1)
Z.1 <- outer(x.1,knots.1,"-")
Z.1 <- Z2.1*(Z.1>0)

K.1 <- length(knots.1l)

knots.2 <- default._knots(x.2)
Z.2 <- outer(x.2,knots.2,"-")
2.2 <- 72.2*(Z.2>0)

K.2 <- length(knots.2)

knots.3 <- default.knots(x.3)
Z.3 <- outer(x.3,knots._3,"-")
2.3 <- Z2.3*(Z.3>0)

K.3 <- length(knots.3)

Z <- cbind(z.1,2.2,2.3)

Fit the additive model using Ime (). First the block structure of the random effects
covariance matrix must be specified and stored in the list Z.block.

re.block.inds <- list(1:K.1,(K.1+1):(K.1+K.2),
(K. 1+4K.2+1) - (K. 1+K.2+K.3))
Z.block <- Tlist(Q
for (i in 1:length(re.block.inds))
Z_block[[i]] <- as-formula(paste("" Z[,c(",paste(
re.block.inds[[i]],collapse=","),")]-1"))

fit <- Ime(y -1+X,random=pdBlocked(Z.block,pdClass="pdldent'))
beta.hat <- Fit$coef$fixed
u.hat <- unlist(Ffit$coef$random)

Extract the estimated variance components.

sig.eps.hat <- fit$sigma
sig.u.hat <- sig.eps.hat*exp(unlist(fit$modelStruct))

Print a summary of the fixed effects. The last row is the only one that has an inter-
pretation and corresponds to the effect of air pollution (non-significant in this case).

print(summary(fit)$tTable)
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5.2 SAS code

The following SAS code fits the above additive model.

libname paper >~ /test’;
data paper.milanl;
infile “~/test/milanmort.dat” missover;
input daynum dayweek holiday meantemp relhumid
totmort respmort s02 tsp;
y=sgrt(respmort);
x1=daynum;
X2=meantemp;
x3=relhumid;
X4=tsp;
if daynum ne . ;
run;
data paper.milan2;
set paper.milanl;
if _n_ <= 365;
run;

/********************************************l

/* creating knots for 3 smoothing variables */
/********************************************/

%include "default _knots.macro';
%default_knots(librefknots=paper,data=paper.milan2,
knotdata=knotsl,varknots=x1);
%default_knots(librefknots=paper,data=paper.milan2,
knotdata=knots2,varknots=x2);
%default_knots(librefknots=paper,data=paper.milan2,
knotdata=knots3,varknots=x3);

data dataw;
set paper.milan2 (keep=y x1-x4);
m=1;

run;

data kt1;
set paper.knotsl nobs=nkl;
call symput(’nktl”,nkl);

run;

proc transpose data=paper.knotsl prefix=knotsl out=knotstl;
var knots;

run;

data kt2;
set paper.knots2 nobs=nk2;
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call symput(°nkt2”,nk2);
run;
proc transpose data=paper.knots2 prefix=knots2_out=knotst2;
var knots;
run;
data kt3;
set paper.knots3 nobs=nk3;
call symput(’nkt3”,nk3);
run;
proc transpose data=paper.knots3 prefix=knots3_ out=knotst3;
var knots;
run;
data paper.knotst;
merge knotstl knotst2 knotst3;
m=1;
run;

/***********************************/

/* creating the Z matrix */
/***********************************/

data dataw;
merge dataw paper.knotst;
by m;
%let nkl=&nktl;
%let nk2=&nkt2;
%let nk3=&nkt3;
array Zla (&nkl1) 71 1-71 &nk1;
array knotsla (&nkl) knotsl_1-knotsl &nkl;
do k=1 to &nkl;
Zla(k)=x1l-knotsla(k);
if Zla(k) < 0 then Zla(k)=0;
end;
array Z2a (&nk2) Z2 1-7Z2 &nk2;
array knots2a (&nk2) knots2_1-knots2_&nk2;
do k=1 to &nk2;
Z2a(k)=x2-knots2a(k);
if Z2a(k) < 0 then Z2a(k)=0;
end;
array Z3a (&nk3) Z3 1-Z3 &nk3;
array knots3a (&nk3) knots3_1-knots3 &nk3;
do k=1 to &nk3;
Z3a(k)=x3-knots3a(k);
if Z3a(k) < 0 then z3a(k)=0;
end;
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drop knotsl 1-knotsl &nkl knots2_ 1-knots2_ &nk2
knots3 1-knots3 &nk3 name_;
run;
ods output CovParms=paper.varcomp;

/************************************/

/* Fitting the additive model */

/************************************/

proc mixed;
model y = x1-x4 / solution outp=paper.yhat;
random Z1 1-Z1 &nkl / type=toep(l) s;
random Z2_ 1-72 &nk2 / type=toep(l) s;
random Z3 1-73 &nk3 / type=toep(l) s;

run;

6 Additive Mixed Models

The sitka data are listed in Table 1.2 and displayed in Figure 1.3 of Diggle, Liang and
Zeger (1995). They correspond to measurements of log-size for 79 Sitka spruce trees
grown in normal or ozone-enriched environments.

A useful model for these data is the additive mixed model

log(size;;) = U; + ozone;; + f(days;;) +&ij, 1<j<n; 1<i<m )

where f is some smooth function. For the sitka spruce data m = 79 and n; = 26 for
all 7. Note that ozone;; is an indicator variable corresponding to whether or not the
trees are grown in normal or ozone-enriched environments.

Appropriate design matrices are
[1 ozone;; daysy; |

1 ozonein, daysy,,

1 ozone,: days,,;

| 1 ozonepy,, days,,,, |
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1---0 (daysy; — K1)y -+ (daysy —kk)+
120 (daysyy, —mi)s - (daysin, — R)s

0---1 (days,,; —#1)s - (daysm,; —Kk)+

0+ 1 (daysyy, —F1)¢ - (daYSpn, — KK)+

Note that the random effects vector is

and u=

UK

We can simultaneously estimate variance components for the random intercept and
the amount of smoothing for f through the mixed model

u o3I 0 0
y=XB +Zu+ ¢, Cov[e]: 0 o2 0 |. (8)
0 0 oI

Here o2 measures the between subject variation, o2 measures within subject varia-

tion and o2 controls the amount of smoothing done to estimate f.

6.1 S-PLUS commands

Read in the sitka spruce data:

sitka <- read.table('sitka_spruce.dat",6header=T)
Extract data corresponding to the sitka data frame:

ozone <- sitka$ozone

days <- sitka$days
log.size <- sitka$log.size
idnum <- sitka$idnum

Construct the y response vector and X matrix.

y <- log.size
X <- cbind(rep(1,length(y)) ,days,ozone)
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Create the spline component of the Z matrix. Note that the presence of knots for the
days variable can be a known vector of knots. Notice that in the SAS code below, we
use the knot vector generated by the Splus code. The estimates from both the Splus
and SAS code are identical.

