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Abstract. Applying a method suggested by Woodruff (1971), we derive the sampling variances

of Generalized Entropy and Atkinson inequality indices when estimated from complex survey

data. It turns out that this method also greatly simplifies the calculations for the i.i.d. case when

compared to previous derivations in the literature. Both cases are illustrated with examples from

the German Socio-Economic Panel Study and the British Household Panel Survey.
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1 Introduction

Probability weighting, clustering, and stratification, are survey design features underlying much

of the survey data that economists and others use. It is well known that these features have a

potentially large impact on the sampling variability of statistics computed from such surveys.

Nevertheless, they are rarely taken into account in practical work, the measurement of inequality

being no exception. We derive estimates for the sampling variance of two commonly-used classes

of inequality indices, the Generalized Entropy and the Atkinson family of indices, using the

approach of Woodruff (1971).2 It turns out that Woodruff’s method also greatly simplifies the

computation of variance estimates in an i.i.d. framework when compared to previous derivations

in the literature. In order to assess the error made by not taking into account clustering and

stratification we apply our results to a sample extracted from the German Socio-Economic

Panel (GSOEP) and the British Household Panel Survey (BHPS).

2 Estimation from complex surveys

Generalized Entropy and Atkinson inequality measures can be written, as we show below, as

functions I = f(T ) of population totals T = (T1, . . . , TK). Population total Tk, k = 1, . . . , K

is given by the summation of an observational variable thijk over the different stages of the

sampling design, i.e. Tk =
∑L

n=1

∑Nh
i=1

∑Mi
j=1 thijk where L denotes the number of strata, Nh

the number of clusters in stratum h and Mi the number of individuals in cluster i. If the

sampling design involves more than one stage of clustering it suffices to consider the first

stage only (see e.g. Cochran, 1977). Replacing totals T by their estimates T̂ , the index is then

estimated as Î = f(T̂ ) with T̂k =
∑L

n=1

∑nh
i=1

∑mi
j=1 whijthijk where nh is the number of actually

sampled first stage clusters and mi the number of actually sampled individuals in cluster i.

The sampling weight of individual hij is given by whij. Assuming that the sample is large

enough that a Taylor approximation of f(·) holds, the variance of Î can be approximated by

the variance of the first order residual
∑K

k=1(∂f(T )/∂Tk)T̂k. Woodruff (1971) observed that

this variance can be easily determined by reversing the order of summation in the residual,

i.e. var(Î) ≈ var(
∑L

n=1

∑nh
i=1

∑mi
j=1 whij

[∑K
k=1(∂f(T )/∂Tk)thijk

]
) = var(Ŝ). Note that Ŝ is of the

2An alternative but conceptually less straightforward approach to variance estimation in complex surveys is

the estimating equations approach described in Binder (1983) and Binder and Patak (1994). It turns out that

this approach leads to the same estimators derived here. Calculations are available from the authors on request.
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same form as the T̂ks so that the problem is reduced to the estimation of the sampling variance

of a total estimator for which well-known formulas exist (see Cochran, 1977, or Deaton, 1997).

Using these formulas (and replacing T by T̂ in the derivative), the variance estimate for Î is

v̂ar(Î) =
L∑

n=1

nh

nh − 1

nh∑
i=1

mi∑
j=1

whij s̃hij −
∑nh

i=1

∑mi
j=1 whij s̃hij

nh

2

(1)

with s̃hij =
∑K

k=1(∂f(T̂ )/∂T̂k)thijk.

If yhij represents the income of individual hij, then population Generalized Entropy and At-

kinson indices are given by

Iα
GE = (α2 − α)−1

[
Uα−1

0 U−α
1 Uα − 1

]
, α ∈ IR \ {0, 1} (2)

ITheil = T1,1U
−1
1 − log(U1U

−1
0 ), α → 1 (3)

IMLD = −T0,1U
−1
0 + log(U1U

−1
0 ), α → 0 (4)

Iε
A = 1 − U

−ε/(1−ε)
0 U−1

1 U
1/(1−ε)
1−ε , ε ≥ 0, ε �= 1, (5)

I1
A = 1 − U0U

−1
1 exp(T0,1U

−1
0 ), ε → 1 (6)

for totals Uα =
∑L

n=1

∑Nh
i=1

∑Mi
j=1(yhij)

α and Tα =
∑L

n=1

∑Nh
i=1

∑Mi
j=1(yhij)

α(log yhij). Note that

U0 is the population size. Estimates of these indices are obtained by replacing Uα, Tα with

Ûα =
∑L

n=1

∑nh
i=1

∑mi
j=1 whij(yhij)

α and T̂α =
∑L

n=1

∑nh
i=1

∑mi
j=1 whij(yhij)

α(log yhij).

