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Abstract

A non-cooperative model of network formation is developed. Agents form
links with others based on the cost of the link and its assessed beneÞt. Link
formation is one-sided, i.e., agents can initiate links with other agents with-
out their consent, provided the agent forming the link makes the appropriate
investment. Information ßow is two-way. The model builds on the work of
Bala and Goyal, but allows for agent heterogeneity. Whereas they permit
links to fail with a certain common probability, in our model the probability
of failure can be different for different links. We investigate Nash networks
that exhibit connectedness and super-connectedness. We provide an explicit
characterization of certain star networks. Efficiency and Pareto-optimality
issues are discussed through examples. We explore alternative model speci-
Þcations to address potential shortcomings.

JEL ClassiÞcation: D82, D83



1 Introduction

The Internet provides ample testimony to the fact that information dis-
semination affects all aspects of economic activity. It is creating global-
ization that has hitherto been unprecedented in human history. Nowadays
fashions and fads emerging in one country are easily communicated across
the world with almost no time lag. Financial troubles in one country now
have devastating consequences for other economies as the contagion moves
across boundaries with relative ease. Yet, the East Asian Þnancial crisis
also demonstrated that economies where information networks were rela-
tively primitive remained largely insulated from the crisis. This indicates
that both the structure and the technology of information dispersion are
important determinants of its consequences.

In the present paper, we look at the formation of social networks which
serve as a mechanism for information transmission. The structural aspects
of information dissemination are modelled by means of a social network. The
role of technology is studied by examining the reliability of the network. So-
cial networks have played a vital role in the diffusion of information across
society in settings as diverse as referral networks for jobs (Granovetter (1974)
and Loury (1977)) and in assessing quality of products ranging from cars to
computers (Rogers and Kincaid (1981)). Information in most societies can
either be obtained in the market-place or through a non-market environment
like a social network. For instance, in developed countries credit agencies
provide credit ratings for borrowers, while in many developing countries
credit worthiness is assessed through a social network organized along eth-
nic lines.

Agents in our model are endowed with some information which can be
accessed by other agents forming links with them. Link formation is costly
and links transmit information randomly. More precisely, agents in our
model can form links and participate in a network by incurring a cost for
each link, which may be interpreted in terms of time, money or effort. The
cost of establishing a link is incurred only by the agent who initiates it, and
the initiating agent has access to the other agent�s information with a cer-
tain probability. In addition, he has access to the information from all the
links of the other agent. Thus each link can generate substantial positive
externalities of a non-rival nature in the network. Moreover, the ßow of
beneÞts through a link occurs both ways. It can differ across agents, since
the strength of ties varies across agents (although all links cost the same)
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and links fail with possibly different probabilities. This reßects the fact that
in reality, communication often embodies a degree of costly uncertainty. We
frequently have to ask someone to reiterate what they tell us, explain it
again and even seek second opinions.

Foreign immigrants often form such networks. When an immigrant lands
on the shores of a foreign country he usually has a list of people from the
home country to get in touch with. Once contacted, some compatriots are
more helpful than others. Often a substantial information exchange takes
place in this process, where the new arrival learns about the foreign country,
while providing the established immigrants current information about the
home country and an opportunity to indulge in nostalgia.

Bala and Goyal (2000a, b) suggest telephone calls as an example of such
networks. Another example (especially of the star networks considered here)
of this kind is a LISTSERVE or an e-mail system. Costs have to be incurred
in setting up and joining such electronic networks, but being a part of the
network does not automatically ensure access to the information of other
agents. Member participation rates in an electronic network often vary,
and messages may get lost as in the celebrated �e-mail game� (Rubinstein,
(1989)).1

Motivated by these examples, we, like Bala and Goyal (2000a, b) develop
a non-cooperative model of network formation which generalizes theirs. The
non-cooperative game formulation of network formation models typiÞes one
of three strands of literature of major concern to us. The two other strands
that have recently emerged in the context of economics and game theory
are differentiated by their use of cooperative game theory and the notion of
pairwise stability, repectively. The early cooperative literature treats costs
as a set of constraints on coalition formation (see for example, Myerson
(1977), Kalai et al. (1978) and Gilles et al. (1994)). An excellent survey
of that literature can be found in van den Nouweland (1993), and Borm,
van den Nouweland and Tijs (1994). Aumann and Myerson (1988) were
the Þrst to incorporate both costs and beneÞts of coalition formation. This
line of research has been extended by Slikker and van den Nouweland (2000).

1Like most of the networks literature we shall preclude the possibility of harmful infor-
mation, like nuisance phone calls. The same is assumed for intermediate agents or indirect
links in a network who function as purveyors of information between other agents without
incurring any disutility.
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Jackson and Wolinsky (1996) introduced the concept of pairwise sta-
bility (known from the matching literature) as an equilibrium concept in
models of network formation. This gave rise to a completely new strand of
the literature focusing on the tension between stability and efficiency. Pair-
wise stability requires mutual consent of a pair of agents for link formation
whereas links can be deleted unilaterally. Dutta and Muttuswami (1997)
and Watts (1997) reÞne the Jackson-Wolinksy framework further by intro-
ducing other stability concepts and derive implementation results for these
concepts. Johnson and Gilles (2000) introduce a spatial dimension to the
Jackson-Wolinsky model through spatial costs of link formation.

Several dynamic models using pairwise stability have been investigated
as well, starting with Jackson and Watts (1998). Jackson and Watts (1999)
and Goyal and Vega-Rodondo (1999) consider coordination games played
on a network. The choice of partners in the game is endogenous and players
are periodically allowed to add or sever links. Droste et al. (2000) also an-
alyze coordination games played on a network � with spatial costs of link
formation.

The non-cooperative version of network formation has Þrst been devel-
oped in two papers by Bala and Goyal (2000a, b). In all cases, agents choose
to form links on the basis of costs and a (deterministic or stochastic) ßow
of beneÞts that accrue from links. Bala and Goyal assume that a player
can create a one-sided link with another player by making the appropriate
investment. Their assumption differs fundamentally from the concept of
pairwise stability since mutual consent of both players is no longer required
for link formation. They further investigate the reliability issue in networks
by allowing links to fail independently of each other with a certain probabil-
ity. Links are deterministic in Bala and Goyal (2000a). They are random,
with identical probabilities of failure for all established links, in Bala and
Goyal (2000b). Thus both their models deal with homogeneous agents. The
corresponding static equilibrium outcomes are called Nash networks.2

Our model also belongs to the non-cooperative tradition and is a gen-
eralization of Bala and Goyal (2000b). We introduce agent heterogeneity
by allowing for the probability of link failure (or success) to differ across
links. This distinctive feature reßects the nature of the transmission tech-

2They also identify strict Nash networks and study the formation of Nash networks in
a modiÞed version of best-response dynamics.
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nology or the quality of information. The generalization provides a richer
model in terms of answering theoretical as well as practical questions: con-
nectivity and super-connectivity, selection of central agents in star networks,
efficiency, and Pareto-optimality. Besides imparting greater realism to the
model, the introduction of heterogeneous agents allows us to check the ro-
bustness of the conclusions obtained in Bala and Goyal (2000b). Whereas
their Þndings still hold under certain conditions, heterogeneity gives rise to
a greater variety of equilibrium outcomes, tends to alter results signiÞcantly
and even generates some of the results of Bala and Goyal�s (2000a) deter-
ministic model.