Z.spline <- outer(days,knots,'-'")
Z.spline <- Z_.spline*(Z.spline>0)

The component of the Z matrix corresponding to the random intercept does not need
to be specified and can be handled through the identification numbers stored in 1d-
num:

idnum <- factor(idnum)
fit <- Ime(y -1+X,random=pdBlocked(list(pdldent("-1+idnum),
pdldent(T-1+Z.spline))))

beta.hat <- fit$coef$fixed
u.hat <- unlist(Fit$coef$random)

sig.eps.hat <- fit$sigma
sig.u.hat <- sig.eps.hat*exp(2*unlist(fit$modelStruct))

6.2 SAS code

The following SAS code fits the above additive mixed model.

libname paper >~ /test”;

data paper.sitkal;
infile "7 /test/sitka spruce.dat”’ missover;
input idnum order days logsize ozone;
if idnum ne .;

run;

/*********************************************/

/* Creating knots for the smoothing variable:*/
/* these knots were obtained from the Splus */

/* program sec6.1.s. The Fixed effects */
/* estimates are thus identical to those of */
/* the Splus code. */

/*********************************************/

data paper.knots;
input knots;

datalines;

196.5

247 .6667

498.5

563.6667
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617.3333

run;

data dataw;
set paper.sitkal (keep=idnum logsize days ozone);
m=1;

run;

data kt;
set paper.knots nobs=nk;
call symput(’nkt’”,nk);

run;

proc transpose data=paper.knots prefix=knots out=knotst;
var knots;

run;

data paper.knotst;
set knotst;
m=1;

run;

/***********************************/

/* creating the Z matrix */

/***********************************/

data dataw;
merge dataw paper.knotst;
by m;
%let nk=&nkt;
array Z (&nk) Z1-Z&nk;
array knots (&nk) knotsl-knotsé&nk;
do k=1 to &nk;
Z(k)=days-knots(k);
if Z(k) < 0 then zZ(k)=0;
end;
drop knotsl-knots&nk _name_;
run;
ods output CovParms=paper.varcomp;

/************************************/

/* fitting the additive model */

/************************************/

proc mixed;

18



class i1dnum;
model logsize = days ozone / solution outp=paper.yhat;
random idnum / type=toep(l) s;
random Z1-Z&nk / type=toep(l) s;
run;

7 Additive Models with Interactions

Coull, Ruppert and Wand (2001) developed mixed model approaches to building
in factor by curve interactions into additive models. The example concerning pollen
counts given there required an overdispersed Poisson mixed model since the re-
sponse variable was a count. For the purposes of this paper we tried to work with
the square root response transformation, but found that the normality assumption
was not reasonable. Therefore, we will use another data set with similar characteris-
tics for which the square root response transformation does reasonably approximate
normality. The data correspond to mortality counts for the city of Milan, Italy, as anal-
ysed by Zanobetti, Wand, Schwartz and Ryan (2000). The questions for these data are
different for those arising in the pollen data, but we will ignore these for now. Our
goal here is to simply illustrate the fitting of additive models with interactions.

Consider the model corresponding to daily measurements for the years 1984—
1987.

E(y/mortality,) = (1 TSP; + faholiday, + fi(min.temp,) + fa(rel.humid;)

9
+fyear(day-0f-yeart) ( )

where, for day t, /mortality, is the number of respiratory mortalities, TSP; is
the air pollution measure Total Suspended Particles, min.temp, is the min-
imum temperature, rel.humid; is the relative humidity. For the final term year €
{1984, 1985,1986, 1987} and day.of.year, is the number of day within the particular
year and represents an interaction between the factor year and the overall seasonal
effect.

Model (9) can be formulated as a linear mixed model (see Coull et al., 2001 for
details)

y=XB8+Zu+ ¢

where

X = [1 TSP; holiday, min.temp, rel.humid; I(year = 1985);,...,I(year = 1987);
day.of.year,I(year = 1985);,...,day.of.year,I(year = 1987)|1<s<1460

and
7 = [(min.temp, — k7""); (rel.humid; — k5")y I(year = 1984);(day.of.year;, — mzy)+, ey
1<k < Kmt 1<k<K,p 1<k<Kqy
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I(year = 1987)t(day.of.yeart — Kzly)+]1§t§1460
1<k<Kqy

where
1 year, =

I =1 =
(year = j)i {O otherwise,

n}cnt, 1 < k < Kyt are knots for minimum temperature, nzh, 1 < k < K,p, are knots
for relative humidity and sz , 1 <k < Kgy are knots for day of the year. Also,

. 2 2 2 2 2 2
Cov(u) = blockdiag(oy,,I, o1, 0dy,198417 0dy,1985Ia Udy,19861a Udy,19871)-

Note that the fixed effects component has year=1984 as a reference group. However,
the random effects component does not use a reference group and all years are on
equal footing.

7.1 S- PLUS commands

Set up the design matrix X for the fixed effects with 1981 serving as the reference
year:

X <- cbind(rep(1,n),holiday,day.in.seas, indic.1985,indic.1986,indic.1987,
day.in.seas*indic.1985,
day.in.seas*indic.1986,
day.in.seas*indic.1987,TSP, temperature,rel _humid)

Set up Z matrix for temperature and relative humidity smoothing function:

K.temp <- 15
knots.temp <- quantile(unique(temperature),
seq(0,1, length=K_.temp+2))[-c(1,K.temp+2)]

K.relh <- 15
knots.relh <- quantile(unique(rel_humid),
seq(0,1, length=K.relh+2))[-c(1,K.relh+2)]

Z.temp <- outer(temperature,knots.temp,"”-"")
Z.temp <- Z._temp*(Z.temp>0)

Z.relh <- outer(rel.humid,knots.relh,”-"")
Z.relh <- Z.relh*(Z.relh>0)

Set up Z matrix for day in season and interaction terms between day in season
and year:
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K <- 15

knots <- quantile(unique(day.in.seas),seq(0,1, length=K+2))[-c(1,K+2)]
Z.overall <- outer(day.in.seas,knots,"-"")

Z.overall <- Z.overall*(Z.overall>0)

Z <- cbind(Z.overall,indic.1984*7Z _overall,indic.1985*Z_overall,
indic.1986*Z.overall,indic.1987*Z_overall)

Set up blocked components of the Z matrix:

re.block.inds <- list(1:K,(K+1):(2*K), (2*K+1):(3*K),
(B*K+1) : (4*K) , (4*K+1) : (5*K),
(5*K+1) : (5*K+K.temp),
(5*K+K.temp+1) : (6*K+K.temp+K.relh))

Z <- cbind(Z,zZ-temp,Z.relh)

Z.block <- 1list()
for (i in 1l:length(re.block.inds))
Z.block[[i]] <- as.-formula(paste(""Z[,c(",paste(
re_.block.inds[[i]],collapse=","),")]-1""))

Fit the additive mixed model with interactions:
fit <- Ime(sgrt.mort™-1+X, random=pdBlocked(Z.block,pdClass="pdldent'))

