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Abstract 

This paper employs a local information, nearest neighbour forecasting methodology to 
test for evidence of nonlinearity in financial time series. Evidence from well-known data 
generating process are provided and compared with returns from the Athens stock 
exchange given the in-sample evidence of nonlinear dynamics that has appeared in the 
literature. Nearest neighbour forecasts fail to produce more accurate forecasts from a 
simple AR model. This does not substantiate the presence of in-sample nonlinearity in 
the series. 
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1. INTRODUCTION 

The growing interest in the application of nonlinear dynamics to a variety of physical and 

social science issues has been a significant theme in research over the last few years (see 

Granger 2008 for instance).  Two additions to standard testing and estimation are crucial 

in the study of dynamic nonlinear models for financial time series.   On the one hand, in-

sample testing and, on the other, out-of-sample forecasting are fundamental in evaluating 

the reliability of nonlinear modelling results.  The latter is especially true for nonlinear 

models where the threat of overfitiing is present.  Since forecasting is an interdisciplinary 

subject, researchers regularly look to developments in other research areas.  Progress in 

the physical sciences has been made in the area of using forecasts as a means of 

identifying non-linear deterministic components in a time series (Casdagli 1989, 1992).  

This involves evaluating time series predictability by using concepts, such as local nearest 

neighbours methods, that have demonstrated success in modelling non-linear 

deterministic data.  In this paper we employ the forecasting test, which is an attempt to 

exploit residual dependence to improve forecasts of the level of the process. Success in 

forecasting demonstrates that residual dependence can be exploited to improve level 

specification.   

The nonparametric, local information, forecasting technique, under consideration can be 

used to test for evidence of non-linear deterministic components in the underlying data 

generating process.  One important reason to focus on this technique is that it has been 

demonstrated to do very well at forecasting non-linear deterministic systems.  Casdagli 

(1992) reports that nearest neighbour techniques are able to forecast moderately high-

dimensional deterministic non-linear functions extremely well out-of-sample.  Thus, the 

results of nearest neighbour forecasting can be interpreted as a diagnostic for significant 

nonlinearity in financial data.  A second reason for focusing on nearest-neighbour 

methods is their relation to the correlation-integral based tests for dependence.  For 



 4

example, the BDS test statistic (Brock et al 1996) is  
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where Cm(ε) denotes the fraction of m-histories in the series, which are within a distance 

of ε each other. The nearest-neighbour algorithm is essentially a method of systematically 

shifting through a data set looking for common/close histories.  If the correlation-integral 

based test is, in fact, identifying important structural features of the data, then the 

nearest-neighbour algorithm ought to forecast the data very well. 

Nearest-neighbour techniques have received attention in the literature lately.  

Applications using financial time series  include LeBaron (1992), Mizrach (1992), Agnon 

et al (1999), Fernandez-Rodriguez and Sosvilla-Rivero (1998) while Jaditz and Sayers 

(1998), Jaditz et al (1998)and Golan and Perloff (2004) employ macroeconomic variables. 

The rest of the paper is organised as follows. Section 2 provides the methodological 

framework.  Two applications from a known generating process are presented in Section 

3.  Section 4 discusses the results.  Last, section 5 concludes. 

 

2. METHODOLOGY 

 

In this application we follow the forecasting algorithm proposed by Casdagli (1992) and 

Jaditz and Riddick (2000). We start with data of the form {yt, xt}t=1,T , where yt is a vector  

and xt is a vector of conditioning information, where the elements of xt are lags of the 

variable yt.   The time series are divided into two separate parts: a fitting set F and a 

prediction set P.  We follow the usual practice of withholding the later observations that 

form the prediction set: 

P = {(yt, xt): Nf < t ≤ T)} t = Nf+1,…,T 
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for some Nf < T. 