Bala and Goyal show for both their models that Nash networks must be
either connected or empty. With heterogeneous agents, this proves true only
when the probabilities of success are not very different from each other. The
range in which the probabilities must lie depends on the cost of links and the
cardinality of the player set. Another central Þnding of Bala and Goyal is
that compared to information decay imperfect reliability has very different
effects on network formation. With information decay, minimally connected
networks (notably the star) are Nash for a wide range of cost and decay
parameters, independently of the size of society. In contrast, with imper-
fect reliability and small link formation costs, minimally connected networks
tend to be replaced by super-connected networks (connected networks with
redundant links) as the player set increases. However, with agent hetero-
geneity neither connectedness nor super-connectedness need arise asymp-
totically. Furthermore, in order for star networks to be Nash, probabilities
must lie in a certain range and exceed costs as in Bala and Goyal, but we
Þnd that as a rule, they have to satisfy additional conditions. In particular,
it never pays in the Bala and Goyal framework to connect to the center of
the star indirectly. In our context, however, such a connection might be ben-
eÞcial and further conditions on probabilities are required to prevent these
connections. Interestingly enough, heterogeneity helps resolve a particular
ambiguity associated with the homogeneous model: Owing to the additional
equilibrium conditions, the coordination problem inherent in selecting the
central agent of a star is mitigated to a certain degree.

We also investigate efficiency issues and Þnd that Nash networks may
be nested and Pareto-ranked. We demonstrate by example that inefficient
Nash networks can be Pareto-optimal. Criticisms of the non-cooperative
approach to network formation are addressed as well. We extend the model
to allow for duplication of links and to analyze Nash networks with incom-
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plete information. We Þnd that redundant links will be established when
the agents beliefs about the probabilities of the indirect links are lower than
the actual probabilities. Thus network failure can arise just like market
failures. Finally, the implications of mutual consent, negative externalities,
and endogenous probabilities for Nash networks are discussed.

The network literature almost completely lacks models with heteroge-
neous agents, with the notable exception of Johnson and Gilles (2000) and
Droste et al. (2000) who introduce spatial heterogeneity of agents and ob-
tain results substantially different from both static and dynamic versions of
homogeneous-agent pairwise stability models. Their model and ours differ
in two respects: the kind of agent heterogeneity and the equilibrium con-
cept. They follow Jackson and Wolinsky (1996) and use pairwise stability
as the equilibrium concept. We analyze Nash networks.

In Section 2, we introduce the basic notation and terminology used
throughout the paper. In Section 3, we present some general results on
Nash networks. Alternative formulations of the model are considered in
Section 4. Section 5 concludes. Section 6 contains proofs and derivations.

2 The Model

Let N = {1, . . . , n} denote the set of agents, with generic members i and
j. For ordered pairs (i, j) ∈ N × N , the shorthand notation ij is used.
The symbol ⊂ for set inclusion permits equality. We assume throughout
that n ≥ 3. Each agent has some information of value to the other agents.
An agent can get access to more information by forming links with other
agents. Agents form their links simultaneously. The formation of links is
costly. Each link denotes a connection between a pair of agents which is not
fully reliable. It may fail to transmit information with a positive probability
that can differ across links.

Each agent�s strategy is a vector gi = (gi1, . . . , gii−1, gii+1, . . . , gin) where
i ∈ N and gij ∈ {0, 1} for each j ∈ N\{i}. The value gij = 1 means that
agents i and j have a link initiated by i whereas gij = 0 means that agent i
does not initiate the link. This does not preclude the possibility of agent j
initiating a link with i. A link between agents i and j potentially allows for
two-way (symmetric) ßow of information. The set of all pure strategies
of agent i is denoted by Gi. We focus only on pure strategies in this paper.
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Given that agent i has the option of forming or not forming a link with each
of the remaining n− 1 agents, the number of strategies available to agent i
is |Gi| = 2n−1. The strategy space of all agents is given by G = G1×· · ·×Gn.
A strategy proÞle g = (g1, . . . , gn) can be represented as a directed graph
or network. Notice that there is a one-to-one correspondence between the
set of all directed networks with n vertices or nodes and the set of strategies
G. The link gij will be represented pictorially by an edge starting at j with
the arrowhead pointing towards i to indicate that agent i has initiated the
link. The reader may refer to Figure 2 shown below where agents 1 and 2
establish the links with agent 6 and agents 3 and 4 establish the links with
agent 7. Consequently, the cost of forming these links are borne by agents
1, 2, 3 and 4 and the arrowhead always points towards the agent who pays
for the link.

To describe information ßows in the network, let for i ∈ N and g ∈ G,
µdi (gi) = |{k ∈ N : gik = 1}| denote the number of links in g initiated by i
which is used in the determination of i�s costs. Next we deÞne the closure
of g which is instrumental for computing beneÞts, since we are concerned
with the symmetric, two-way ßow of beneÞts. Pictorially the closure of a
network is equivalent to replacing each directed edge of g by a non-directed
one.

DeÞnition 1 The closure of g is a non-directed network denoted by h =
cl(g) and deÞned as cl(g) = {ij ∈ N ×N : i 6= j and gij = 1 or gji = 1}.

BeneÞts. The beneÞts from network g are derived from its closure
h = cl(g). Each link hij = 1 succeeds with probability pij ∈ (0, 1) and
fails with probability 1 − pij where pij is not necessarily equal to pik for
j 6= k. It is assumed, however, that pij = pji. Furthermore, the success
or failure of different links are assumed to be independent events. Thus, h
may be regarded as a random network with possibly different probabilities
of realization for different edges. We deÞne h0 as a realization of h (denoted
by h0 ⊂ h) if for all i, j with i 6= j we have h0ij ≤ hij .

At this point the concept of a path (in h0) between two agents proves
useful.