Extract the fixed effects estimates, the blups, the error variance, and the variance
components correponding to the random effects:

beta.hat <- Ffit$coef$Fixed
u.hat <- unlist(fit$coef$random)

sig.sg.eps <- Fit$sigma™2
sig.sq.u <- sig.sq.eps*exp(2*unlist(fit$modelStruct))

7.2 SAS code
The following SAS code fits the above additive model with interaction.

libname paper >~ /test”;

data milanl;
infile “~/test/milanmort.dat” missover;
input daynum dayweek holiday temperature relhumid
totmort respmort s02 tsp;
sqgrtmort=sqrt(respmort);
if daynum ne .
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run;
data paper.milanl;

set milanl;

if 1 <= n_ <= 4*365;

if 1<= n_ <= 365 then do;
indicl984=1;
dayinseas= _n_;

end; else

if (365+1) <= n_ <= 365*2 then do;
indicl1985=1;
dayinseas=_n_-365;

end; else

if (365*2+1) <= n_ <
indicl986=1;
dayinseas= _n_-365*2;

end; else

if (365*3+1) <= n_ <= 365*4 then do;
indicl987=1;
dayinseas=_n_-365*3;

end;

365*3 then do;

array ind (4) indicl1984-indicl987;
do i=1 to 4;
if ind(i)=. then ind(i)=0;
end;
m=1;
run;

%include "default_knots.macro';
%default_knots(librefknots=paper,data=paper.milanl,
knotdata=knotsl,varknots=temperature);
%default_knots(librefknots=paper,data=paper.milanl,
knotdata=knots2,varknots=relhumid);
%default_knots(librefknots=paper,data=paper.milanl,
knotdata=knots3,varknots=dayinseas);
data kt1;
set paper.knotsl nobs=nkl;
call symput("nktl’,nkl);
run;
proc transpose data=paper.knotsl prefix=knotsl_ out=knotstl;
var knots;
run;
data kt2;
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set paper.knots2 nobs=nk2;
call symput(°nkt2”,nk2);
run;
proc transpose data=paper.knots2 prefix=knots2_out=knotst2;
var knots;
run;
data kt3;
set paper.knots3 nobs=nk3;
call symput(°nkt3”,nk3);
run;
proc transpose data=paper.knots3 prefix=knots3_ out=knotst3;
var knots;
run;
data paper.knotst;
merge knotstl knotst2 knotst3;
m=1;
run;

/***********************************l

/* creating the Z matrix */
/***********************************/

data dataw;

merge paper.milanl paper.knotst;

by m;

%let nkl=&nktl;

%let nk2=&nkt2;

%let nk3=&nkt3;

array Zla (&nkl) 71 1-71 &nk1;

array knotsla (&nkl) knotsl_1-knotsl &nkl;

do k=1 to &nkl;
Zla(k)=temperature-knotsla(k);
if Zla(k) < 0 then zZla(k)=0;

end;

array Z2a (&nk2) z2 1-7Z2 &nk2;

array knots2a (&nk2) knots2_1-knots2_&nk2;

do k=1 to &nk2;
Z2a(k)=relhumid-knots2a(k);
if Z2a(k) < 0 then z2a(k)=0;

end;

array Z3a (&nk3) Z3 1-Z3 &nk3;

array knots3a (&nk3) knots3_1-knots3 &nk3;

array interala (&nk3) interl_l-interl_&nk3;

array intera2a (&nk3) inter2_l1-inter2_&nk3;
array intera3a (&nk3) inter3_1-inter3_&nk3;
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array interada (&nk3) inter4_l-inter4_&nk3;

do k=1 to &nk3;
Z3a(k)=dayinseas-knots3a(k);
if Z3a(k) < 0 then z3a(k)=0;
*constructing interaction terms;
interala(k) = indicl1984*z3a(k);

intera2a(k) = indicl1985*z3a(k);

intera3a(k) = indicl1986*Z3a(k);

interada(k) = indicl1987*Z3a(k);
end;

drop knotsl 1-knotsl &nkl knots2_ 1-knots2_ &nk2
knots3_ 1-knots3 &nk3 _name_;
run;

ods output CovParms=paper.varcomp;

/************************************/

/* fitting the additive model */

/************************************/

proc mixed;
model sqgrtmort = holiday dayinseas
indicl1985 indicl1986 indicl1987
indicl985*dayinseas indicl986*dayinseas
indicl987*dayinseas
tsp temperature relhumid
/ solution outp=paper.yhat;
random Z3 1-73 &nk3 / type=toep(l) s;
random interl_l-interl &nk3 / type=toep(l) s;
random inter2_l-inter2_&nk3 / type=toep(l) s;
random inter3_l-inter3 &nk3 / type=toep(l) s;
random inter4_l-interd4_&nk3 / type=toep(l) s;
random Z1 1-71 &nkl / type=toep(l) s;
random Z2 1-72 &nk2 / type=toep(l) s;
run;

8 Varying Coefficient Models

Let = be a predictor variable that, for given values of a modifying predictor s, has a
linear relationship with the mean of the response variable y. If (z;,s;,yi), 1 <i < n,
are measurements on each then a varying coefficient model for these data is

yi = a(s;) + B(si)wi + €. (10)
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The model allows the intercept and slope coefficients to be arbitrary smooth func-
tions of s. The penalized linear spline version of this model is

K K
Yi = ap + o185 + Zug(si — Iik).}_ + {ﬂo + B1s; + Zug(sz — Iik)+} T+ &;.
k=1 k=1

where k1,...,Kkx are knots over the range of the s; values. A mixed model repre-
sentation y = X 8 + Zu + ¢ is obtained by setting

X =[1 s z; 8i%ili<i<n, Z = [(si — kp)+ i(8i — Ki)+]1<i<n,
1<k<K 1<k<K
u=[u§,... ,u?{,uf, . ,ug{]T and Cov(u) = diag{alexl,aglel}.

8.1 S-PLUS commands

Varying coefficient models will be demonstrated on the ethanol data setin S-PLUS.
Type help(ethanol) to find out more about these data. Extract the data as follows.

z <- ethanol$E
X <- ethanol$C
y <- ethanol$NOx

Set up the design matrices.

