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Abstract

The present paper tests for the existence of multicointegration between real per capita pri-

vate consumption expenditure and real per capita disposable personal income in the USA. In

doing so, we exploit the fact that the flows of disposable income and consumption expenditure

on the one hand, and the stock of consumers’ wealth, which can be considered as cumulative

past discrepancies between the flows of income and expenditure, on the other hand, can be

thought of as a stock-flow model, in which multicointegration is likely to occur. We apply re-

cently developed I(2) techniques for testing for multicointegrating relations and find supporting

evidence for the existence of multicointegration in US consumption data.
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1 Introduction.

Modelling consumer’s expenditure has been a long-standing occupation of several generations of

economists as well as econometricians. Economists have put forward a number of prominent the-

ories that have shaped our views of consumption and saving. These include, amongst others, the

formulation of the consumption function suggested by Keynes (1936), the permanent income hy-

pothesis (PIH) of Friedman (1957), and the life-cycle hypothesis of Ando and Modigliani (1963).

These contributions have been judged so significant that they have played roles in the awarding of

two Nobel prizes in economics.

Applied economists and econometricians for their part, have contributed the error-correction

models, that dominates modern time series econometrics, as initially suggested in Davidson, Hendry,

Srba, and Yeo (1978). The notion of error-correction mechanisms was first introduced into eco-

nomics by Phillips (1954) and Phillips (1957) who borrowed the idea from the control engineering

literature. These error-correction models were, later, statistically justified by the theory of coin-

tegration (see Engle and Granger, 1987, inter alia). In general, error correction models came

about as a response to the fact that theoretical economic models often stipulate only the long-run

or equilibrium relations between the economic variables. In so doing, they often fail (or are un-

able) to describe the dynamic adjustment toward these equilibrium relations as well as to take the

characteristic features of the actual data into consideration. Applied economists cannot be con-

tent with empirical models that yield only long-run or steady-state solutions. Thus, the approach

initiated by Davidson et al. (1978), while taking its inspiration from formal theoretical economic

models, specifically focused on designing empirical models that explicitly take the salient features

of the data into account. The relevance of the empirical models are judged on the basis of several

design criteria developed for this purpose. This data-driven approach, which subsequently evolved

into what is known as the London School of Economics (LSE) approach, offers a practical way of

modelling economic relations in general and modelling consumption functions in particular.

In this paper we model U.S. consumption function following this LSE traditions. The motivation

of the paper is as follows. Following Davidson et al. (1978), we assume the existence of a long-run

equilibrium relation between consumption expenditure and disposable income, which we assume to

be well approximated by I(1) processes in the sequel. In reality, however, this relation need not to

hold exactly in every time period. In other words, we assume that consumption expenditure and

disposable income are cointegrated. Thus, the resulting savings variable, or cointegration error,

defined as the difference between consumption expenditure and disposable income, is stationary.

Intuitively, this approach is appealing since generally one cannot spend income without earning it

and saving income without spending it also makes little sense.

Furthermore, suppose that in a given period saving is the increment to household wealth such



2

that the savings accumulated over time represent a measure of private wealth. Hence, the three

variables: income, expenditure, and the stock of cumulated savings (or wealth), taken together

form a stock-flow model, where the difference between income and expenditure is the increment

to the stock. Granger and Lee (1989, 1991) were the first to suggest the possible existence of a

second cointegrating relation in stock-flow type models, i.e. when the flow variables cointegrate

with the stock variable (which itself is created from the past flows). In our case, this corresponds

to cointegration between the stock of wealth and the flows of expenditure and income, and thus

the income and expenditure variables are multicointegrated in the sense of Granger and Lee (1989,

1991). In a bivariate system, multicointegration means that there exist two cointegrating relations

formed by the two original time series and their transformations. This is opposite to the usual

cointegration case where only a single cointegrating relation is allowed in a model with only two

variables. As we have noted above, the first cointegrating relation arises between the levels of the

flow variables, whereas the second cointegrating relation arises from the cumulated equilibrium

errors, obtained in the first step, as well as the original variables in levels.