DeÞnition 2 For h0 ⊂ h, a path of length m from an agent i to a different
agent j is a Þnite sequence i0, i1, . . . , im of pairwise distinct agents such that
i0 = i, im = j, and h

0
ikik+1

= 1 for k = 0, . . . ,m− 1. We say that player i
observes player j in the realization h0, if there exists a path from i to j in
h0.
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Invoking the assumption of independence, the probability of the network
h0 being realized given h is

λ(h0 | h) = Q
ij∈h0

pij
Q

ij∈h\h0
(1− pij).

Let µi(h
0) be the number of players that agent i observes in the realiza-

tion h0, i.e. the number of players to whom i is directly or indirectly linked
in h0. Each observed agent in a realization yields a beneÞt V > 0 to agent
i. Without loss of generality assume that V = 1.3

Given the strategy tuple g agent i�s expected beneÞt from the random
network h is given by the following beneÞt function Bi(h):

Bi(h) =
P
h0⊂h

λ(h0 | h)µi(h0)

where h = cl(g). The probability that network h0 is realized is λ(h0 | h), in
which case agent i gets access to the information of µi(h

0) agents in total.
Note that the beneÞt function is clearly non-decreasing in the number of
links for all the agents.

Payoffs. We assume that each link formed by agent i costs c > 0. Agent
i�s expected payoff from the strategy tuple g is

Πi(g) = Bi(cl(g))− µdi (gi)c. (1)

Given a network g ∈ G, let g−i denote the network that remains when all
of agent i�s links have been removed. Clearly g = gi⊕ g−i where the symbol
⊕ indicates that g is formed by the union of links in gi and g−i.

3Another formulation could be used to obtain agent heterogeneity. Under this formu-
lation, the value of agent i�s information would be given by Vi which differs across agents,
while p, the probability of the link success, is identical for all agents i ∈ N . The direct
expected beneÞt from a link gij to agent i would now be given by pVj which would then
differ across links. This amounts to assuming that pij 6= pji and would add another layer
of heterogeneity. In contrast, Johnson and Gilles (2000) assume p = 1 and V = 1, with
differing costs based on a spatial distribution of agents.
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DeÞnition 3 A strategy gi is said to be a best response of agent i to g−i
if

Πi(gi ⊕ g−i) ≥ Πi(g0i ⊕ g−i) for all g0i ∈ Gi.

Let BRi(g−i) denote the set of agent i�s best response to g−i. A network
g = (g1, . . . , gn) is said to be a Nash network if gi ∈ BRi(g−i) for each
i, i.e., agents are playing a Nash equilibrium. A strict Nash network is one
where agents are playing strict best responses.

Agent i�s beneÞt from the direct link ij to agent j is at most pij(n− 1).
Set p0 = p0(c, n) = c · (n − 1)−1. If pij < p0, it never beneÞts agent i to
initiate a link from i to j, no matter how reliably agent j is linked to other
agents and, therefore, gij = 0 in any Nash equilibrium g.

We now introduce some additional deÞnitions which are of a more graph-
theoretic nature. A network g is said to be connected if there is a path in
h = cl(g), between any two agents i and j. A connected network g is said to
be super-connected, if there exist links after whose deletion the network
is still connected. A connected network g is minimally connected, if it
is no longer connected after the deletion of any link. A network g is called
complete, if all links exist in cl(g). A network with no links is called an
empty network.

DeÞnition 4 A set C ⊂ N is called a component of g if there is a path
in cl(g) between any two agents i and j in C and there is no strict superset
C 0 of C for which this is true.

The commonly used welfare measure is deÞned as the sum of the payoffs
of all the agents. Formally, let W : G → R be deÞned as

W (g) =
nX
i=1

Πi(g) for g ∈ G .

DeÞnition 5 A network g is efficient if W (g) ≥W (g0) for all g0 ∈ G.

An efficient network is one that maximizes the total value of information
available to all agents net of the aggregate costs of forming the links. The
deÞnition of (strong) Pareto-optimality is the usual one: A network g is
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Pareto-optimal, if there does not exist another network g0 such thatΠi(g0) ≥
Πi(g) for all i and Πi(g

0) > Πi(g) for some i. Obviously, every efficient
network is Pareto-optimal. However, we will show that not every Pareto-
optimal network is efficient. In fact, we provide an example of a Pareto-
optimal Nash network which is inefficient, while the unique efficient network
is not Nash.

We Þnally introduce the notion of an essential network. A network g ∈ G
is essential if gij = 1 implies gji = 0. Note that if c > 0 and g ∈ G is a
Nash network or an efficient network, then it must be essential. This follows
from the fact that the beneÞts from a link are given by the closure of the
link hij = max{gij , gji} (making the probability of failure independent of
whether it is a single link or a double link) and from the fact that the
information ßow is symmetric and independent of which agent invests in
forming the link. If gij = 1, then by the deÞnition of Πj agent j pays an
additional cost c for setting gji = 1, while neither he nor anyone else gets
any beneÞt from it. Hence if g is not essential it cannot be Nash or efficient.

3 Nash Networks

In this section we look at Nash networks. We begin with an analysis of con-
nectedness and redundancy in Nash networks. Then we identify conditions
under which the complete network and the empty network, respectively,
will be Nash. This is followed by a subsection that covers the popular star
networks. We also discuss efficiency issues by means of examples.

3.1 Connectivity and Super-Connectivity

With homogeneous agents, Nash networks are either connected or empty
(Bala and Goyal (2000b)). With heterogeneous agents, this dichotomy does
not always hold. The proposition below identiÞes conditions under which
Nash networks will show this property.

Proposition 1: If pij ≥ 1

1 + c/n2
pmk for any i 6= j and m 6= k, then

every Nash network is either empty or connected.

Proof : Consider a Nash network g. Suppose g is neither empty nor
connected. Then there exist three agents i, j, and k such that i and j
belong to one connected component of cl(g), C1 and k belongs to a different
connected component of cl(g), C2. Then gij = 1 or gji = 1, whereas gmk =
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gkm = 0 for all m ∈ C1. Without loss of generality assume gij = 1. Then
the incremental beneÞt to i of having the link from i to j is b1 ≥ c. Let
g0 denote the network which one obtains, if in g all direct links with i as a
vertex are severed. The incremental expected beneÞt to i of having the link
ij in g0 is b2 ≥ b1 ≥ c and can be written as b2 = pij(1 + Vj) where Vj is j�s
expected beneÞt from all the links j has in addition to ij.