The corresponding variances are then given by substituting s̃hij in (1) with

s̃GE
hij =

1

α
ÛαÛ−α

1 Ûα−2
0 − 1

α − 1
ÛαÛ−α−1

1 Ûα−1
0 · yhij +

1

α2 − α
Ûα−1

0 Û−α
1 · (yhij)

α (7)

s̃Theil
hij = Û−1

1 · yhij log yhij − Û−1
1

(
T̂1,1Û

−1
1 + 1

)
· yhij + Û−1

0 (8)

s̃MLD
hij = −Û−1

0 · log yhij + Û−1
1 · yhij + U−1

0

(
T̂0,1Û

−1
0 − 1

)
(9)

s̃A
hij =

ε

1 − ε
Û−1

1 Û
1

1−ε

1−ε Û
− 1

1−ε

0 + Û
−ε
1−ε

0 Û
1

1−ε

1−ε Û−2
1 · yhij − 1

1 − ε
Û

−ε
1−ε

0 Û−1
1 Û

ε
1−ε

1−ε · (yhij)
1−ε (10)

s̃1
hij =

(
Î1
A − 1

)
Û−1

0

(
1 − Û−1

0 T̂0,1

)
+
(
1 − Î1

A

)
Û−1

1 · yhij +
(
Î1
A − 1

)
Û−1

0 · log yhij. (11)

These variance estimators allow arbitrary correlations between observations below the first-

stage clusters. They are therefore an alternative to the estimators developed by Schluter and

Trede (2002).
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3 Application to the i.i.d. case

In an i.i.d. framework the above indices are usually treated as follows. Income xi and weight

wi of observation i = 1, . . . , n are regarded as i.i.d. draws from a population (x,w).3 The index

in question can then be represented as a function I = g(µ) of population moments µ = E(Xi),

where Xi is a vector-valued function of (xi, wi). It is estimated as Î = g(X̄) and its sampling

variance as n−1∇g(X̄)′v̂ar(Xi)∇g(X̄) (Cowell, 1989, or for the case without weights, Thistle,

1990). By contrast, Woodruff’s method would yield a variance estimate n−1v̂ar(∇g(X̄)′Xi). It

is easy to see that both estimates are identical. However, Woodruff’s method leads to much

simpler expressions as the problem is reduced to estimating the sampling variance of a scalar. In

particular, no covariances need to be computed. Defining µα = E(wix
α
i ), τα = E(wix

α
i (log xi)),

µ̂α = n−1∑n
i=1 wix

α
i and τ̂α,γ = n−1∑n

i=1 wix
α
i (log xi), the sampling variances of the indices

Iα
GE = (α2 − α)−1

[
µα−1

0 µ−α
1 µα − 1

]
, α ∈ IR \ {0, 1} (12)

ITheil = τ1,1µ
−1
1 − log(µ1µ

−1
0 ), α → 1 (13)

IMLD = −τ0,1µ
−1
0 + log(µ1µ

−1
0 ), α → 0 (14)

Iε
A = 1 − µ

−ε/(1−ε)
0 µ−1

1 µ
1/(1−ε)
1−ε , ε ≥ 0, ε �= 1, (15)

I1
A = 1 − µ0µ

−1
1 exp(τ0,1µ

−1
0 ), ε → 1 (16)

can therefore simply be estimated by substituting

z̃GE
i =

1

α
µ̂αµ̂−α

1 µ̂α−2
0 − 1

α − 1
µ̂αµ̂−α−1

1 µ̂α−1
0 · xi +

1

α2 − α
µ̂α−1

0 µ̂−α
1 · xα

i (17)

z̃Theil
i = µ̂−1

1 · xi log xi − µ̂−1
1

(
τ̂1,1µ̂

−1
1 + 1

)
· xi + µ̂−1

0 (18)

z̃MLD
i = −µ̂−1

0 · log xi + µ̂−1
1 · xi + µ−1

0

(
τ̂0,1µ̂

−1
0 − 1

)
(19)

z̃A
i =

ε

1 − ε
µ̂−1

1 µ̂
1

1−ε

1−ε µ̂
− 1

1−ε

0 + µ̂
−ε
1−ε

0 µ̂
1

1−ε

1−ε µ̂
−2
1 · xi − 1

1 − ε
µ̂

−ε
1−ε

0 µ̂−1
1 µ̂

ε
1−ε

1−ε · x1−ε
i (20)

z̃1
i =

(
Î1
A − 1

)
µ̂−1

0

(
1 − µ̂−1

0 τ̂0,1

)
+
(
1 − Î1

A

)
µ̂−1

1 · xi +
(
Î1
A − 1

)
µ̂−1

0 · log xi (21)

for z̃i in

v̂ar(Î) =
1

n(n − 1)

n∑
i=1

(
wiz̃i −

∑n
i=1 wiz̃i

n

)2

. (22)

Equation (22) has a similar structure to equation (1), but note that the weights are treated

differently in the complex survey and i.i.d. cases.4

3If the distribution of household income among individuals is analyzed, then observational units i are house-

holds and observations are replicated at the household level. In this case weights are wi = w′
iw

′′
i with household

size w′
i and sample weight w′′

i . See Biewen (2002).
4For more discussion of different weighting concepts, see Cowell and Jenkins (2003).
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4 Empirical illustration

We contrast the variance estimators using data from the first waves of the German Socio-

Economic Panel (SOEP Group, 2001), and the British Household Panel Survey (Taylor et al.,

2002).5 The GSOEP and the BHPS are widely used to analyze the income distribution in these

two countries. Moreover, they provide information on primary sampling units (clusters) and

strata identification variables. The first wave of each survey was chosen to avoid complications

of the panel design. We considered the distribution of income among individuals. Following con-

vention, each person was assumed to receive the equivalent household income of the household

to which she belonged. (The equivalence scale was the square root of household size.)