In a univariate framework, we choose an embedding dimension m and construct 

a set of ordered pairs Tmt
m
tt xx ,11 )},{( +=−  , where xt is the last available vector.  The 

distance between m
tx 1−  and m

sx 1−  for all s ∈ F is computed, for each xt in the prediction 

set.  The distances are ordered, we select the k nearest neighbours and fit a model of the 

following form 

mksmk
m
skms xx ,,,1,,0 εαα ++= −  

 

where the parameters α0,m,k and αk,m are estimated by ordinary least squares. The 

estimated parameters α0,m,k and αk,m are used to calculate the prediction 
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m
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The prediction is then used to calculate the prediction error kmttt exx ,,ˆ =− . These steps 

and the calculations are repeated for all the x’s in the prediction set.  

To calculate the distances, at least three alternatives have been suggested. 

Casdagli (1992) suggests using the sup norm to calculate distances, 
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Others (Cleveland and Devlin, 1988) advocate the Euclidean norm 
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or one could maximise the correlation function  
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i.e. look for the highest serial correlation (Fernandez-Rodriguez and Sosvilla-Rivero 

1998). In this case we have used the sup norm because it is less computationally 

expensive. 

 

3. KNOWN DATA GENERATING PROCESSES 

 

In this part, we follow Jaditz and Riddick (2000), who demonstrated the forecasting test 

in two known generating processes.  Numerous numerical experiments by Casdagli 

(1992) showed that, for large data sets from non-linear deterministic data gerenerators, 

plots of the normalised RMSFE (Root Mean Square Forecast Error) achieve a very 

distinctive shape.  The typical plot achieves a global minimum for a relatively small 

number of nearest-neighbours and is more or less continuously upward sloping as more 

nearest-neighbours are added, out to the limit at which we are essentially replicating the 

global linear predictor.  As Casdagli (1992) concludes “the use of graphical techniques should 

not be underestimated”. This distinctive shape will be demonstrated in the following example 

where this method is applied to data generated by the Henon system. 

The Henon (1976) system is an example of a non-linear deterministic dynamical system. 

This system evolves perfectly deterministically from a given initial condition, in a pattern 

that appears highly erratic to the eye. It is given by the following pair of equations: 

2
1 1
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The time paths of this system evolve on a fractal attractor that is known to have a 

dimension of 1.3.  At embedding dimension equal to 3, the Henon map is perfectly 

forecastable.   
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We start with generating two data sets consisting of 100 observations.  The first 

data set is generated by the Henon recursion using equation (2) and the second data set is 

comprised of output from the GAUSS standard normal pseudorandom number 

generator.  We divide the two data sets into a fitting set with 60 observations and a fixed-

window prediction set with 40 observations.  The sup norm is used to calculate distances 

as suggested by Casdagli (1989).  For each of the sample data sets, we estimate a naïve 

AR(1) model.   

Figure 1 presents the plot the RMSFE as a function of the number of nearest neighbours 

included on the right-hand side of the regression equation.  This picture exhibits two 

features that are highly characteristic of significant non-linearity in the underlying data 

generating process.  First, the minimum point of the RMSFE plot occurs for a very small 

number of nearest neighbours. The best fitting regression uses only 13 nearest 

neighbours and has an RMSFE of 0.2943. Second, the forecasting performance 

deteriorates rapidly as more and more nearest neighbours are added to the regression. 

With this particular data set generated from a Henon system, the worst forecast are from 

the AR(1) model estimated using all 60 observations in the fitting set, which has an 

RMSFE of 1.026. 
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Figure 1: Henon Map, Number of Nearest Neighbours vs. RMSFE 

 

Given that the nearest-neighbour regression with 13 nearest neighbours (nn) 

produced the lowest RMSFE, we are going to use that to generate forecasts 

employing the observations that belong to the prediction set.  Figure 2 is a plot 

of the actual versus the predicted values for the nearest-neighbour regression 

with 12 nn.  This confirms that the best nearest-neighbour regression forecasts 

much of the variation of the prediction set. 
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Figure 2: Henon Map: actual vs. fitted values (dotted line is the predicted one) 

 