Now consider a link from k to j, given g0 ⊕ gij . This link is worth
b3 = pkj(pij + 1 + Vj) to k. A link from k to j, given g, is worth b4 ≥ b3 to
k. We claim that b3 > b2, i.e.,

pkj > pij
1 + Vj

1 + Vj + pij

Since g is Nash and gij = 1, we know pij ≥ p0 > c/n. By assumption,

pkj ≥ 1

1 + c/n2
pij . Therefore,

pkj >
1

1 + pij/n
pij = pij

1 + n− 1
1 + n− 1 + pij ≥ pij

1 + Vj
1 + Vj + pij

where we use the fact that Vj is bounded above by n − 1. This shows the
claim that b4 ≥ b3 > b2 ≥ b1 ≥ c. Initiating the link kj is better for k than
not initiating it, contradicting that g is Nash. Hence to the contrary, g has
to be either empty or connected.

This result means that if the probabilities are not too widely dispersed,
then the empty versus connected dichotomy still holds. If, however, the
probabilities are widely dispersed, then a host of possibilities can arise and
a single dichotomous characterization is no longer adequate. Bala and Goyal
(2000b) further show that with homogeneous agents and imperfect reliabil-
ity, Nash networks become super-connected as the size of the society in-
creases. This result warrants several qualiÞcations.

The Þrst one concerns an obvious trade-off even in the case of homoge-
neous agents. While it is correct that for any given probability of success
p > 0, super-connectivity obtains asymptotically, the minimum number of
players it takes to get super-connectivity goes to inÞnity as p goes to zero.
Let n∗ be any number of agents. If p < p0(c, n∗), then it takes at least n∗+1
agents to obtain even a connected Nash network.

Secondly, in our model with heterogeneous agents, asymptotic connec-
tivity need no longer obtain, eliminating any scope for super-connectivity.
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Consider an inÞnite sequence of agents i = 1, 2, . . . , n, . . . and a sequence of
probabilities p2, p3, . . . such that pij = pji = pj for i < j. Then the sequence
pk, k ≥ 2, can be constructed in such a way that the empty network is the
only Nash network for any agent set In = {1, . . . , n}, n ≥ 2. Of course, with
heterogeneous agents, asymptotic super-connectivity obtains, if there exists
a q0 > 0 such that pij ≥ q0 for all ij. The argument for homogeneous agents
can easily be adapted to this case.

Finally, the lack of a common positive lower bound for the success proba-
bilities does not necessarily rule out asymptotic super-connectivity, provided
the probabilities do not drop too fast. A positive example is given by c = 1
and pij = pji = pj = j

−1/2 for i < j. Basically, the argument developed for
homogeneous agents can be applied here, too. This follows from the fact
that for 1 < m < n,

nX
i=m

p1i >

Z n+1

m
s−1/2ds = [2s1/2]n+1m = 2((n+ 1)1/2 −m1/2).

Furthermore, with heterogeneous agents, other possibilities exist. For
instance, super-connectivity may be established at some point, but connec-
tivity may break down when further agents are added and reemerge later,
etc. Or several connected components can persist with super-connectivity
within each component. Thus the Bala and Goyal result is altered signiÞ-
cantly in our model.

3.2 The Polar Cases

The next proposition identiÞes conditions under which the complete network
and the empty network are Nash. Let P = [pij ] denote the matrix of link
success probabilities for all agents (i, j) ∈ N ×N , where pij ∈ (0, 1).

Proposition 2: For any P, there exists c(P ) > 0 such that each es-
sential complete network is (strict) Nash for all c ∈ (0, c(P )). The empty
network is strict Nash for c > max{pij}.

Proof : Let g = gi⊕g−i be any essential complete network. Consider an
arbitrary agent i with one or more links in his strategy gi. Let G0i = {g0i ∈
Gi : g0ij ≤ gij for all j 6= i}. Clearly, if c = 0 then for agent i, gi is a strict
best response in G0i against g−i. By continuity, there exists ci(P, g−i) > 0 so
that gi is a strict best response in G0i against g−i for all c ∈ (0, ci(P, g−i)).
Suppose c ∈ (0, ci(P, g−i)). If g∗i ∈ Gi\G0i, then g∗ij = gji = 1 for some j 6= i
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and there exists a better response g0i ∈ G0i without redundant costly links.
Since gi is a better response than g

0
i, it is also a better response than g

∗
i .

Hence for c ∈ (0, ci(P, g−i)), gi is a strict best response in Gi against g−i.
Now let c(P ) be the minimum of ci(P, g−i) over all conceivable combinations
of i and g−i. The Þrst part of the claim follows from this.

For the second part, if c > max{pij} and no other agent forms a link,
then it will not be worthwhile for agent i to form a link. Hence the empty
network is strict Nash as asserted.

3.3 Star Networks

Star networks are among the most widely studied network architectures.
They are characterized by one agent who is at the center of the network and
the property that the other players can only access each other through the
central agent. There are three possible types of star networks. The inward
pointing (center-sponsored) star has one central agent who establishes links
to all other agents and incurs the cost of the entire network. An outward
pointing (periphery-sponsored) star has a central agent with whom all the
other n− 1 players form links. A mixed star is a combination of the inward
and outward pointing stars. Here we will focus on the periphery-sponsored
star and the proofs provided below can be easily adapted to the other types
of stars.

u¾ -

?

6

u u
u

u

FIGURE 1: Outward Pointing (Periphery-Sposored) Star Network

While the method of computing Nash networks does not change with the
introduction of heterogeneous agents, the process of identifying the different
parameter ranges for Nash networks is now considerably complicated. We
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will next establish two claims about Nash networks to illustrate the complex
nature of the situation with agent heterogeneity. Without loss of generality
we will assume that player n is the central agent in the star. DeÞne M to
be the set of all the agents except n or M = N\{n} and let Km =M\{m}
be the set M without agent m. Also let Jk = Km\{k} denote a set Km
without agent k and Σk =

P
j∈Jk

pjn.

Proposition 3: Given c ∈ (0, 1), there exists a threshold probability
δ ∈ (0, 1) such that the outward pointing star is Nash if , the outward pointing
star is Nash if :

1. pij ∈ (δ, 1) for all pairs ij;
2. for all m ∈M , k ∈ Km: either pmn > pmk,
or pmn < pmk, pmn > pmkpkn
and (pmn − pmkpkn)Σk > (pmk − pmn) + pkn(pmk − pmn).

Proof: Consider the outward pointing star with agent n as the central
agent. Choose the threshold probability δ ∈ (c, 1) to satisfy the inequality

max
m∈M

(1− pnm) +
1− pnm X

k∈Km

pnk

 < c (2)

if pij ∈ (δ, 1) for all ij. Next we identify the conditions under which no
player wants to deviate. We know that n has no links to sever, and does
not want to add a link since gmn = 1 for all m ∈M and the ßow of beneÞts
is two-way. Now consider an agent m 6= n who might wish to sever the
link with n and instead link with some other k ∈ Km. Player m�s payoff
from the outward pointing star is Πm(g

ot) = pmn + pmn
P

k∈Km

pkn − c. His
payoff from deviating and forming the new link is Πm(g

ot − gmn + gmk) =
pmk + pmkpkn + pmkpknΣkpjn − c. We get Πi(got) − Πi(got − gin + gik) =
(pmn − pmk) + pkn(pmn − pmk) + (pmn − pmkpkn)Σk.
This is clearly positive when pmn > pmk for all m ∈ M, i.e., when every
non-central agent (i 6= n) has her best link with the central agent .