X <- cbind(rep(1,length(y)),z,Xx,x*z)

knots <- default.knots(z)
K <- length(knots)

Z <- outer(z,knots,"-"")
Z <- 7*(Z>0)

Z <- cbind(Z,x*72)

Fit the model using Ime().
re_block.inds <- list(1:K, (K+1):(2*K))

Z.block <- Tlist(Q
for (i in 1l:length(re.block.inds))
Z.block[[i]] <- as.-formula(paste(""Z[,c(",paste(
re.block.inds[[i]],collapse=","),")]-1"))

fit <- Ime(y -1+X,random=pdBlocked(Z.block,
pdClass=""pdldent'))

The estimated fixed and random coefficients and fitted values are:
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beta.hat <- Fit$coef$fixed
u.hat <- unlist(fit$coef$random)

The estimated standard deviation components are:

sig.eps.hat <- fit$sigma
sig.u.hat <- sig.eps.hat*exp(unlist(fit$modelStruct))

8.2 SAS code

The following SAS code fits the above varying coefficient model.

libname paper *~/test’;

data paper.ethanol;
infile 7 /test/ethanol.dat” missover;
input idnum nox c e;
if idnum ne .;

run;

/*********************************************l

/* creating knots for the smoothing variable */

/*********************************************l

%include "default knots.macro';
%default_knots(librefknots=paper,data=paper.ethanol,
knotdata=knots,varknots=e);

data dataw;
set paper.ethanol;
m=1;

run;

data kt;
set paper.knots nobs=nk;
call symput(’nkt’”,nk);

run;

proc transpose data=paper.knots prefix=knots out=knotst;
var knots;

run;

data paper.knotst;
set knotst;
m=1;

run;
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/***********************************l

/* creating the Z matrix */

/***********************************l

data dataw;
merge dataw paper.knotst;
by m;
%let nk=&nkt;
array Z (&nk) Z1-zZé&nk;
array XZ (&nk) XZ1-XZé&nk;
array knots (&nk) knotsl-knotsé&nk;
do k=1 to &nk;
Z(k)=e-knots(k);
if Z(k) < 0 then zZ(k)=0;
XZ(k)=c*2(k);
end;
drop knotsl-knots&nk _name_;
run;

ods output CovParms=paper.varcomp;

/************************************/

/* Fitting the additive model */

/************************************l

proc mixed;
model nox = e ¢ e*c / solution ; *outp=paper.yhat;
random Z1-7Z&nk / type=toep(l) s;
random XZ1-XZ&nk / type=toep(1l) s;

run;

9 User Specified Smoothing Parameters

In the mixed model representation of smoothers described in Sections 2-8 the amount
of smoothing is controlled by the variance components appearing in both Cov(u)
and Cov( e ). Mixed model software usually defaults to the REML or ML estimates of
these variance components. Thus, the amount of smoothing is chosen automatically.
However, there are situations where the analyst would like to specify the amount of
smoothing. A simple example is a sensitivity analysis for a simple semiparametric
model (Section 4) where the sensitivity of the estimate of the offset coefficient 3; to
different amounts of smoothing in the estimate of f requires investigation (e.g. Bow-
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man and Azzalini, 1997). Another is the feature significance methodology described
by Chaudhuri and Marron (1999), for example.

In SAS the problem of user specified smoothing parameters is relatively easy to
overcome using the PARMS option — see Section 9.3. However versions of S-PLUS’s
Ime() known to us at the time of writing do not support user specified variance
components and direct computation is required. We will show how this can be done
in the scatterplot smoothing situation. Extensions to other models follows relatively
straightforwardly.

Recall the setting and notation described in Section 2. For given values of ¢2 and

o2 application of ML and Best Prediction (BP) to obtain B and 1 is equivalent to
solving the penalized least squares problem

|

where a = 02/02 and, for a general vector v, ||v|]| = Vv'v (e.g. Robinson, 1991).
This is an example of penalized least squares (e.g. Green, 1987) since minimisation of
the least squares ||y — X 8 — Zul|? is subject to the penalty «||u||? being imposed on
the coefficients in u. The solution is easily shown to be

|

where C = [X Z] and D = diag(0,0,1,...,1). The fitted values are then

) ™)

] = argmin (| X8 - Zu|? + aul?) (11)

) ™)

] =(CTC+aD) !CTy

f,=c(C"C+aD)'CTy (12)

9.1 Demmler-Reinsch orthogonalization

Algorithm 1 allows for fast and stable calculation of (12).
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1)

@)

®)

4)

Algorithm 1

Inputs: y, C, D, «a.

Obtain the singular value decomposition of C:
C = Ucdiag(d.)V/.

Form the symmetric matrix

diag(1/dc)VIDV.diag(1/dc) and obtain

its singular value decomposition:

diag(1/d.) VI DV diag(1/d.) = Updiag(dp)U; .

Compute the matrix and vector

A=U.U, and b=ATy.

The fitted values are then

= b
fa=A|—+
“ <1+adD>

with corresponding degrees of freedom

dfe(a) =17 ($> .

1+ adp

Once the matrix A and vectors b and d, have been computed, the vector of
fits, for different values of «, reduces to a matrix multiplication. Therefore, /f\a and
dfst(a) can be computed cheaply for several a values. This is particularly useful
when solving for the a corresponding to a pre-specified number of degrees of free-

dom.

9.1.1 Justification of Algorithm 1.

Now

Since V¢ and Uy, are square matrices VI = V! and U] = Up! and so

diag(1/d.)VIDV diag(1/dc) = Updiag(d,)U} with UJU, = 1.

D = V diag(d.)Updiag(dp) Uy 'diag(dc) V{.
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Also, noting that U;'—UC =1,

C'C = V.diag(d.)U! Ucdiag(dc) VI

Thus,
C'C + aD = Vdiag(dc)Up{I + adiag(dp)} Uy *diag(dc)VE

and

f, = Ucdiag(dc)V{ [Vcdiag(de)Up{I + adiag(d,)} U, diag(dc) V]~
x{Ucdiag(dc)VI}y
= (U Up){diag(1 + adiag(dp))} (UcUp)Ty

b
Al
(1+adD>

where A =U U, and b= ATy.

An alternative approach to handling the ridge regressions that arise in penalized
spline models is through QR decomposition (e.g., Golub and Van Loan, 1983; Hastie,
1996). Algorithm A.2 provides another fitting procedure for (12).

Algorithm 2

Inputs: y, C, D, o.

(1) Form the augmented matrices

C y
o[ ] i 2-[3]

(2) Obtain the QR decomposition of Cg:
C,=QR
and set

Q1 = matrix consisting of first n rows of Q.

(3) The fitted values are then
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9.2 S-PLUS commands

We now give S-PLUS commands for Algorithm 1.
Read in the fossil data and assign scatterplot vectors to X and y:

fossil <- read.table("fossil.dat", header=T)
X <- fossil$age
y <- 100000*fossil$strontium.ratio

Set the value of the smoothing parameter (variance ratio) alpha:
alpha <- 2
Set up design matrices, for linear splines in this case.

n <- length(x)

X <= cbind(rep(1,n),x)
knots <- default.knots(x)
Z <- outer(x,knots,"-"")
Z <- 7*(Z>0)

Set up input matrices for Algorithm 1.

C.mat <- cbind(X,2)
D.mat <- diag(c(rep(0,ncol(X)),rep(1,ncol(2))))

Carry out Steps 1 and 2 of Algorithm 1.

svd.C <- svd(C.mat)

U.C <- svd.C$u

V.C <- svd.C$v

d.C <- svd.Csd

svd.D <- svd(t(t(t(V.C)%*%D.math*%V.C/d.C)/d.C))
d.D <- svd.D$d

Obtain A matrix and b vector.