The approximation of the stock of wealth by summation of the past discrepancies between

disposable income and consumption expenditure is not new in the econometrics literature. In fact,

Stone (1966, 1973) first approximated the stock of wealth held by households by cumulating past

savings in his study of the UK consumer expenditures. Clearly, the introduction of wealth effects

into the study of consumption behaviour of the economic agents seems not to be unwarranted as

some (unobservable to econometrician) wealth stock must undergo some changes when income and

expenditure flows fail to match each other 1. Elaborating on Davidson et al. (1978), Hendry and

von Ungern-Sternberg (1981) were the first to incorporate wealth into error-correction framework

by stipulating the existence of a long-run relation between the stock of wealth, on the one hand,

and the disposable income on the other hand. In other words, using the modern terminology, the

consumption function, developed in Hendry and von Ungern-Sternberg (1981), can be considered

as a multicointegrating system, which can be statistically tested using already available techniques.

The literature on multicointegration has been rather limited to date 2. To the best of our

knowledge, Lee (1996) is the only published study that tests for multicointegration in US con-

sumption data and finds no evidence for mulicointegration. On the other hand, Granger and Lee

(1989, 1991) found support for the presence of multicointegrating relations existing between secto-

rial production and sales figures across a range of US industries and industrial aggregates. In this

case, two cointegrating relations were found amongst the production and sales variables and the

stock of inventory defined as the cumulative historic difference between production and sales. In

succession, Lee (1992, 1996) and Engsted and Haldrup (1999) detected multicointegration in data

for US housing. They found a stationary linear relation amongst the flows of housing units started

and completed as well as the stock of housing units under construction; the latter being defined as
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the cumulated quasi-differences between the number of housing units started and completed in a

given period.

While Granger and Lee (1989, 1991) and Lee (1992, 1996) estimated the multicointegrating

relations using only the original I(1) variables, Engsted and Haldrup (1999) showed that the sta-

tistical inference and estimation of the multicointegrating relations could be carried out in the

framework of the Johansen FIML procedure for I(2) variables (Johansen, 1995). In order to ap-

ply this procedure,the original I(1) flow variables must be transformed into their cumulated stock

variants which then become I(2) series by construction. As advocated by Engsted and Johansen

(1999), this transformation of variables is necessary because the I(1) analysis turns out to be invalid

in the presence of multicointegration.

In the present paper we address the detection and estimation of a possible multicointegrating

relation in the US consumption data on consumer expenditure and disposable income as measured

in the National Income and Product Accounts(NIPA) by employing the recent technique developed

in Engsted and Haldrup (1999). For this purpose we use the same data set as in Campbell (1987)

which spans the years of 1953-1984. We use this limited in time data set for the following reasons.

First, it allows us to directly compare our results obtained via use of the I(2) technique with those of

Campbell (1987) who, among other things, estimated the marginal propensity to consume (hence-

forth, MPC) from hypothetical permanent income using only the first cointegration level between

the consumers’ income and expenditures. In particular, we are interested in determining whether

his rejection of the unitary MPC hypothesis could be attributed to omission of the multicointegrat-

ing relation in the modelling process. Second, by employing this period we avoid the wealth effects

of the stock market boom of the nineties on household consumption decisions. In the presence of a

persistently rising stock market (and implied growth in household wealth), the propensity to con-

sume out of disposable income increases, as do borrowing incentives. As the consequence, savings

correspondingly decline as the households increasingly rely on the realized and expected positive

equity market gains to do their savings for them (Auerback, 2000). This echoed by the fact that

the personal saving rate based on the NIPA, estimated around quite a steady eight percent during

the sixties and seventies, has collapsed to the levels of around two percent in 1997 and further to

the negative area in 1999 for the first time since the Great Depression (Gale and Sabelhaus, 1999).

Since in our model the stock of the wealth is approximated only by cumulative past savings, in

times of the sky-rocketing stock market of the nineties our measure of wealth diverges from that

perceived by consumers by significantly understating the stock of wealth.

Our main findings are following. First, using the Johansen FIML I(2) cointegration procedure

for the first time in the cointegration literature we find the supportive evidence for the multicointe-

gration in the US consumption data. The two error correction mechanisms from the corresponding

two levels of cointegration have statistically significant adjustment coefficients with anticipated
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signs when inserted in vector error-correction models suggested in Engsted and Haldrup (1999) for

the multicointegrated variables. Second, we cannot reject the null hypothesis that the marginal

propensity to consume from the permanent income equals unity. This finding contrasts that ob-

tained in Campbell (1987).