However, when the inequality is reversed, we need pmn > pmkpkn and
(pmn− pmkpkn)Σk > (pmk − pmn)+ pkn(pmk− pmn), i.e., agent k�s link with
n is so weak that it is not worthwhile for m to form this link. Essentially,
the difference between the beneÞts from accessing agents j ∈ Jk through n
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instead of the indirect link through k in this case should exceed net beneÞts
from agents n and k when agent m establishes a link with k instead of the
central agent. Note that player m can only sever one link in an outward
pointing star and hence we need not consider any more instances of link
substitution by player m. Next we need to check that no agent wants to add
an extra link. This means that no m ∈ M wants to form a link with any
k ∈ Km. Note that payoffs with this additional link are bounded above by
(n− 1)− 2c. Taking the difference between Πm(got + gmk) and Πm(got) we
get [(1−pmn)+(1−p1npmn)+ · · ·+(1−pm−1npmn)+(1−pm+1npmn)+ · · ·+
(1 − pn−1npmn)] < c as the condition that the additional link is lowering
m�s payoff. Verifying that this is satisÞed for all m ∈ M , gives us max

m∈M
[(1− pmn) + (1− p1npmn) + · · ·+ (1− pm−1npmn) + (1− pm+1npmn) + · · ·+
(1 − pn−1npmn)] < c, which is equivalent to (2). Since we use the upper
bound on the payoffs to show that it is not worthwhile to add even one
extra link by any player m ∈ M , this obviates the need to check that a
player may want to add more than one link.

Compared to the Bala and Goyal framework, the introduction of hetero-
geneous agents alters the situation signiÞcantly. While part of the difference
involves more complex conditions for establishing any star network, hetero-
geneity comes with its own reward. A different probability for the success of
each link resolves the coordination problem implicit in the Bala and Goyal
framework. With a constant probability of success, once we identify condi-
tions under which a given star network will be Nash, the role of the central
agent can be assigned to any player. With heterogeneous agents, however,
there are some natural candidates for the central agent. The agent who has
the least beneÞt net of costs from a single link, is the natural choice for the
central agent in the outward pointing star. There are also some other differ-
ences from the Bala and Goyal framework. Notice that the determination
of δ involves probabilities of all other links, making it quite complicated.
Further, the beneÞts from deviation are also altered now. In the Bala and
Goyal framework, no agent in the outward pointing star will ever deviate
by severing a link with the central agent. In our model, links to the central
agent will be severed unless the probabilities in the relevant range satisfy
some additional conditions.

Note that in our framework the inward pointing star is Nash in the above
speciÞed range of costs if the central agent�s worst link yields higher bene-
Þts than c and (2) is satisÞed. Clearly, the role of the central agent for this
star can be assigned to the agent whose payoff net of costs from forming

14



the (n − 1) links is the highest. The mixed star can be supported as Nash
when conditions required by the inward and the outward pointing star are
satisÞed for the relevant agents.

We next consider the case where c > 1. Here c > pij for all links gij . We
provide conditions under which the outward pointing star is Nash.

Proposition 4: Given c ∈ (1, n− 1) there exists a threshold probability
δ < 1 such that for pij ∈ (δ, 1) the outward pointing star is Nash.

Proof: Let agent n be the center with whom all the other players estab-
lish links. Since c ∈ (1, n−1) we can choose δ ∈ (0, 1) such that if pij ∈ (δ, 1)
for all ij, then (2) holds and min

m∈M
[pmn(1+

P
k∈Km

pkn)] > c. Then no m ∈M
wants to sever his link with n. The remainder of the proof is similar to the
proof of Proposition 3.

Once again it is possible to identify a natural candidate for the role of
the central player. Also, note that the inward pointing and mixed star will
never be Nash in this range of costs.

3.4 Efficiency Issues

Efficiency is a key issue in Jackson and Wolinsky (1996), Bala and Goyal
(2000a,b), and Johnson and Gilles (2000). When costs are very high or very
low, or when links are highly reliable, there is virtually no conßict between
Nash networks and efficiency in the Bala and Goyal (2000b) framework.
This observation still holds in our context. However, there is a conßict
between Nash networks and efficiency for intermediate ranges of costs and
link reliability, even with the same probability of link failure for all links.
In particular, Nash networks may be under-connected relative to the social
optimum as the subsequent example shows.

Let us add two important observations not made before. First, it is
possible that Nash networks are nested and Pareto-ranked. Second, at least
in our context, the following can coexist: a Nash network which is not
efficient, but Pareto-optimal and a unique efficient network which is not
Nash and does not weakly Pareto-dominate the Nash network. The Þrst
observation is supported by the following example: c = 1, n = 4 and pij =
0.51 for all ij. In this case, both the empty network and the outward
pointing star with center 4, are Nash networks. The �outward pointing star�
consisting of the links 14, 24 and 34 contains and strictly Pareto-dominates
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the empty network. Moreover, the empty network is under-connected. Our
second observation is based on the following example.
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FIGURE 2: Inefficient and Pareto Nash Network

Example 1: c = 1, n = 7. p16 = p26 = p37 = p47 = p = 0.6181,
p56 = a = 0.2, p67 = b = 0.3, and corresponding probabilities for the
symmetric links. All other links have probabilities pij < p0. Now g given by
g16 = g26 = g37 = g47 = 1 and gij = 0 otherwise is a Nash network. Indeed,
p is barely large enough to make this a Nash network. The critical value for
p satisÞes p(1+p) = 1 with solution 0.6180.... But g is not efficient. Linking
also 5 with 6 and 6 with 7 provides the following added beneÞts where we
use 2p = 1.2362 and 1 + 2p = 2.2362:

For 1+2: 1.2362 · (a+ b · 2.2362) = 1.07656
For 3+4: 1.2362 · b · (a+ 2.2362) = 0.90349
For 5: a · 2.2362 + ab · 2.2362 = 0.58141
For 6: a+ b · 2.2362 = 0.87086
For 7: b · (a+ 2.2362) = 0.73086
Total: 4.16318

Hence the total added beneÞt exceeds the cost of establishing these two
additional links. The network thus created would be efficient. But neither 6
nor 7 beneÞts enough from the additional link between them to cover the cost
of the link. Thus, the enlarged efficient network is not Nash. Since the rules
of the game stipulate that one of the two agents assumes the entire cost of the
new link, the enlarged efficient network cannot weakly Pareto-dominate g. In
fact, g is Pareto-optimal while inefficient. Reconciling efficiency and Pareto-
optimality would require the possibility of cost sharing and side payments.
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4 Alternative Model SpeciÞcations

In this section we will consider three alternative speciÞcations of our cur-
rent model. The Þrst variation introduces more realism in the formation of
networks by allowing agents to duplicate existing links. The second spec-
iÞcation considers network formation under incomplete information. Here,
each agent i ∈ N is aware of the success probabilities pij , i 6= j of her
own links, but is ignorant of the probabilities of link successes of the other
agents. Further, we discuss the implications for Nash networks in a model
where pairwise link formation requires the consent of the other agent and
when links can impose a cost on the other agent. Finally, we present an
example with endogenous probabilities.