A.mat <- U.C%*%svd.D$u
b.vec <- as.vector(t(A.mat)%*%y)

Obtain vector of fitted values.

f_hat <- A_mat%*%(b.vec/(1+alpha*d.D))

Note that if a scatterplot smooth corresponding to a different value of « is re-

quired then only the last command needs to be re-issued.

A meaningful measurement of the amount of smoothing being done is the degrees
of freedom (e.g. Hastie and Tibshirani, 1990) which we denote by dfs; . For pth degree
polynomial regression dfs; = p + 1. The value of dfg; for penalized splines is a

simple by-product of the above code:
df_fit <- sum(1/(1+alpha*d.D))
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If the last two lines of code are re-run for three different values of a:
a = 400,1.6,0.15

then the fits shown in Figure 3 result. These have dfg; values of 4,13 and 20 respec-
tively.

100000*(strontium ratio)
70720 70725 70730 70735 70740 70745 70750

95 100 105 110 115 120
age

9.3 SAScode

User specified smoothing parameter selection may be handled in SAS through the
PARMS option. This is illustrated in the following SAS code. Notice the use of the
PARMS option in body of the mixed model specification. The example is taken from
section 2.2. Here the variance components are specified whose ratios are equal to the
smoothing parameter values given in section 9.2. Note that if the degree of freedom is
specified, then SAS/ IML can be used to implement Algorithm 1 to obtain the estimate
of the smoothing parameter. The last equation in Algorithm 1 can be solved by using
the nonlinear procedure NLIN.

proc mixed noprofile; *noprofile stops the algorithm from profiling;
*out the variance of the error term;
model ratio = age / solution outp=paper.yhat;
random Z1-Z&nk / type=toep(l) s;
*specifying residual and smoothing term variance components;

Figure 3: Linear
penalized spline fit to
the fossil data with
differing degrees of
freedom values.

*parms (400) (1) / noiter; *noiter prevents Newton-Raphson iterative;

*algorithm from changing variance components;
*parms (3.2) (2) / noiter;
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parms (15) (100) / noiter;
run;

10 Variability Bars

A common embellishment to a scatterplot smooth such as the one shown in Figure 2
is to add variability bars, as shown in Figure 4.

Figure 4: Linear
penalized spline fit to
the fossil data with
variability bar.

100000*(strontium ratio)
70720 70725 70730 70735 70740 70745 70750

95 100 105 110 115 120
age

The dashed lines in Figure 4 correspond to plus and minus twice

— ~

stdev.(f — f) = 85\/diagonal{(CTC + aD)~1}

= 0. \/ diagonal {A diag (l-l-%) AT}
D

If a corresponds to the REML estimates of o, and o, then &, can just be taken
to be this REML estimate. For general « a reasonable estimate of o2 is

62 = RSS(@) /dfres()

where dfes(@) can be computed as

1 1
dfr =n-—217
fres(c) = <1—I—adD>+H1+adD

2
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10.1 S- PLUS commands

The following code computes lower and upper limits of variability bars:

RSS <- sum((y - f.hat)™2)

r.vec <- 1/(1+alpha*s.vec)

df.fit <- sum(r.vec)

df.res <- n - 2*df.fit + sum(r.vec™2)

sig.eps.hat <- sqrt(RSS/df.res)

st.dev.hat <- sig.eps.hat*sqrt(diag(A.-mat%*%(r.vec*t(A.mat))))
var.bar.upp <- f.hat + 2*st.dev.hat

var.bar.low <- f_hat - 2*st.dev.hat

10.2 SAS code

The following SAS code shows the use of the outp option to obtain the standard
error and the 95% confidence interval of the predicted value.

proc mixed;
model ratio = age / solution outp=paper.yhat; *option outp gives the;
*SE of the fitted for variability bar;
random Z1-7Z&nk / type=toep(l) s;
run;

11 Extension to Other Bases

Up until now the only basis that has been used for mixed model-based penalized
spline smoothing is the truncated line basis. For a predictor z this corresponds to
the basis functions

]-7 xr, (x_’il)-Fa""(l‘_’iK)-F' (13)

We have done this to keep the presentation as simple as possible. Truncated line bases work
reasonably well, but other bases have advantages such as smoothness and better han-
dling of peaks and dips. An obvious extension of (13) is to use truncated polynomials
of arbitrary degree p:

1, ... ,xp,{(x - K’l)-l-}p" . ,{(.’L‘ - KK)-I-}p'

Truncated polynomial bases are often scorned because of their numerical insta-
bility in regression settings. We have not found this to be a big problem in mixed
model-based smoothing. One reason is that mixed model software transforms the
basis functions internally to one that is more numerically stable (e.g. Pinheiro and
Bates, 2000, Chapter 2). Algorithm 1 in Section 9 shows this phenomenon explicitly.
The input matrix C corresponds to the truncated line basis, but it gets transformed
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to the design matrix A corresponding to the more stable Demmler-Reinsch basis. A
second reason is that for oo > 0 the least squares problem gets replaced by a ridge
regression problem which is usually more numerically stable (e.g. Draper and Smith,
1998).

An alternative to truncated polynomials with certain attractions are radial basis
functions.

Penalised spline smoothers with radial bases, or radial smoothers, and their re-
lationship to smoothing/thin plate splines and kriging are summarised in French,
Kammann and Wand (2001). For z; € R a useful class of low-rank radial smoothers
is

y=XpB +Zwu+e, Cov(u)=a2(Q/) ()T

u

where X = [1 T ... .T;n_l]lgign/
Zy = [J&i — kp*" icicn and Qg = [|kg — rp P71
Lerik 1<k k'<K

Using the transformation Z = Z, Q /2 the model can be rewritten as

(14)

2
y=XB+Zu+ ¢, Cov[';] = [U“I 0 ]

0 o’
This form allows fitting through standard mixed model software.

Note that
C(r) = (1) frft

is a so-called generalized covariance function and could be replaced by any of the proper
covariance functions used in kriging (e.g. Cressie 1993; O’Connell & Wolfinger 1997;
Stein 1999).

