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brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6302888?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Documento de Investigación Working Paper
2010-10 2010-10

The Equilibrium Set of Economies with a Continuous
Consumption Space*

Enrique Covarrubias†
Banco de México

Abstract
We study global properties of the equilibrium set of economies with a continuous con-

sumption space. This framework is important in intertemporal allocation problems (contin-
uous or infinite time), financial markets with uncertainty (continuous states of nature) and
commodity differentiation. We show that the equilibrium set is contractible which implies
that (i) there is a continuous economic policy linking any two equilibrium states, and (ii)
any two such economic policies can be continuously deformed one into the other. We also
give three equivalent formulations of the problem of global uniqueness of equilibria in terms
of the projection map from the equilibrium set to the space of parameters. We finally study
the local and global effects that the existence of critical economies has on the equilibrium
set.
Keywords: General equilibrium; infinite economies; intertemporal choice; uncertainty.
JEL Classification: D50, D51, D80, D90.

Resumen
Estudiamos propiedades globales del conjunto de equilibrio para economı́as con un espacio

de consumo continuo. Este marco es importante en problemas de asignación intertemporal
(tiempo continuo o infinito), mercados financieros con incertidumbre (estados de la natu-
raleza continuos) y diferenciación de productos. Demostramos que el conjunto de equilibrio
es contráıble lo que implica que (i) existe una poĺıtica económica continua uniendo dos esta-
dos de equilibrio cualesquiera , y (ii) cualesquiera dos de estas poĺıticas económicas pueden
ser deformadas continuamente una en la otra. Asimismo, proponemos tres formulaciones
equivalentes del problema de unicidad global de equilibrios en términos de la proyección que
va del conjunto de equilibrio al espacio de parámetros. Finalmente, estudiamos los efectos
locales y globales que la existencia de economı́as cŕıticas genera en el conjunto de equilibrio.
Palabras Clave: Equilibrio general; economı́as infinitas; elección intertemporal; incertidum-
bre.
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1 Introduction

The study of economies with commodity spaces of infinite dimensions is at

the cornerstone of modern economic theory. It is of genuine interest within

microeconomic theory but it is also a framework that is needed to study

problems of, for example, financial markets, growth theory, dynamic general

equilibrium and commodity differentiation.

The theory of general equilibrium in finite dimensions is an area that has

made much progress over the years but a direct extension of the theory to

infinite economies has been challenging and results do not generalize in many

cases. Even selecting the right commodity space is far from trivial since, for

instance, consider that if a pure exchange economy has ` goods, the choice

of a commodity space is a simple task since all `-dimensional vector spaces

are isomorphic to R`. In this case, the consumption space is a subset of the

positive cone of R`. However, on the opposite end, there is not a single vector

space to which all other infinite dimensional vector spaces are isomorphic to

and hence, with an infinite number of goods, the choice of a commodity set

may give rise to very different frameworks.

Representing preferences is also problematic. Recent work of Hervés-

Beloso and Monteiro [17] shows that if we take preferences as primitives, un-

less we consider the space of continuous functions (or of integrable functions)

as the commodity space it is impossible to represent strictly monotonic pref-

erences by a continuous utility function. Negative results also appear when
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studying individual demand functions. A result of Araujo [3] showed that

when the commodity space is a general Banach space1 a demand function

will exist if and only if the commodity space is reflexive. Also, even if the

demand function exists, it will be continuously differentiable if and only if

the commodity space is actually a Hilbert space.

Given these trade-offs, in our previous work ([10], [11]) we set to study

models of pure exchange economies with a continuous commodity space. As

we will exemplify below, this model is a good framework to study prob-

lems in finance, infinite-horizon models and product differentiation. We used

this model in [10] to study the equilibrium set, to study regular and critical

economies (and regular and critical prices) and as a by-product we gave a

new proof the genericity of regular economies. We also studied the struc-

ture of excess demand functions and constructed an index theorem in [11]

which, among other results, gave generic necessary and sufficient conditions

for global uniqueness of equilibria.

This paper aims to characterise the equilibrium set and derive properties

in several directions. We begin in section 2 by setting the model and in

section 3 we will investigate some global properties of the equilibrium set

analogous to the Balasko programme (see [5]) for finitely many goods. We

show that the equilibrium set has the structure of a Banach manifold, and

that it is a contractible set so that in particular it is arc-connected and simply

connected.