4.1 An Alternative Formulation of Network Reliability

The payoff function in the previous section is based on the closure of the
network implying that the links gij = 1 and gji = 1 are perfectly correlated.
Thus, no agent will ever duplicate a link if it already exists. A more accu-
rate way of modelling information ßows would be to assume that the event
gij = 1 and gji = 1 are independent. Then, the link hij = max{gij , gji} ex-
ists with probability rij = 1− (1− pij)2 providing an incentive for two-way
connection between agents i and j. This never occurs in the previous model
since duplicating a link can only increase costs. We retain the assumption
that pij = pji. Also, the ßow of beneÞts is still both ways.

The consequences of the new formulation are now explored by reexam-
ining Proposition 3. The incentives for modifying links by deviating do not
change under this formulation, i.e., the conditions of Proposition 3 are as-
sumed to hold. The main impact is on the threshold probability value δ,
altering the range of costs and probabilities under which the outward star
can be supported as Nash. Note that the payoff function used earlier for
determining the payoff from an additional link gets around this issue by
assuming that payoffs have an upper bound of (n− 1)−αc where α denotes
the number of links formed. In order to see how this new formulation will
affect reliability we need to compute the precise value of the payoffs from
additional links instead of using the upper bound. We denote the resulting
new threshold value by eδ. We Þnd that a threshold of the form eδ = max

m∈M
max
i 6=m

δmi will suffice. Each δ
m
i is a threshold value related to the speciÞc link

mi.
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Proposition 5: Suppose that the links gij = 1 and gji = 1 are inde-
pendent, and c ∈ (0, 1). Then the outward pointing star can be supported as
Nash under the threshold probability value eδ, if Proposition 3 holds.

Proof : See Appendix.

In our previous formulation, δ can also be obtained as the maximum of
link-speciÞc thresholds. The latter tends to be lower if duplication has no
beneÞts. Thus, in general eδ > δ. Proposition 1 holds under this alternative
formulation since the players are still endowed with information which is
mutually beneÞcial and non-rival. The proof relies on showing that the net
beneÞts to an agent k in the connected subgraph C2 exceeds to net beneÞts
to an agent i in the connected subgraph C1 from a link with some agent
j ∈ C1. This is clearly independent of the number of double links in either
of the two connected components. Hence the proof of Proposition 1 can be
easily adapted for this alternative model of reliability. It can also be shown
that Proposition 2 holds under this formulation since it relies on a continuity
argument. Finally, this formulation can lead to super-connected networks of
a different sort − one where agents may reinforce existing higher probability
links instead of forming new links with other players.

4.2 Nash Networks under Incomplete Information

The previous sections have assumed that the agents are fully aware of all
link success probabilities. However, this is not always a very realistic as-
sumption. As an alternative, we introduce incomplete information in the
game. Each agent i ∈ N has knowledge of the probability of success of all
her direct links. However, she is not aware of the probability of success of
indirect links, i.e., agent i knows the value of pij , but is unaware of the value
of pjk, where i 6= j, k. The assumption that pij = pji is still retained. We
re-examine Proposition 3 for this speciÞcation.

In order to solve for equilibria, each agent i must now have some beliefs
about the indirect links. We assume that each agent postulates that, on
average, every other agent�s world is identical to her own. She assigns the
average success value of all her own direct links to the indirect links, im-
parting a symmetry to the problem of indirect links. Thus, agent i assigns
a value of pi =

1
n−1

P
i6=m pim, to all indirect links pjk for i 6= j, k. This has

some immediate consequences for the payoff function. Consider some agent
m ∈M . This agent now believes that her payoff from the outward pointing
star is given by Πm(g

ot) = pnm+ |Km| pnmpm− c = pnm+(n−2)pnmpm−c,
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which is clearly different from her actual payoff.

Proposition 6: Given each agent�s beliefs about her indirect links, the
outward pointing star is Nash if every non-central agent (i 6= n) has her
best link with the central agent or when pmn < pmk, then pmn > pmpmk and
(n− 3)(pmn− pmpmk)pm > pmn− pmk + pm(pmn− pmk) and for each agent
m ∈M , the inequality (n− 2)(1− pnmpm) < (1− pnmPk∈Km

pnk) holds.

Proof : See Appendix.

This formulation provides us with some interesting insights about the
role of the indirect links and the vulnerability of Nash networks. First note
that the set of conditions for the outward pointing star to be Nash are
very similar to those obtained in Proposition 3. However there are some
differences. For the purpose of comparison, let us assume that the actual
probabilities satisfy the conditions of Proposition 3. Now it is possible that
(n − 2)(1 − pnmpm) > c > (1 − pnmPk∈Km

pnk), in which case agents will
create new links destroying the star architecture. Consequently, the realized
network yields lower payoffs than the star network. This is an instance when
the outward star is Nash under complete information, but due to incorrect
beliefs about indirect links, agents create additional links under incomplete
information. Thus, the introduction of incomplete information can easily
lead to network failure.

We now examine the consequences of this formulation through an ex-
plicit example.

Example 2: Consider a network with n = 6. Suppose agents 1 to 4
are linked in a star formation with agent 4 being the central agent, i.e.,
g14 = g24 = g34 = 1. Further g56 = 1 and we will examine what happens
to the link g45 under complete and incomplete information. Let c = 1/12,
p14 = p24 = p34 = p = 4/10, p56 = r = 1/2 and p45 = q = 1/24. The
probabilities of all other links are assumed to be zero.

Under these objective probabilities it is easy to verify that q(1 + r) < c
and hence agent 4 will never initiate the link with agent 5. However, agent
5 will initiate this link since q(1+3p) > c. The resulting connected network
is Nash since all other links yield no beneÞts.