11.1 S-PLUS code

Cubic radial basis functions can be used in Ime() by setting up the Z matrix as
follows:

svd.Omega <- svd(abs(outer(knots,knots,-""))"3)
matrix.sqrt.Omega <- t(svd.Omega$vi%*%h(t(svd.Omega$u)*sqrt(svd.Omega$d)))
Z <- t(solve(matrix.sqrt.Omega,t(abs(outer(x,knots,"-"")"3))))

11.2 SAS code

The following SAS code shows the use of SAS/ IML to apply to the extension of other
bases.
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libname paper *~/test’;
data paper.fossil;
infile "~ /test/fossil.dat” missover;
input age ratio;
ratio=ratio*100000;
if age ne _;
run;

/*********************************/

/* calling macro to create knots */

/*********************************/

%include "default knots.macro';
%default_knots(librefknots=paper,data=paper.fossil,
knotdata=knots,varknots=age);
data dataw;
set paper.fossil;
m=1;
run;

data ktl1;
set paper.knots nobs=nk;
call symput(’nkt’”,nk);
m=1;

run;

proc transpose data=paper.knots prefix=knots out=knotst;
var knots;

run;

data paper.knotst;
set knotst;
m=1;

run;

/***********************************/

/* creating the Z(k) matrix */

/***********************************/

data zk;
merge dataw paper.knotst;
by m;
%let nk=&nkt;
array Z (&nk) Z1-7&nk;
array knots (&nk) knotsl-knots&nk;
do k=1 to &nk;
Z(k)=(abs(age-knots(k)))**3;
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end;
keep Z1-Z&nk;
run;

/***********************************/

/* creating the 0(k) matrix */

/***********************************/

data Ok;
merge ktl paper.knotst;
by m;
%let nk=&nkt;
array 0 (&nk) 01-0&nk;
array knotsa (&nk) knotsl-knots&nk;
do k=1 to &nk;
0(k)=(abs(knots-knotsa(k)))**3;
end;
keep 01-0&nk;
run;

/***********************************/

/* creating the Z matrix */
/***********************************/

proc iml;
use Zk;
read all var num_ into Zk;
use Ok;
read all var num_ into Ok;
call svd(u,d,v,0k);
sqrtOk=u*sqrt(diag(d))*v-;
Z=Zk*inv(sqrtok);
create Z from Z[colname={coll col2 col3 col4 col5 col6 col7
col8 col9 coll10 colll coll2
coll3 col14 coll5 coll6 coll7 coll8
col19 col20 col21}];
append from Z;
quit;
run;
data dataw2;
merge dataw Z;

run;

ods output CovParms=paper.varcomp;
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/********************************/

/* Fitting the mixed model */

/********************************/

proc mixed;
model ratio = age / solution outp=paper.yhat;
random COL1-COL&nk / type=toep(l) s;

run;

/********************************/

/* plotting the smoothed curve */

/********************************/

proc sort;

by age;
run;
symboll v=circle c=black i
symbol2 v=point c=blue i
goptions device=xcolor;
proc gplot;

plot ratio*age pred*age / overlay;
run;

12 Multivariate Smoothing

For x; € R4, 1 < i < n,and k; € RY, 1 < k < K, then higher dimension
approximate smoothing splines (also called thin plate splines) with smoothness pa-
rameter m can be obtained by taking X to have columns spanning the space of all
d-dimensional polynomials in the components of x; with degree less than m and

Z = [O(Ixi — & kl)]i<i<alC(ll 81 — K wl)] 7Y

1<k<K 1<k k' <K
where ord
_ ||r|| m— d odd
Ctr) = { le[2™1og ||| d even

(e.g. Nychka, 2000).

Alternatively, C(-) could be a covariance function such as those used in kriging
(e.g. Cressie 1993; O’Connell & Wolfinger 1997; Stein 1999).

The choice of the bivariate knots &, 1 < k£ < K, is somewhat more challenging.
We have had good experience with knots chosen via an efficient space filling algo-
rithm (e.g. Johnson, Moore and Ylvisaker, 1990; Nychka and Saltzman, 1998). The
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S-PLUS module FUNFITS (Nychka, Haaland, O’Connell and Ellner, 1998) supports
space filling algorithms.

Figure 5 shows the result of applying such an algorithm to the (jittered) locations
in the example used by Kammann and Wand (2003) for d = 2.
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12.1 S- PLUS commands

We will now illustrate mixed model-based bivariate smoothing using thin plate splines
with m = 2 using Ime() in S-PLUS.
First, define the function tps.cov() corresponding to the thin plate spline gen-
eralised covariance function
C(r) = r?log|r|-

The function is a bit more complicated so that zero arguments and matrix and vector
arguments are handled.

tps.cov <- function(r)
{
r <- as.matrix(r)
num.row <- nrow(r)
num.col <- ncol(r)
r <- as.vector(r)
nzi <- (1:length(r))[r!=0]
ans <- rep(0, length(r))
ans[nzi] <- r[nzi] " 2*log(abs(r[nzi]))
if (num.col>1) ans <- matrix(ans,num.row,num.col)
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return(ans)

}
Set the point cloud variables to be smoothed.

scallop <- read.table(scallop.dat',6header=T)
x1 <- scallop$lon

x2 <- scallop$lat

y <- log(scallop$tcatch + 1)

Read in the knots from a file. These were created using a space-filling algorithm.

knots <- as.matrix(read.table(*scallop.knots', header=T))
K <- nrow(knots)

Set up the design matrices corresponding to a plane for X and thin plate spline basis
functions for Z.

X <- cbind(rep(1, length(y)),x1,x2)
dist_.mat <- matrix(0,K,K)

dist.mat[lower.tri(dist.mat)] <- dist(knots)
dist.mat <- dist.mat + t(dist.mat)

Omega <- tps.cov(dist.mat)

diffs.1 <- outer(x1,knots[,1],"-"")
diffs.2 <- outer(x2,knots[,2],"-"")
dists <- sgrt(diffs.1 2+diffs.272)

svd.Omega <- svd(Omega)
sqrt.Omega <- t(svd.Omega$v %*% (t(svd.Omega$u) * sqgrt(svd.Omega$d)))
Z <- t(solve(sgrt.Omega,t(tps.cov(dists))))

Obtain the bivariate smooth using Ime () and extract the coefficients.

fit <- Ime(y -1+X,random=pdldent(T-1+2))

beta.hat <- fit$coef$fixed
u.hat <- unlist(fit$coef$random)

12.2 SAS code

The following SAS code fits bivariate smoothing for the above model.

libname paper *~/test’;
data paper.scallop;
infile "~ /test/scallop.dat” missover;
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input strata sample lat long tcatch prerec recruits;
y=log(tcatch+1);

m=1;

if strata ne _;

keep y lat long m;

run;
/*******************************************************/
/*Read in the knots data -- as used in the Splus module*/
Y Saiaiaiaiaiaiaiaisiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaioiaiaiaiaiaiaiaiaiaiaiatalatate /
data knots;

infile "~ /test/scallop.knots” missover;
input x1 x2;
if x1 ne .;
run;
data knots;
set knots nobs=nk;
call symput(’nkt’”,nk);
run;
%let numknots=&nkt;
proc transpose out=tl;
var x1 X2;

run;
/********************************************************/
/*Compute the matrix Omega */
Y Saiaiaiaiaiaiaiaiaiaiaioiaiaiaiaioiaiaioialiaiaiaialiaiaiaiaiaiaiaialiaiaiaioiaiaiaiatolaialaiafatialale */
data dl1 (keep=i j xtl) d2 (keep=xt2);

set tl;

array da (&numknots) coll-col&numknots;
do i=1 to &numknots-1;
do j=i+l1l to &numknots;
if name ="x1" then do;
xtl=(da(g)-da(i))**2;
output di;
end; else
if name =7x2” then do;
xt2=(da()-da(i))**2;

output d2;
end;
end;
end;
run;
data el;

merge dl d2;
dist=sqrt(xtl+xt2);
omegaelm=dist*dist*log(dist);
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keep i jJ omegaelm;
run;