1An appendix with mathematical definitions is included at the end of the paper.
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The topological triviality of the equilibrium set gives analogous results

to the finite-dimensional case: suppose that p is a price, ω the parameter

that defines an economy, that (p, ω) describes a current equilibrium state

and that (p′, ω′) is an exogenously determined new equilibrium that is to

be achieved at a future. Every path connecting these two equilibria is then

the mathematical expression of some economic policy2. Connectedness of the

equilibrium set then proves that there is a continuous economic policy linking

equilibria (p, ω) and (p′, ω′) while arc-connectedness expresses the idea that

any two such economic policies can be continuously deformed one into the

other.

As an application of the simplicity of the equilibrium set, in section 4 we

give a purely topological characterisation of the problem of global unique-

ness of equilibria in terms of the projection map and its relation with critical

equilibria. In section 5 we give a brief review of the definitions and main

results of Fredholm index theory and we show that the projection map is

Fredholm of index zero. Finally, in section 6 we give three equivalent an-

alytical formulations of the problem of global uniqueness of equilibria and

study the local and global effects that the set of critical economies has on

the shape of the equilibrium set. To aid comprehension, we add an appendix

with mathematical definitions.

2That is, formally an economic policy is a continuous map P(τ), τ ∈ [0, 1] such that
P(0) = (p, ω), P(1) = (p′, ω′) and such that at each τ ∈ (0, 1), P(τ) is an equilibrium.
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2 The Market

We give three examples of economies with a continuous consumption space.

Further references can be found in [20].

2.1 Examples of continuous economies

Example 1. Financial Markets. The following example is a particular

case of [12] and [19] where we consider a two-time period t = 0, 1 economy

with complete financial markets and uncertainty at the second time period.

The set of states is M = [0, 1] and the C1 map π : M → R+ is the density

of the set of states M . We suppose there is a finite number i = 1, . . . , I of

consumers. A consumption bundle is a pair xi = (x0
i , x

1
i ) where at t = 0

consumption is a vector x0
i ∈ R`

++ and at t = 1 it is a C1 map x1
i : M → R`

+.

Similarly, a price is a pair p = (p0, p1), where p0 ∈ R`
+ and at t = 1, it is a

map p1 : M → R`
+.

We suppose that agents are equipped with a t = 0 endowment ω0
i ∈ Rn

++

and a C1 initial endowment at t = 1 of the form ω1
i : M → R`

++. Preferences

are represented by a state-dependent utility of the form

U i(xi) = ui(x
0
i ) +

∫
M

ui
(
x1
i (s)

)
π(s) ds.

It is shown in [12] and [19] that if (p, x1, . . . xI) is an equilibrium, then

p1 and x1
i for each i are all continuous maps from M to R`

++. In other

words, prices, consumption and endowments are all elements of the same
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space C(M,R`
++).

Example 2. Continuous time. Suppose that in an economy the con-

sumption of n goods is done continuously through time t ∈ [0, T ]. Then, a

continuous function xi : [0, T ] → Rn
++ represents the consumption of the n

goods by agent i at time t. Alternatively, x(t) may represent a continuous

instantaneous rate of consumption.

Example 3. Commodity differentiation. In this final example, we men-

tion economies that allow product differentiation. In this case there is a

compact (topological) set M of “characteristics” and a set U ⊂ M would

represent a specific subset of characteristics that a commodity bundle is de-

sired to have. For each set U ⊂ M , a continuous function x : U → R+

represents the proportion of commodity bundles satisfying the characteris-

tics given by U . Naturally, we must have
∫
M
x(t) dt = 1. This is a continuous

version of example (C) in ([20], p.1837).

2.2 The exchange economy

2.2.1 The commodity space

With the examples of the previous section in mind we assume that the com-

modity space is a subset of C(M,Rn), the set of continuous maps with the

sup-norm topology, where M , the parameter space, is a compact subset of

Ra for some a.3 This commodity space has several additional advantages: (i)

3The assumption of M being compact is not as restrictive as it might initially seem.
Similar in spirit to this paper are [2], [6], [7] and [8] that study the (non-compact) infinite-
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the interior of its positive cone (the consumption space) is non-empty, (ii) it

will allow us to write down in a natural way separability of utilities that will

simplify our analysis, and (iii) the price space will have a particularly simple

structure as we will explain below.