The same methodology is followed in the case of the second data set produced 

from the random data generator.  Figure 3 presents the RMSFE plot against the 

number of nn for the Gaussian pseudorandom numbers data set. Although there 

is a sharp peak in the RMSFE plot for a very small number of nearest-

neighbours, one could observe that the plot is essentially flat. Indeed, if the true 

model is linear, one could argue that the RMSFE should be downward sloping, 

with forecast accuracy improving at rate n , where n is the number of nearest-

neighbours used to estimate the regressions.  The minimum of the RMSFE plot 

occurs at 18 nn, with RMSFE of 1.0449  
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Figure 3: Pseudorandom numbers: number of nearest neighbours vs. RMSFE 

 

 

As noted earlier, the lowest RMSFE nn regression (n=18) was used to forecast 

the prediction set. This is presented in Figure 4.  The plot of actual versus 

predicted values confirms the lack of fit and underlines the fact that the nn are 

unable to generate superior forecasts. 
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Figure 4: Pseudorandom numbers, actual versus fitted values (the dotted line is 

the predicted one) 

 

 

Additionally, we compared the forecasting ability of (unweighted) simple OLS nn 

AR(1) regression with the local weighting schemes suggested by Cleveland & 

Devlin (1988) that place greater weights on nearby observations in estimating the 

local linear regression.  The tricube function is used to calculate the weights for 

the weighted least-squares parameter vector as proposed by Cleveland & Devlin 

(1988).  The advantage of the latter (weight the “closest” observations) does not 

come without cost (e.g. speed).  Figure 5 plots the RMSFE curves for both the 

weighted and the simple OLS nn AR(1) regression, estimated on the Gaussian 

pseudorandom number data. For 40 of the 60 regressions, the unweighted nn 

routine has a lower RMSFE than the weighted nn regression. Summing up, we 

find that it is more typically the case that the unweighted algorithm outperforms 
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the weighted regression. 

 

Figure 5: Random Numbers: weighted vs. unweighted regression (dotted line) 

 

 

All the above examples, illustrate two points. First, it is possible that the local-

information forecasting algorithm can yield large improvements in forecast 

accuracy.  Second, these examples illustrate that the minimum point of the 

RMSFE plot occurs for a small number of nn.  In all cases, prediction 

performance degrades smoothly as more and more nn are added to the local 

regression.  

To conclude, these results illustrate how the nearest-neighbours methodology 

may be useful in identifying whether evidence of deterministic non-linear 

dynamics is present in the level equation of an unknown data generator.  The 

RMSFE plots could be a very useful informal diagnostic.  The important feature 
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of these plots is that, when nonlinearities are present, the plots appear to have a 

distinctive upward slope.  If the data generator is deterministic, the slope may be 

quite striking.  For stochastic data generators, the slope is typically more shallow. 

Of course, “real data” will fall between these two extremes. If the data generator 

is “linear”, then we expect to see fairly flat RMSFE plots similar to the one in 

Figure 3.  On the other hand, if the data generator is “non-linear”, we would 

expect to see upward-sloping plots with a well-defined minimum.  With enough 

observations, we may be able to reject the null of equal forecast accuracy between 

a global information linear forecast and the best “local” information non-linear 

forecast.  Casdagli (1992), Jaditz & Sayers (1998) and Jaditz & Riddick (2000) 

provide numerous examples calculated on deterministic data generators which 

further illustrate this point.  
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4. EVIDENCE FROM FINANCIAL TIME SERIES 

 

Significant in-sample non-linearities were uncovered in the General Index of the 

Athens Stock Exchange (ASE) in Panagiotidis (2010), in which a battery of iid 

tests were employed including the Brock et al (1996) (BDS), McLeod and Li 

(1983), Engle (1982), Tsay (1986) tests and the Bicovariance Test (Hinich and 

Patterson 1995).  Chappell and Panagiotidis (2005) further investigate the 

nonlinearities using the correlation dimension.  Given the significant 

nonlinearities found in these studies, we would expect our robust methodology 

to be able to offer a significant forecast improvement.  This paper is going one 

step further as it is one of the first papers to employ the forecasting test using 

financial time series that are known to be nonlinear.  