Note that for our current formulation with incomplete information, p5 =
r = 1

5(r + q) and p4 = p = 1
5(3p + q). Under these beliefs about the
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probabilities of the indirect links, agent 4 will never establish the link since
q(1+r) < c. Similarly, agent 5 will not establish the link since q(1+3p) < c.
With incomplete information the above disconnected network with g45 = 0
is a Nash network.

Thus incomplete information may destroy a crucial link and give rise to
two connected components.

4.3 Further RamiÞcations

In this subsection, we touch upon two further ramiÞcations, mutual con-
sent requirements and certain negative network externalities. In our setting
and in much of the literature, it is assumed that agent i does not need
the consent of agent j to initiate a link from i to j. All it takes is that
agent i incurs the cost c. This may be construed as a drawback of the
non-cooperative formulation. Though one might argue that when asked
agent j might give her permission anyway, since she would only beneÞt
from an additional link that does not cost her anything.4 Thus it appears
that introducing an implicit consent requirement is inconsequential, a de-
scriptive improvement at best, a notational burden at worst. Yet Nash
networks have another more serious weakness. Namely, it seems somewhat
preposterous that agent j should divulge all the information from her other
links without her consent. For this reason, we now discuss the implications
of a consent game. Formally, such a requirement can be accommodated
by replacing each player�s strategy set Gi by Gi × Gi with generic elements
(gi, ai) = (gi1, . . . , gii−1, gii+1, . . . , gin; ai1, . . . , aii−1, aii+1, . . . , ain) where the
second component, ai, stands for i�s consent decisions. A link from i to j is
initiated by mutual consent if and only if gij = 1 and aji = 1. Agents incur
only the cost of links that are permitted. Denied links are absolutely costless.

Every graph g that was a Nash network before is still a Nash network.
But now there is room for mutual obstruction: gij = 0 is always a best
response to aji = 0 and vice versa. Therefore, the empty network is always
Nash under a mutual consent requirement. More generally, take any set of
potential edges E ⊆ N × N and replace pij by qij < p0 for all ij ∈ E in
the original model. Then any Nash network of the thus deÞned hypothetical
game constitutes a Nash network of the network formation game requiring
mutual consent. In particular, for any N 0 ⊆ N , the Nash networks with
reduced player set N 0 form Nash networks (as long as the architecture of

4This argument is less compelling in the case of one-way information ßow.
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the network is preserved) of the network formation game requiring mutual
consent with player set N , if one adds the agents in N \N 0 as isolated nodes.
One could modify the mutual consent game by requiring that agents must
incur the cost of all links they initiate, irrespective of consent. Since agents
are rational and have complete information, links that will be denied will
never be initiated in equilibrium. The Nash networks will be identical under
this speciÞcation.

All the new equilibria from the mutual consent game will be eliminated,
if one imposes 2-player coalition-proofness or introduces conjectural varia-
tions of the kind that a player interested in initiating a link presumes the
other�s consent. A more serious issue is why two agents cannot split the
cost in a Pareto-improving way when both would beneÞt from an additional
link. Addressing endogenous cost sharing in a satisfactory way necessitates
a radically different approach which is beyond the scope of the present gen-
eration of models.

The Jackson-Wolinsky �connections model� assumes exogenous cost shar-
ing. In such a case, agent i can have an incentive to reject a link from j to
i. More generally, one can consider a modiÞcation of the payoff function (1)
that yields the expanded form

Πi(g) = Bi(cl(g))−
X
j

gijajic−
X
j

gjiaijc
0 (3)

where i incurs the cost or disutility c0, if he agrees to a link initiated by agent
j. The quantity c0 can be interpreted as a composite cost which includes
an explicit cost contribution towards the creation of a link ji as well as a
certain disutility (negative externality) that i experiences when others con-
tact him through this link.5 The special case c = c0 is tantamount to equal
cost sharing. While we leave the in-depth analysis of this model variant
for future research, two observations can be made without further scrutiny.
First, if giving one�s consent is costly, Nash networks tend to be smaller.
This would still be true, if we allowed for the additional possibility that at
an extra cost, agent j can impose the link ji against i�s objection. Second,
the possibility of mutual obstruction persists under costly consent.

5In a more reÞned version, one could differentiate the cost structure further and make
the cost of accepting a speciÞc link ji depend on whether or not there is duplication, that
is the reverse link ij is initiated by i and accepted by j.
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On a more speculative note, one can also think of the possibility that the
addition of a link renders all adjacent links less reliable. For conceivably,
any given node might become less effective in responding to information re-
quests via its direct links, if it gets accessed through one more direct link. In
other words, the additional link causes a negative externality on the other
links competing for access to the same node. Incorporating this particular
feature into a model of network formation would lead to endogenous failure
probabilities. One of the consequences is that a complete network need no
longer be Nash, even if links are costless. To illustrate this and other inter-
esting possibilities, let us consider

Example 3: Let c = 0. For i ∈ N and g ∈ G, set

ni(g) = |{k ∈ N \ {i} : gik = 1 or gki = 1}|,

the number of agents to whom i has direct links in g. For any two agents i
and j and any network g, let the endogenous probability of success of link
ij be given as

pij(g) =

(
1

ni(g)
· 1
nj(g)

, if gij + gji > 0;

0, if gij + gji = 0.

First consider the case n = 3 and the wheel or circle g with links 12, 23, and
31, an essential complete network where each link has success probability
1/4. Each player i receives payoff Πi(g) = 19/32. After severance of the
link initiated by him, the two remaining links have each success probabil-
ity 1/2 and i�s payoff becomes 3/4 or 24/32. This shows our claim that
with endogenous success probabilities and zero or negligible costs, complete
networks need no longer be Nash� in stark contrast to Proposition 2. More-
over, for n ≥ 4, wheels with simple links, line networks with simple links,
and stars are not Nash under the current assumptions. Regarding stars, a
peripheral agent gains from initiating links to all other peripheral agents
in addition to the existing link to the central agent. Finally, the example
exhibits non-empty Nash networks with very small connected components.
It turns out that a network g is Nash if each component C either satisÞes
|C| = 3 and is incomplete (is not a wheel) or satisÞes |C| = 2.

This somewhat extreme example clearly shows that the negative exter-
nality caused by additional links can affect the outcomes signiÞcantly.
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5 Concluding Remarks

The model developed here as well as a substantial part of the network liter-
ature is concerned with information ßows. Such models may be interpreted
as a reduced form where all costs and beneÞts have been attributed to in-
formation ßows. Under perfect reliability, the primary focus lies on the size
and efficiency of networks. With imperfect reliability the strength of social
ties, or the nature and quality of information can be discussed as well. In
our model for instance, one could argue that the information exchange be-
tween i and j is valuable with probability pij and is of a dubious nature with
the complementary probability. Thus, imperfect reliability raises questions
about a possible quantity-quality trade-off as well as the related efficiency
issues.