2.2.2 The consumption space

The consumption space is then X = C++(M,Rn), the positive cone of

C(M,Rn); that is, the subset of maps in C(M,Rn) for which its range consists

solely of positive entries. In other words, the consumption plan of agent i is

a continuous function xi : M → Rn
++.

2.2.3 Initial endowments

We consider a finite number i = 1, . . . , I of agents each of which is equipped

with initial endowments ωi ∈ X. In other words, the initial endowment of

agent i is a continuous function ωi : M → Rn
++.

2.2.4 Preferences

For each agent i, preferences are represented by utilities of the form

Ui(x) =

∫
M

ui(x(t), t) dt.

horizon model through the natural projection approach. A difference with those papers
is that we do not parametrize economies by the welfare weights and instead we choose a
direct parametrization by initial endowments.
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We assume that the parameter-dependent utility function ui(x(t), t) :

Rn
++ × M → R is a strictly monotonic, concave, C2 function where {y ∈

Rn
++ : ui(y, t) ≥ ui(x, t)} is closed. This implies that Ui(x) is strictly mono-

tonic, concave and twice Fréchet differentiable.

The advantage of assuming separable utilities, is that we are decomposing

an infinite-dimensional optimization problem into an infinite sequence but of

finite dimensional problems.

2.2.5 Prices

Strictly speaking, prices are in the positive cone of the dual of C(M,Rn).

However, Crés et al [12] and Chichilnisky and Zhou [9] have shown that

an economy with continuous endowment and with separable utilities, prices

must be continuous functions of the parameter space M and so we can then

simply consider the price space to be

S =
{
p ∈ C++(M,Rn) : ‖p‖ = 1

}
,

where

‖p‖ = sup
t∈M
‖p(t)‖

with the standard metric ‖·‖ on Rn. We denote by 〈·, ·〉 the inner product on

C(M,Rn) so that if p is a price and x is a consumption plan, p, x ∈ C(M,Rn),
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then the value of x at price level p is given by

〈p, x〉 =

∫
M

〈p(t), x(t)〉 dt,

with the standard inner product 〈·, ·〉 in Rn.

2.2.6 Individual demand functions

The individual demand functions fi : S × (0,∞)→ X of each agent i is the

solution to the consumer’s optimization problem so that

fi(p, y) = arg

[
max
〈p,x〉=y

Ui(x)

]
.

It can be shown that for each agent i her individual demand function fi

is a differentiable map with differentiable inverse.

2.2.7 An exchange economy

In this paper we assume that preferences are fixed, so that the only pa-

rameters defining an economy are the initial endowments. Denote a generic

economy by ω = (ω1, . . . , ωI) ∈ Ω = XI . For a fixed economy ω ∈ Ω the

aggregate excess demand function is a map Zω : S → C(M,Rn) defined

by

Zω(p) =
I∑
i=1

(fi (p, 〈p, ωi〉)− ωi) .

We also define Z : Ω× S → C(M,Rn) by the evaluation
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Z(ω, p) = Zω(p).

Because of Walras’ law, it can be shown that the excess demand function

satisfies 〈p, Zω(p)〉 = 0 for all p ∈ S.

2.2.8 The equilibrium set

We will close this section by defining the equilibrium set. This is done in the

same way as in finite dimensions.

Definition 1. We say that p ∈ S is an equilibrium of the economy ω ∈ Ω

if Zω(p) = 0. We denote the equilibrium set

Γ = {(ω, P ) ∈ Ω× S : Z(ω, p) = 0}.

The goal of this paper is to study some properties of the structure of the

equilibrium set Γ.

3 Topological properties of the infinite equi-

librium manifold

In our previous work [10] we began a systematic study of the infinite equi-

librium set with separable utilities on a continuous consumption space. We
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established the following result.

Theorem 1. [10] The equilibrium set Γ is a C∞ Banach manifold and the

natural projection map π : Ω× S|Γ → Ω is a C∞ map.

Figure 1: The equilibrium manifold Γ.