  The data are daily returns of the General Index of the Athens Stock Exchange, 

calculated from daily closing prices, and the sample period is from 1st June 2000 

to 31st December 2002.  Unit roots confirm that the returns are stationary 

(Panagiotidis 2010). 

Figure 6 presents the results.  The minimum RMSFE occurs at 269 nearest  

neighbors, where RMSFE =  0.9690.  Using the nn that minimised the RMSFE 

we produced forecasts for the last 50 observations with fixed window fitting set 

(the same was used in the known data generators in the previous section).  Three 

characteristics emerge from our analysis.  First, the RMSFE plot is flat and not 

upward sloping, implying that non-linearities may not be present in the mean 

equation.  Secondly, the minimum point of the RMSFE plot does not occur for a 

very small number of nn.  Thirdly, not surprisingly, the forecasting exercise is not 

successful.  The nn forecasts fail to capture the variability of the series (see Figure 

7). 
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Lastly, in order to confirm the results of the previous section we present the 

weighted vs. the unweighted regression.  The weighted regression does not 

improve the forecasting ability on the one hand and on the other increases the 

computational time considerably (see Table 1 and Figure 8). 

 

Figure 6: ASE General Index: number of nn vs. RMSFE 
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Figure 7: ASE General Index actual vs. fitted values 

 
 
Figure 8: Weighted vs. Unweighted Nearest Neighbour Regression (the weighted 
regression is represented by the dotted line) 
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Table 1 
First 10 forecast RMSFE's: 
NB:  For k=1, we use the simple local mean forecast. 
 k    RMSFE Unweighted  RMSFE Weighted 
----  ----------------  ---------------- 
  1         1.097                           1.097  
  2         1.091                           1.124  
  3         1.084                           1.063  
  4         1.117                           1.064  
  5         1.051                           1.057  
  6         1.050                           1.057  
  7         1.053                           1.056  
  8         1.062                           1.057  
  9         1.061                           1.045  
 10         1.031                          1.049 � 
 

It would be useful to ask whether the results of our exercise are sensitive to our 

assumptions.  To answer this questions we have repeated the exercise, which takes 

approximately 45 minutes in a Pentium 4 PC.  This time we replaced the fixed window 

fitting set with a sliding window, where one predicts using only the most recent 

observations.  Additionally, we have expanded the prediction set from 50 in the previous 

example to 150.  The results are presented in Figures 9, 10 and 11 and Table 2. 

The RMSFE plot is presented in Figure 9 and the minimum RMSFE occurs at 280 

nearest neighbors, where RMSFE = 0.9876 (compared with 269 nn and 0.969 in the 

previous application).  Again, none of the characteristic features appear and the nn that 

minimises the RMSFE is unable to generate meaningful forecasts as it fails to capture the 

volatility of the series (Figure 10).  Lastly, our conclusions with regard to the weighted 

regression is confirmed in this case as it is difficult to differentiate between the latter and 

the unweighted regression (see Figure 11 and Table 2) 
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Figure 9 

 
Figure 10 
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Figure 11 

 
 
Table 2 
First 10 forecast RMSFE's: 
NB:  For k=1, we use the simple local mean forecast. 
 k    RMSFE Unweighted  RMSFE Weighted 
----  ----------------  ---------------- 
  1         1.294           1.294  
  2         1.201           1.241  
  3         1.146           1.191  
  4         1.145           1.157  
  5         1.137           1.138  
  6         1.101           1.128  
  7         1.091           1.112  
  8         1.079           1.100  
  9         1.066           1.082  
 10         1.055           1.061 
 
5. CONCLUSIONS 
 
This paper employed a local information, nearest-neighbour forecasting methodology to 

test for evidence of nonlinearity in financial time series.  Returns from the Athens Stock 

exchange were investigated given the in-sample evidence of nonlinear dynamics that has 

appeared in the literature recently.  Evidence from well-known data generating processes 

are provided and compared with the ASE returns.  We fail to find nearest neighbour 
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forecasts that are significantly more accurate than forecasts from simple AR models.  

Our results fail to substantiate the presence of in-sample nonlinearity in the series. 
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