The plan of the paper is as follows. In Sections 2 and 3, we provide the formal definition

of multicointegration in the sense of Granger and Lee together with a brief description of the

Johansen FIML I(2) estimation technique which we use to make statistical inference as well as

for estimation of the multicointegrating relation as it was originally done in Engsted and Haldrup

(1999). Next, we present the stock-flow vector error correction models - henceforth VECM - for

the multicointegrating variables in Section 4. The data set and the empirical results are described

in Section 5. We draw conclusions and discuss possible extensions and limitations of this study in

Section 6.

2 The Statistical Model.

We use the consumption-income example presented above for the formal definition of multicoin-

tegration. Suppose that income, yt, and consumption variables, ct, are integrated of order one.

Moreover, assume that the variables in question are cointegrated, i.e. such that there exists some

stationary linear combination of these variables, or equivalently, these two variables share a common

stochastic trend:

st = yt − 1
γ

ct ∼ I(0). (1)

The I(0) variable on the left hand side of (1) , st, represents the cointegration error. Multicointegra-

tion occurs when the cumulated cointegration error, which is an I(1) stock variable by construction,

forms a cointegrating relation CI(1,1) with either one of the original flow variables or both 3:

t∑

j=1

(
yj − 1

γ
cj

)
+ φ1yt + φ2ct ∼ I(0). (2)

Notice that (2) represents the stationary linear combination between the flows of consumption

and income and the wealth variable which is the cumulated stock of the past discrepancy between

income and consumption.

Furthermore, if we adopt the convention that the generated I(2) variables are denoted in capital

letters,

Yt =
t∑

j=1

yj , Ct =
t∑

j=1

cj , ∆Yt = yt, ∆Ct = ct,
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then we can write our multicointegrating relation (2) in the form of a polynomial cointegrating

relation

Yt − 1
γ

Ct + φ1∆Yt + φ2∆Ct ∼ I(0), (3)

which occurs when I(2) variables cointegrate with their first differences, or at least one of them,

i.e. we could have that either φ1 = 0 or φ2 = 0. For example, in the case when φ2 = 0 the

multicointegrating relation is represented only in terms of the wealth stock and disposable income.

Observe that such a relation resembles one that has been suggested in Hendry and von Ungern-

Sternberg (1981) in addition to the cointegrating combination (1) which has been suggested earlier

in Davidson et al. (1978). Thus, the consumption function of Hendry and von Ungern-Sternberg

(1981) with income and wealth effects can be represented as a multicointegrating system.

Note that in the first cointegrating relation (1) we estimate the parameter γ. In Campbell (1987)

the γ parameter is defined as the marginal propensity to consume out of the hypothetical permanent

income. Campbell (1987) estimates this parameter in equation (1) using both a method of the grid-

search and the two-step Engle-Granger procedure, see Engle and Granger (1987). The method

applied in this paper can be considered as an alternative estimation method of the parameter of

interest. Note that the parameter γ is expected to be either equal to one or be a positive fraction,

i.e. 0 < γ ≤ 1.

As mentioned by Engsted and Haldrup (1999), the existence of the stationary relation between

the stock and flow variables (3) would imply that we can estimate the parameter γ in the first step

cointegrating relation (1) at the fast rate of consistency, Op(T−2).

Having defined the statistical and economic models, we consider the estimation and inference

procedures as well as the VECM representations for the multicointegrating variables.

3 Estimation and Inference Procedures.

Initially4, consider the following unrestricted VAR model of order k for the p×1 vector of variables

Xt integrated of order two:

Xt = Π1Xt−1 + ... + ΠkXt−k + εt, t = 1, ..., T, (4)

where we assume fixed initial values. The error term is identically, independently distributed

N(0,Ω). We also assume here that the roots of the characteristic polynomial of (4) either take

value of unity or lie outside the unit circle.
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Following Johansen (1995), as an intermediate step we can reparametrize (4) as:

∆Xt = ΠXt−1 +
k−1∑

i=1

Γi∆Xt−i + εt, (5)

where

Π =
k∑

i=1

Πi − I, Γi = −
k∑

j=i+1

Πj , i = 1, ..., k − 1.

Finally, after one more rearrangement we arrive at

∆2Xt = ΠXt−1 − Γ∆Xt +
k−2∑

i=1

Φi∆2Xt−i + εt, (6)

where

Γ = I −
k−1∑

i=1

Γi, Φi = −
k−1∑

j=i+1

Γi, i = 1, ..., k − 2.