The survey estimates shown in column (1) of Table 1 take into account sampling weights,

stratification and clustering. Replication of observations at the household level is automatically

accounted for, as this represents a form of clustering below the first stage clusters. The i.i.d.

estimates shown in column (2) only take into account sampling weights and replication of ob-

servations at the household level, but not stratification or clustering. A comparison of columns

(1) and (2) indicates that ignoring clustering and stratification makes surprisingly little dif-

ference for these data sets. By contrast, the estimates shown in columns (3) and (4) suggest

that taking into account the replication of observations at the household level is much more

important. The results in column (3) ignore the replication of observations at the household

level, whereas those in column (4) take it into account. (Both (3)and (4) ignore first-stage clu-

stering and stratification.) For the German data, this leads to standard errors that are about

twice as large. This shows that survey design can matter. However, the precise effect appears

to depend on the survey analysed: corresponding estimates in columns (3) and (4) differ little

when BHPS data are used, by contrast with the GSOEP case.

— Table 1 near here —

The fact that ignoring stratification and first-stage clustering has only a small impact

might be interpreted as good news for practitioners using these data, or for those using surveys

in which primary sampling unit and strata identification variables are not made available, but

it is not clear that this empirical finding can be generalized. Whatever the case, our variance

estimators provide a straightforward means by which researchers can accommodate a range of

design effects in their analysis.

5Stata programs to compute the estimators are available from the authors on request.
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6 Tables

Table 1. Income inequality1 in West Germany (1984) and Britain (1991)

Index (1) Survey2 (2) I.i.d.3 (3) Survey, i.i.d.4 (4) Survey5

estimate std. err. estimate std. err. estimate std. err. estimate std. err.

German Socio-Economic Panel6 (1984)

GE(-1) 0.4397 0.2971 0.3992 0.2573 0.4397 0.1333 0.4397 0.2978

MLD 0.1339 0.0153 0.1338 0.0136 0.1339 0.0087 0.1339 0.0152

Theil 0.1540 0.0276 0.1540 0.0246 0.1540 0.0187 0.1540 0.0276

GE(2) 0.3673 0.1586 0.3502 0.1400 0.3673 0.1102 0.3673 0.1584

Atkinson(0.5) 0.0658 0.0079 0.0661 0.0071 0.0658 0.0052 0.0658 0.0079

Atkinson(1) 0.1253 0.0134 0.1253 0.0119 0.1253 0.0076 0.1253 0.0133

Atkinson(1.5) 0.2153 0.0477 0.2101 0.0419 0.2153 0.0219 0.2153 0.0478

Atkinson(2) 0.4679 0.1682 0.4439 0.1591 0.4679 0.0754 0.4679 0.1686

British Household Panel Survey7 (1991)

GE(-1) 0.3656 0.0605 0.3627 0.0541 0.3656 0.0571 0.3655 0.0601

MLD 0.1907 0.0051 0.1914 0.0050 0.1907 0.0030 0.1906 0.0050

Theil 0.1779 0.0050 0.1784 0.0050 0.1779 0.0030 0.1779 0.0049

GE(2) 0.2064 0.0085 0.2071 0.0086 0.2064 0.0054 0.2064 0.0085

Atkinson(0.5) 0.0873 0.0022 0.0875 0.0022 0.0873 0.0013 0.0873 0.0021

Atkinson(1) 0.1736 0.0042 0.1741 0.0041 0.1736 0.0025 0.1736 0.0041

Atkinson(1.5) 0.2685 0.0084 0.2693 0.0082 0.2685 0.0058 0.2684 0.0082

Atkinson(2) 0.4223 0.0404 0.4204 0.0363 0.4223 0.0381 0.4223 0.0401

1 Income refers to monthly equivalent household net income distributed among individuals (equivalence scale = square root

of household size).

2 Survey estimator, individual data, weight = individual sample weight, accounting for clustering and stratification; replication

of observations at household level automatically accounted for.

3 I.i.d. estimator, household data, weight = household size * household sample weight (thus accounting for replication of

observations at household level), ignoring clustering and stratification.

4 Survey estimator, individual data, weight = individual sample weight, ignoring clustering, stratification and replication of

observations at household level (identical to i.i.d. estimator, individual data, weight = individual sample weight).

5 Survey estimator, individual data, weight = individual sample weight, ignoring clustering and stratification but accounting

for replication of observations at household level (households are interpreted as clusters).

6 110 strata, 516 clusters, 4232 households, 9441 individuals.

7 75 strata, 250 clusters, 4814 households, 11616 individuals.
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