The assumption of agent heterogeneity in the form of imperfect reliabil-
ity in social networks provides a richer set of results than the homogeneous
setting. In conjunction with our adopted solution concept, Nash equilib-
rium, it accentuates open questions that also arise − though perhaps to a
lesser degree − in the context of pairwise stability. An example is the issue
of cost sharing and side payments. Twice in the course of our current inves-
tigation we came across this issue: First, in the discussion of efficiency and
Pareto-optimality. For a second time in the context of the mutual consent
model. The issue of cost sharing and bargaining over the costs of link forma-
tion is especially crucial when beneÞts mainly accrue from indirect links. It
indicates an important direction for future research. Currarini and Morelli
(2000) take a Þrst step in this direction. They introduce a noncooperative
game of sequential network formation in which players propose links and de-
mand payoffs. They show that for networks which satisfy size monotonicity,
there is no conßict between efficiency and stability.

Bala and Goyal�s work on Nash networks shows that results under im-
perfect reliability are quite different from those in a deterministic setting.
With the introduction of heterogeneity this clear distinction no longer pre-
vails. Our Þndings encompass results of both types of models. For example,
with perfect reliability and information decay, Nash networks are always
minimally connected, irrespective of the size of society (Bala and Goyal
(2000a)). In contrast, with homogeneous imperfect reliability and no infor-
mation decay, redundant links between agents always arise asymptotically
(Bala and Goyal (2000b)). In our model, with heterogeneous imperfect reli-
ability and no information decay, both types of outcomes can be generated
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through appropriate choice of the pij �s. For instance, decay models (with
perfect reliability) compute beneÞts by considering only the shortest path
between agents. Extra indirect links do not contribute to beneÞts. Given a
resulting minimally connected Nash network g of such a model, there exists
a parameter speciÞcation of our model that also gives rise to g as a Nash
network. In our framework this requires lowering the pij to zero or below
p0 for all ij with gij = 0 and gji = 0 and choosing sufficiently high prob-
abilities pij for all other ij so that all beneÞts accrue from the direct links
only. On the other hand, as discussed in subsection 4.1, choosing the pij �s
appropriately leads to super-connected networks as well.

Finally, to end on a cautionary note, we have indicated the possibility of
network failure in the discussion following Proposition 6. It is only appropri-
ate to mention Greif�s (1994) tale of two historical societies − the Maghribi
traders, with an Islamic culture who shared trading information widely, and
the Genoese traders exemplifying the Latin world, who operated individu-
ally and did not share information amongst each other, relying more on legal
contracts. He argues that the culture and social organization of these two
communities ultimately determined their long-run survival. The Genoese
kept business secrets from each other, improved their contract law and op-
erated through the market. Consequently they ended up with an efficient
society. The Maghribis on the other hand operated through an informal
network where behavior of a single pair of agents affected everyone in the
network. As opposed to the Genoese traders the Maghribis invested con-
siderable time and effort to gather information about their network. Since
one bad link could adversely affect the entire network, the Maghribis of-
ten had to engage in superßuous links as well without adequate concern for
efficiency. Efficiency became a critical issue once new business opportuni-
ties arose in far away lands, where operating through an ethnically based
network became very expensive. In the end these organizational differences
created by the cultural beliefs of the two societies led to the survival of
the more efficient of the two. Thus social networks may be good substi-
tutes for anonymous markets in certain societies, but the market paired
with the proper infrastructure may be a more efficient institution. In fact
for trade in standardized commodities, a frictionless and informationally ef-
Þcient anonymous market, if feasible, would be best. Some of the trade-offs
between networks and anonymous markets are addressed by Kranton (1996)
who investigates the persistence and coexistence of personalized exchange
arrangements when anonymous market channels are available and would be
more efficient.
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6 Appendix: Proofs

1. Proof of Proposition 5 :
Consider the outward pointing star. All agents m ∈M have a link with

the central agent, and the conditions for not deviating from the Nash strat-
egy identiÞed in Proposition 3 remain unchanged. However, we must also
verify that neither agent n nor any m ∈M will gain by adding a link. For
all m ∈ M and k ∈ Km we need to compute Πm(g

ot + gmk) which is the
sum of payoffs from three different terms: the payoff related to player n,
the payoff related to player k, and the payoff from links to all others players
j ∈ Jk.

� The payoff related to player n is given by r0nm ≡ pnm(1− pmkpnk)+
(1− pnm)pmkpnk + pnmpmkpnk.
� The payoff related to player k is given by r0mk ≡ pmk(1− pnmpnk)+
(1− pmk)pnmpnk + pnmpmkpnk.
� Finally, the payoff from all other players is given by r0nmΣk. Adding all
these up yields

Πm(g
ot ⊕ gmk) = r0nm + r0mk + r0nmΣk.

The link mk will not be formed when Πm(g
ot ⊕ gmk) − Πm(got) < 0, or

(1− pnm)pmkpnk + pmk(1− pnmpnk) + (1− pnm)pmkpnkΣk < c. Choose the
threshold probability δmk as the smallest number such that this inequality
holds, if pij > δ

m
k for all i 6= j. Regarding agent n, he does not want to form

an additional link with m ∈M , if

pmn(1− pmn) < c.

But this condition follows from pnm > δ
m
n , where δ

m
n is the smallest number

such that the inequality pnm(1− pnm) + pnm(1− pnm) P
k∈Km

pnk < c holds.

Finally, set eδ = max
m∈M

max
i6=m

δmi . Then if pij ∈ (eδ, 1) for all ij, we can support
the outward pointing star as Nash.

2. Proof of Proposition 6 :

Consider an outward pointing star. The central agent n plays no role
in this case. Every agent m receives a perceived payoff of Πm(g

ot) = pmn +
(n − 2)pmnpm − c. Consider the possibility that agent m wants to deviate
and form a link with some k ∈ Km. Her payoffs from this are given by
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Πm(g
ot + gmk − gmn) = pmk + pmkpm + (n − 3)pmk(pm)2 − c. Hence the

condition for no deviation is given by

pmn − pmk + pm(pmn − pmk) + (n− 3)(pmn − pmpmk)pm > 0

which is true when either pmn > pmk, or if pmn < pmk, then pmn > pmpmk
and (n−3)(pmn−pmpmk)pm > pmn−pmk+pm(pmn−pmk). In order to rule
out additional links, we require that just as before (n − 2)(1 − pnmpm) <
(1− pnmPk∈Km

pnk). This completes the proof.
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