The last reformulation (6) is convenient for the subsequent analysis because it displays rather

explicitly the reduced rank conditions that characterize the model with I(2) variables. Hence,

according to Johansen (1995) the I(2) model nested in the unrestricted VAR involves the following

two reduced rank conditions:

Π
p×p

= αβ′ α′⊥Γβ⊥
(p−r)×(p−r)

= ξη′,

where α and β are p × r matrices, and α⊥ and β⊥ are the respective orthogonal complements of

dimension p × (p− r) with r < p, such that by definition we have that α′⊥α = 0 and β′⊥β = 0.

The matrices ξ and η have the dimensions (p− r)× s with (p− r) > s. Further description of an

I(2) model requires more notation. Denote α = α (α′α)−1 such that Pα = αα′ is the orthogonal

projection matrix onto the vector space spanned by the columns α and correspondingly α′α = I

is the identity matrix. Then in addition to already introduced p × r matrix α we can define

the following matrices α1 = α⊥ξ and α2 = α⊥ξ⊥ of the corresponding dimensions of p × s and

p× (p− r − s) in such a way that α, α1, and α2 provide an orthogonal basis for the p−dimensional

vector space. The same holds for the following matrices β, β1 = β⊥η, and β2 = β⊥η⊥ which have

dimensions of p× r, p× s, and p× (p− r − s), respectively.

Using this notation, we can give the condition that rules out the presence of variables which
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are integrated of order higher than two, i. e. the following matrix needs to be of full rank:

α′2θβ2 = α′2

{
Γβα′Γ +

k−1∑

i=1

iΓi

}
β2.

In the following we will refer to the numbers r, s, and p − r − s as the integration indices.

Given the fact that we have p variables in the system (6), these integration indices, respectively,

indicate the number of I(0), I(1), and I(2) relations present in the model. Thus, the I(2) model is

characterized by the following. There are p− r− s linear combinations that do not cointegrate and

represent the common stochastic I(2) trends:

p− r − s : β′2Xt ∼ I(2).

There are s linear combinations of the Xt variables that cointegrate to the I(1) level referred to as

the common stochastic I(1) trends:

s : β′1Xt ∼ I(1).

The remaining r linear combinations of the Xt variables and often its first differences, ∆Xt, coin-

tegrate to the I(0) level:

r : β′Xt − δβ′2∆Xt ∼ I(0), (7)

where δ = α′Γβ2 is the r× (p− r− s) matrix. This matrix has an r× (r − (p− r − s)) orthogonal

complement δ⊥, such that δ′⊥δ = 0. Thus, in general we have that r ≥ (p − r − s). However,

as discussed in Engsted and Haldrup (1999) for the multicointegrating system it should be rather

common that r = (p− r − s).

It is important to note that for a bivariate I(2) system with Xt = (Yt, Ct)
′ this linear com-

bination (7) constitutes the only possible polynomially cointegrating relation defined in (3) with

β = (1,−1/γ)′ and δβ′2 = (φ1, φ2) . Therefore this relation is of our primary interest. Hence, we

would expect in the multicointegrating system to have one stationary relation5, r = 1, no common

I(1) trends, s = 0, and one common I(2) trend, p− r − s = 1.

As suggested in Johansen (1992) and Kongsted and Nielsen (2002), a representation of multi-

cointegrating relation (7) is not unique in the sense that we can find a coefficient matrix δ̃ and the

corresponding vector υ with the property υ′β2 6= 0, such that the following relation is I(0) as well:

r : β′Xt − δ̃υ′∆Xt ∼ I(0). (8)
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By specifying the matrix δ̃ = δβ′2β2(υ′β2)−1 and choosing a p × 1 unit vector υ = (..., 0, 1, 0, ...)′

with one at the ith position with i = 1, ..., p and zeros at the remaining positions j 6= i with

j = 1, ..., p, we can select either element of vector ∆Xt to appear in relation (8). Observe that for

bivariate system the choice of unit vectors υ is restricted to υ = (1, 0)′ or υ = (0, 1)′.

Moreover, as noted in Johansen (2002) analysis of I(2) systems is complicated by the fact that

rather few hypotheses on the multicointegrating relations allow the usual asymptotic χ2 inference.