The goal of this section is to establish some global topological properties

of the infinite equilibrium manifold. It turns out that its topology can be

studied á la Balasko [4]. Our first result is presented in Theorem 2 which

shows that the equilibrium manifold is made of linear fibers given by the

equations that define it. This implies that the manifold will be arc-connected

and simply connected. This is the infinite-dimensional analogue of Theorem
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1 of [4], who shows that in finite dimensions Γ is also arc-connected and

simply connected.

Recall (cf. [5]) that a topological space is arc-connected if it is always

possible to link two arbitrarily chosen points of this space by a continuous

path. Suppose that p is a price, ω the parameter that defines an economy,

that (p, ω) is an element of the equilibrium manifold that describes a current

equilibrium state and that (p′, ω′) an exogenously determined new equilib-

rium that is to be achieved at a future. Every path connecting these two

equilibria is the mathematical expression of some economic policy. Connect-

edeness of the equilibrium set then proves that there is a continuous economic

policy linking equilibria (p, ω) and (p′, ω′) while arc-conenctedeness expresses

that any two such economic policies can be continuously deformed one into

the other.

Theorem 2. The infinite equilibrium manifold is contractible. In particular

it is arc-connected and simply connected.

Proof. Consider the map f : S × (R++)I → S × Ω given by

f(p, w1, . . . , wI) = (p, f1(p, w1), . . . , fI(p, wI))

and the map φ : S × Ω→ S × (R++)I given by

φ(p, ω1, . . . , ωI) = (p, 〈p, ω1〉, . . . , 〈p, ωI〉) .

Finally, let ψ be the restriction of φ to Γ. The proof then follows line by
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line the proof of Theorem 1 in [4].

4 A result on global uniqueness of equilibria

In this section we give a result on global uniqueness of equilibria. Some

results on global uniqueness for infinite economies have been provided by

Dana [13] for a different class of consumption spaces and by the author in

[11] by constructing an index theorem. First recall the notion of regular and

critical economies.

Definition 2. We say that an economy is regular (resp. critical) if and

only if ω is a regular (resp. critical) value of the projection pr : Γ→ Ω .

Theorem 3 below shows how global uniqueness of equilibria is intrinsically

related to the existence of critical equilibria but also to the properness of the

projection map. It is the infinite-dimensional analogue of Theorem 5.2 in [4].

Theorem 3. For every smooth infinite economy ω to have a unique equi-

librium it is necessary and sufficient that (i) there are no critical economies

and (ii) a compact set of economies has a compact set of equilibrium prices.

There is an equivalent formulation of Theorem 3 in terms of the projection

map.

Theorem 4. The projection map π : Γ→ Ω is a diffeomorphism if and only

if π is proper and Dπ : TΓ→ TΩ is surjective.
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Proof of Theorem 3: From Theorem 2 above, the infinite equilibrium mani-

fold Γ is connected. Also notice that Ω is simply connected as it simply is

an open neighborhood of cross products of C++(M,Rn).

First suppose that π : Γ → Ω is a diffeomorphism. Then the Frèchet

derivative of π is surjective everywhere; so every infinite economy is regular.

But also, by assumption, the Walras correspondence π−1 is a continuous map

so it must map a set of compact economies to a set of compact equilibrium

prices. Hence π is proper.

Conversely, now suppose that (i) there are no critical economies and (ii)

a compact set of economies has a compact set of equilibrium prices. We want

to show that π is a diffeomorphism. Since there are no critical economies, the

implicit function theorem between Banach spaces guarantees that the inverse

is Frèchet differentiable. All we need to show then is that is a bijection.

Since π is proper, we can use a result of Palais [21] that a proper map

sends closed sets into closed sets, i.e. π(Γ) is closed. But also, since there are

no critical economies, π is a local homeomorphism so it also sends open sets

to open sets, i.e. π(Γ) is open. Hence π(Γ) is an open, closed and nonempty

subset of Ω. So π(Γ) = Ω. This shows that π is surjective.