/*Construct the Zk matrix */
/********************************************************/
data tla;
set tl;
if _name ="x17;
m=1;
drop _name_;
run;
data diffsl;
merge paper.scallop (keep=long m) tla;
by m;
array cola (&numknots) coll-col&numknots;
array zla (&numknots) zl 1-zl1l &numknots;
do i=1 to &numknots;
zla(i)=long-cola(i);
end;
keep z1 1-z1 &numknots;
run;
data t2a;
set tl;
if name ="x27;
m=1;
drop _name_;
run;
data diffs2;
merge paper.scallop (keep=lat m) t2a;
by m;
array cola (&numknots) coll-col&numknots;
array z2a (&numknots) z2 1-z2 &numknots;
do i=1 to &numknots;
z2a(i)=lat-cola(i);
end;
keep z2 1-z2 &numknots;
run;
data dists;
merge diffsl diffs2;
array zla (&numknots) zl 1-z1 &numknots;
array z2a (&numknots) z2 1-z2 &numknots;
array dista (&numknots) distl-dist&numknots;
do i=1 to &numknots;
templ=sqrt(zla(i)**2+z2a(i)**2);
if templ=0 then dista(i)=0; else

42



dista(i)=(Ctempl**2)*log(templ);

end;

keep distl-dist&numknots;
run;
/**********************************************************/
/*Construct the Z matrix from the Omega and Zk matrix */
/**********************************************************/
proc iml;

use el;

read all var num_ into el;
omega=j (&numknots, &numknots,0);
do i=1 to (&numknots*(&numknots-1))/2;
omegalel[i,1],el[i,2]]=el[i,3];
omegalell[i,2],el[i,1]]=el[i,3];
end;
call svd(u,d,v,omega);
sqgrtomega=u*sqrt(diag(d))*v*;
use dists;
read all var num_ into Zk;
Z=zZk*inv(sqrtomega) ;
create Z from Z[colname={coll col2 col3 col4 col5 col6 col7
col8 col9 coll1l0 colll col12
col13 col14 coll5 coll6 coll7 coll8
coll1l9 col20 col21 col22 col23 col24 col25
col26 col27 col28 col29 col30 col31l col32
col33 col34 col35 col36 col37 col38 col39
col40 col4l col42 col43 col44 col45 col46
col47 col48}];
append from Z;
quit;
data dataw2;
merge paper.scallop Z;
run;
ods output CovParms=paper.varcomp;

/********************************/

/* Fitting the mixed model */
/********************************/
proc mixed;
model y = long lat / solution outp=paper.yhat;
random coll-col&numknots / type=toep(l) s;
run;
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13 Generalized models

The extension to generalized responses, such as binary and count variables, entails
generalized mixed models. The most common is the generalized linear mixed model
(GLMM) corresponding to the one-parameter exponential family and Gaussian ran-
dom effects, for which

F(ylu) = exp{y" (X8 + Zu) — 1T6(X 8 + Zu) + 1T ¢(y)}
is the density of y given u and
u~ N(0,G).
The logistic-normal mixed model corresponds to
b(z) =log(l+€%), c(z)=0
while the Poisson-normal mixed model corresponds to
b(z) =€%, c(x)=—log(z!).

A very common extension is to allow for quasi-likelihood functions (e.g. Breslow
and Clayton, 1993) McCulloch and Searle (2000) provides an excellent overview of
GLMMs.

Fitting generalized linear mixed models is much more computationally challeng-
ing than the linear case (e.g. McCulloch and Searle, Chapter 10). The only software
known to us for fitting GLMMSs but with the provision for general design matrices as
needed for smoothing is the SAS macro gl immiXx; although this relies on Laplace ap-
proximation of integrals (e.g. Wolfinger and O’Connell, 1993). We have recently
learned from John Staudenmayer (University of Massachusetts) that the R version of
Ime () can be used to emulate gl immiXx because it allows for weights. Section 13.2
illustrates this for smoothing the scatterplot shown in Figure 6.

For a user specified degrees of freedom smoothing reduces to iteratively reweighted
least squares ridge regression.

13.1 S- PLUS commands

Read in data and assign regression vectors and knots:

trade.union <- read.table("tradeunion.dat",6header=T)

X <- trade.union$wage
y <- trade.union$union.member

knots <- default.knots(x)
n <- length(y)
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Set the smoothing parameter:
alpha <- 1000
Set the design matrices for quadratic penalized splines:

X <= cbind(rep(1,n),x,x"2)

Z <- outer(x,knots,"-"")
Z <- 7*(Z>0)
Z <- 2772

C.mat <- cbind(X,2)
D.mat <- diag(c(rep(0,ncol(X)),rep(1,ncol(2))))

Find an initial estimate based on an ordinary ridge regression fit using Algorithm 1:

svd.C <- svd(C.mat)

U.C <- svd.C$u

V.C <- svd.C$v

d.C <- svd.Csd

svd.D <- svd(t(t(t(V-C)%*%D._mat%*%V.C/d.C)/d.C))
d.D <- svd.D$d

A.mat <- U.C%*%svd.D$u

b.vec <- as.vector(t(A.mat)%*%y)

eta.hat <- A_mat%*%(b.vec/(1+alpha*d.D))

Now do iteratively reweighted penalized fits

desired.accuracy <- 0.001

rel _.error <- desired.accuracy+1
max.iter <- 100

iter.num <- O
while((rel _error>desired.accuracy)&(iter_num<max.iter))

{
eta.hat.old <- eta.hat

wt.vec <- as.vector(exp(eta.hat)/((1l+exp(eta.hat))"2))

Cw.mat <- C.mat*sqrt(wt.vec)
y.adj <- eta.hat + (y-f.hat)/wt.vec
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svd.C <- svd(Cw.mat)
U.C <- svd.C$u
V.C <- svd.C$v
d.C <- svd.C$%d

svd.D <- svd(t(t(t(V-C)%*%D._.mat%*%V.C/d.C)/d.C))
d.D <- svd.D$d

A_mat <- U.C%*%svd.D$u/sqrt(wt.vec)
b.vec <- as.vector(t(A.mat)%*%(wt.vec*y.adj))

eta.hat <- A_mat%*%(b.vec/(1+alpha*d.D))
rel _error <- sum(abs(eta.hat-eta.hat.old))/sum(abs(eta.hat.old))

iter.num <- iter.num + 1
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13.2 SAS code