We now show that π is injective. Consider two points γ1, γ2 in the

equilibrium manifold Γ such that π(γ1) = π(γ2) = ω. Since Γ is connected,

we can consider a path α(t) in Γ connecting γ1 to γ2. Then π ◦α(t) is a loop

in Ω based in ω. We also know that Ω is simply connected, so we may use a

homotopy F (s, t) such that F (0, t) = π ◦α(t) and F (1, t) = ω. Since we have
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seen that π is is surjective, proper and a local homeomorphism from Γ to Ω,

then by a result of Ho ([18], p.239), π must be a covering projection. And

every covering projection has the homotopy lifting property property ([16],

p.60). So there has to be a unique lifting F̃ (s, t) of F (s, t) with F̃ (0, t) = α(t).

The lift of F̃ (1, t) must be a connected set containing both γ1 and γ2. But

π−1(ω) is discrete, so γ1 = γ2.

5 The projection map is Fredholm of index

zero

We provide in this section a quick summary of the definitions of Fredholm

index theory. We remind the reader that Fredholmness is a property on

functions that allows us to extend to infinite dimensions some results of

differential topology. Loosely speaking, a map is Fredholm if it derivative is

almost invertible, i.e., if it is invertible up to compact perturbations. This

notion was introduced by Smale in [23].

More precisely, a linear Fredholm operator is a continuous linear map

L : E1 → E2 from one Banach space to another with the following properties:

1. dim ker L <∞;

2. range L is closed;

3. coker L = E2/rangeL has finite dimension.

14



If L is a Fredholm operator, then its index is defined to be equal to

dim kerL− dim cokerL, so that the index of L is an integer.

A Fredholm map is a C ′ map f : M → V between differentiable man-

ifolds locally like Banach spaces such that for each x ∈ M the derivative

Df(x) : TxM → Tf(x)V is a Fredholm operator. The index of f is defined

to be the index of Df(x) for some x. If M is connected, this definition does

not depend on x.

In our previous work [10] we have shown that the excess demand function

Zω : S → C(M,Rn) of economy ω ∈ Ω is a Fredholm map of index zero.

Here we prove an equivalent result for the natural projection map. For

completeness sake, we can mention that any smooth map between finite-

dimensional spaces is a Fredholm map.

Theorem 5. The map π : Γ→ Ω is Fredholm of index zero.

Proof. The projection π : Γ → Ω is Fredholm by a simple application of

([1], p.48). The index is constant across Γ since we have shown that it is

connected.

6 Critical economies and the number of equi-

libria

Let B ⊂ Γ denote the set of critical prices and Σ ⊂ Ω be the set of critical

economies. Now that we have remembered the notions of Fredholm index
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theory we can mention that Theorems 3 and 4 could be rephrased in a third

equivalent way.

Theorem 6. In order for every smooth infinite economy to have a unique

equilibrium it is necessary and sufficient that (i) a compact set of economies

has a compact set of equilibrium prices, (ii) the projection map π : Γ→ Ω is

a Fredholm map of index zero and (iii) B = ∅.

In finite dimensions, it is well known that, away from critical economies,

prices vary continuously as functions of initial endowments (see figure below).

This is the result obtained by Debreu in [14]. Theorem 7 below shows the

extension of this result to infinite dimensions.

Figure 2: About ω1,ω2, prices vary continuously as functions of initial en-
dowments. This is not the case for the critical economy ω0.
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Theorem 7. Let Σ denote the singular set in Ω. Then π : Γ − π−1(Σ) →

Ω− Σ is a covering space map.

Proof. Since π is proper then by a result of Palais [21] it sends closed sets

to closed sets. Hence the set of critical economies π(B) = Σ is closed and

therefore Γ− π−1(Σ) and Ω− Σ are both open.

The idea now is to show that every compact set of regular economies has

a compact set of equilibrium prices. That is, to show that π : Γ− π−1(Σ)→

Ω − Σ is a proper map. If this is the case, π will be both an open and a

closed map and hence surjective. Hence, it will be a covering space map.

Let K be compact subset of Ω − Σ. Then K is also compact in Ω. But

π−1(K) ⊂ Γ− π−1(Σ) and so it is compact in this set.

The previous result also shows that if the singular set Σ is small enough,

the surjectivity of π is guaranteed and so we can focus on the study of π as a

covering map and its behaviour on the critical set. It turns out that critical

prices are removable in the following sense.

Theorem 8. Let B be the set of critical equilibrium prices in Γ. Then,

isolated critical prices are removable, i.e., if p ∈ B is isolated in B then π is

a local homeomorphism about p.

Proof. The proof is basically Theorem 4 of [22].

Our previous result shows that at isolated critical prices, locally we have

π−1(π(B)) = B. Our final result shows a globalisation of this result.
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Theorem 9. If the set of critical prices B is the countable union of compact

sets, then π−1(π(B)) = B and π is a global diffeomorphism of Γ − B onto

Ω− Σ.

Proof. The proof is a simple application of Theorem 6 of [22].

7 Conclusions

In this paper we set to study examples of economies with a continuous con-

sumption space. We concentrated in understanding the structure of the equi-

librium set and proved results in several directions. We already knew from

previous work that the equilibrium set had the structure of a Banach man-

ifold, but additionally we showed that it is contractible (and in particular,

arc-connected and simply connected) and that outside the singular set the

projection map is a covering space map. We also showed that critical prices

are removable and that, if critical prices are the countable union of compact

sets, then the projection map is a diffeomorphism outside the critical set.

Similarly, we gave different formulations of the problem of global existence

of equilibria, showing the close relationship of multiplicity of equilibria and

the existence of critical equilibria, as well as properness and the Fredholm

index of the projection map.
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A Appendix: Mathematical definitions.

Definition 3. A topological space is said to be contractible if the identity

map iX : X → X is homotopic to a constant map.

Definition 4. A Banach space (X, ‖ · ‖) is a normed vector space (over

the real numbers throughout) that is complete with respect to the metric

d(x, y) = ‖x− y‖.

Definition 5. A Hilbert space H is a vector space with a positive-definite

inner product 〈·, ·〉 that defines a Banach space upon setting ‖x‖2 = 〈x, x〉

for x ∈ H.

Definition 6. A bounded linear functional h(x) defined on a Banach

space X is a linear mapping X → R such that |h(x)| ≤ K‖x‖X for some

constant K independent of x ∈ X. The set of all bounded linear functionals

on X, denoted X∗, is called the conjugate space of X. It is a Banach

space with respect to the norm ‖h‖ = sup|h(x)| over the sphere ‖x‖X = 1.

If (X∗)∗ = X, then the space X is called reflexive.

Definition 7. One says that a set M of a Banach space X is compact set

if M is closed (in the norm topology) and such that every sequence in M

contains a strongly convergent subsequence.

Definition 8. A linear operator L with domain X and range contained in Y ,

(X,Y Banach spaces) is a bounded linear operator if there is a constant

K independent of x ∈ X such that ‖Lx‖Y ≤ K‖x‖X for all x ∈ X. The set
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of such maps for fixed X,Y is again a Banach space, denoted L(X, Y ) with

respect to the norm ‖L‖ = sup‖Lx‖Y for ‖x‖X = 1.

Definition 9. A linear operator C ∈ L(X, Y ) is called a compact operator

if for any bounded set B ⊂ X, C(B) is conditionally compact in Y . Bounded

linear mappings with finite-dimensional ranges are automatically compact;

and conversely, if X and Y are Hilbert spaces, then a compact linear mapping

C is the uniform limit of such mappings.

Relevant properties of linear compact operators. Let C ∈ L(X,X)

be compact, and set L = I + C. Then

1. L has closed range;

2. dim kerL = dim cokerL <∞;

3. there is a finite integer β such that X = ker(Lβ)⊕ range(Lβ) and L is

a linear homeomorphism of range(Lβ) onto itself.

Definition 10. Let f ∈ C1(U, Y ), U ⊂ X, X, Y Banach spaces. Then,

x ∈ U is a regular point for f if f ′(x) is a surjective linear mapping in

L(X, Y ). If x ∈ U is not regular, x is called singular point. Similarly,

singular values and regular values y of f are defined by considering the

sets f−1(y). If f−1(y) has a singular point, y is called a singular value,

otherwise y is a regular value.

Definition 11. An operator f ∈ C0(X, Y ) is said to be a proper operator

if the inverse image of any compact set C in Y , f−1(C) is compact in X.
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The importance of this notion resides in the fact that the properness of an

operator f restricts the size of the solution set Sp = {x : x ∈ X, f(x) = p}

for any fixed p ∈ Y .

Definition 12. A map f between topological space X, Y is said to be a

proper map if the inverse image of each compact subset of Y is a compact

subset of X.
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