The following SAS code fits the trade union data using the SAS macro gl immix

libname paper *~/test’;
data paper.tradeunion;
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infile 7 /test/tradeunion.dat” missover;

input yearedu south female yearsexpe member wage age
race occupation sector
married;

m=1;

wage2=wage**2;

if member ne .;

keep wage wage2 member m;

run;

/*********************************************l

/* creating knots for the smoothing variable */

/*********************************************l

options mprint;

%include "‘default_knots.macro";
%default_knots(librefknots=paper,data=paper.tradeunion,
knotdata=knots,varknots=wage, numknots=35);

data dataw;
set paper.tradeunion;
m=1;

run;

data kt;
set paper.knots nobs=nk;
call symput(’nkt’”,nk);

run;

proc transpose data=paper.knots prefix=knots out=knotst;
var knots;

run;

data paper.knotst;
set knotst;
m=1;

run;

/***********************************/

/* creating the Z matrix */

/***********************************l

data dataw;
merge dataw paper.knotst;
by m;
%let nk=&nkt;
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array Z (&nk) Z1-Zé&nk;
array knots (&nk) knotsl-knotsé&nk;
do k=1 to &nk;
Z(k)=wage-knots(k);
if Z(k) < 0 then zZ(k)=0;
Z(k)=Z(k)**2;

end;

drop knotsl-knots&nk _name_;
run;
Y faiaiaiaiaiaiaiaiaiaiaioiaiaiaioialiaiaioioiaiaiaioaiaiaioiatialaiaialiaiaiotaiaialatote /
/*Fit generalized linear mixed model */
Y Saiaiaiaiaiaiaioiaiaiaioiaiaiaioiaiaiaiaioaiaiaiaiaiaiaioiaialaiaiaialaiotaiaialatote /

%include “glimmix.sas”;
%gl immix(data=dataw, procopt=method=reml,
stmts=%str(
model member=wage wage2 / solution;
random Z1 Z2 Z3 Z4 75 Z6 Z7 Z8 79 Z10
Z11 712 713 714 715 716 Z17 Z18 Z19 Z20
721 722 723 724 725 726 727 728 729 Z30
Z31 732 733 734 Z35
/ type=toep(l) s;),
error=binomial,
link=logit,
out=Fitted);

proc print data=fitted;
var mu;

title ’Fitted Probabilities”;
run;

14 Plotting Issues

In the mixed model approach to smoothing the estimate may be plotted over a grid
(or mesh in two dimensions) of arbitrarily fine resolution once the effects estimates
B and u have been computed. In this section we provide some of the computational
details.

14.1 Univariate plots

Suppose that the fossil data are smoothed using the truncated quadratic basis
1a r, x2’ {(37 - K1)+}2a RREX) {(.’17 - K/K)‘l-}z'
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Let g = [g1,---,9m]" denote a vector of grid points over which a plot of the fit is
desired. Then set up the “grid-wise” design matrices

Xg=[lgeg;l, Zg= [{(gilzk’iklz-i-}z]léléM-

~

The grid of f(g¢) values, 1 < £ < M, is then
fo =XgB +Z4u.
The following S-PLUS code illustrates this for the fossil data:

x <- fossil$age

y <- fossil$strontium.ratio
knots <- default.knots(x)

n <- length(x)

X <- cbind(rep(1,n),x,x"2)

Z <- outer(x,knots,”"-")

Z <- Z*(Z>0)

Z <- 772

fit <- Ime(y -1+X, random=pdldent(T-1+2))
beta.hat <- fit$coef$fixed

u.hat <- unlist(fit$coef$random)

num.grid <- 401

x.grid <- seq(min(x),max(x), length=num.grid)
X.grid <- cbind(rep(l,num.grid),x.grid,x.grid™2)
Z.grid <- outer(x.grid,knots,"-")

Z.grid <- Z.grid*(Z.grid>0)

Z.grid <- Z.grid™2

fhat.grid <- X.grid%*%beta.hat + Z.grid%*%u.hat

plot(x,y,pch=1)
lines(x.grid,fhat.grid)

14.2 Bivariate plots

Bivariate plotting is much more delicate. When using S-PLUS our preferred ap-
proach is through image plots, but it is recommended that the pixels corresponding
to locations outside the range of the data be switched off. The following S-PLUS
code illustrates this for the scallop data.

Obtain the surface estimate over a bivariate pixel mesh.
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x1l.grid <- seq(min(x1l),max(x1l), length=64)
x2.grid <- seq(min(x2),max(x2), length=64)
mesh <- expand.grid(xl.grid,x2.grid)

x1l.mesh <- mesh[,1] ; x2.mesh <- mesh[,2]

diffs.1 <- outer(x1l.mesh,knots[,1],"-"")
diffs.2 <- outer(x2.mesh,knots[,2],"-")

dists <- sgrt(diffs.172+diffs.272)

X.mesh <- as.matrix(cbind(rep(l,nrow(mesh)),mesh))
Z.mesh <- t(solve(sqgrt.Omega,t(tps.cov(dists))))

f.hat <- X.mesh%*%beta.hat + Z.mesh%*%u.hat

The remaining commands should produce an image plot of the surface estimate and
show you the best places to fish for scallops! Note that only those pixels where there
are data are switched on. Using the controls in the motif window, pick a colour
scheme appropriate for image plots.

on.pixels <- scan("'scallop.pixels™)
f.hat[on.pixels==0] <- NA

f_hat.mat <- matrix(f.hat,64,64)

x1l.width <- x1._grid[2] - x1.grid[1]
x1.frame <- c(x1l.grid-x1.width/2,x1.grid[64]+x1.width/2)
x2.width <- x2_grid[2] - x2.grid[1]
x2.Frame <- c(x2.grid-x2.width/2,x2.grid[64]+x2.width/2)

par(mfrow=c(1,1))
image(x1.frame,x2.frame,f.hat_mat,bty="1",
xlab=""degrees longitude",ylab=""degrees latitude™)

15 Closing remarks

The ability to fit smoothing-based models with mixed model software is an exciting
development and can only lead to more widespread use and less time spent coding.
For example, the analyses in Kammann and Wand (2002) were done entirely using
Ime () despite the complexity of the modelling. This paper has focussed chiefly on
the case where normality of the response is reasonably assumed. The extension to
generalized linear mixed models is the focus of ongoing research.
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Appendix: Obtaining and running the code

The code in this paper is stored in ordinary text files that may be downloaded from
the Internet. Several auxiliary files (e.g. those containing data sets) are also posted.
The name of each code file corresponds to the section number. For example, the S-
PLUS code in Section 6.1 is stored in the file sec6.1.S and the SAS code in Section
6.2 is stored in the file sec6.2.sas. In most cases, successful running of the S-
PLUS code will require other files to be available to the current session. For example,
to sec7.1.S requires the data file mi lanmort.dat to be available to the current
session. Many of the S-PLUS scripts use the function default.knots() stored in
default._knots.sf. The current location of the files is

http://www_maths_unsw.edu.au/ ~ wand/papers._html.
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