As suggested in Kongsted and Nielsen (2002), the solution is to transform the original I(2) system

to the I(1) system, for which the theory of inference is well-developed. The transformed system

consists of the following I(1) variables X̃t = ((B′Xt)′, (v′∆Xt)′)′, where B = b⊥ is the p× (r + s)

orthogonal complement of a known matrix b for which the orthogonality condition b′(β, β1) = 0

is satisfied. The advantage of such transformation is that the inference on the parameters of the

multicointegrating relations can be achieved using the standard I(1) technique. In particular, the

multicointegrating parameter in the transformed system can be expressed as δ̃ = δb′b(v′b)−1, where

δ reflects the normalization rule for β2 in the original I(2) model and b provides a valid basis for

β2.

In order to address the question of how the models with different integration indices are related

we need the following notation. First, consider the restricted I(1) model without any I(2) trends.

This corresponds to the case when p−r = s, i.e. the matrix α′⊥Γβ⊥ has full rank. Thus we have only

one reduced rank condition left. Therefore, we denote Hr as a model that has rank(Π) ≤ r < p,

whereas H0
r denotes the model with the rank(Π) = r. Therefore H0

r is a submodel of Hr or

Hr = ∪r
i=0H

0
i .

Similarly, we define the more general hierarchical ordering of the models by allowing for the

I(2) relations as well. The model with Hrs involves two reduced rank conditions: rank(Π) = r < p

and rank(α′⊥Γβ⊥) ≤ s < (p − r). It nests the sub-models H0
rs with rank(α′⊥Γβ⊥) = s such that

the various models are related as follows: Hrs = ∪s
i=0H

0
ri and Hr0 ⊂ Hrs ⊂ ... ⊂ Hrp−r = H0

r ⊂
Hr ⊂ Hp.

The relations amongst the various bivariate models with the different integration indices are

viewed best when presented in Table 1, adapted from Johansen (1995).

Insert Table 1 about here.

Recapitulating, the upper-left corner of Table 1 houses the most restricted model H00 with Π =

Γ = 0 such that we have only the noncointegrating I(2) variables present. This corresponds to the

VAR in second differences, see (6). The unrestricted model placed in the lower-right corner is Hp

with p = 2, where we have only I(0) variables. The remaining models comprise one or another

form of cointegration as discussed above. The exception is the model H0 in the upper-right corner
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which contains only the noncointegrating I(1) variables such that it corresponds to the VAR model

in first differences.

This order of how the various models are nested determines the sequence of the testing procedure

for the integration indices in our model. We start testing with the most restrictive model against

the unrestricted alternative. In case we reject the hypothesis in question, we proceed to the less

restrictive model and so on until the first hypothesis that we cannot reject. This determines the

integration indices.

Notice that here we have ignored the deterministic terms for expositional simplicity. However,

inclusion of the appropriate deterministic terms seems to be an important issue in the empirical

application that follows. In particular, it is desirable to account for the following two features of

the data under scrutiny. First, we would like to allow for the presence of the quadratic trend in

our model. This is due to the fact that cumulation of the original I(1) variables, which exhibit

the trending behavior (see Figure 1), generates the nonlinear deterministic trends. Secondly, we

would like to allow for the possibility of having the trend-stationary multicointegrating relation

in our model. To see this, note that if the estimated I(0) savings variable in equation (1) has a

nonzero mean then by creating the measure of wealth stock as an integral of the savings we create

an I(1) variable with a linear trend. As a consequence, this generated wealth stock combined with

the original trending I(1) variables in general should form a trend-stationary multicointegrating

relation (2) unless these linear trends cancel each other out.

There are two readily developed parametrizations of the deterministic terms in the I(2) models

such as Rahbek, Kongsted, and Jørgensen (1999) and Paruolo (1994). The distinguishing feature of

the former specification is that it allows for the presence of the trend-stationary multicointegrating

relations. However, it does not allow for the existence of the quadratic trends in the model. Hence,

we find it inappropriate for the empirical application that follows. On the other hand, the specifica-

tion of Paruolo (1994) does allow for the quadratic deterministic trends in the model. However, it

has a limitation as it does not allow for the trend-stationary multicointegrating relations. Without

any other choice left, it is worthwhile taking a closer look at this specification. Then we will discuss

how the issue of trend-stationarity can be tested indirectly within this model.6

Considered the VAR model (4) with an unrestricted constant, i.e.:

Xt = Π1Xt−1 + ... + ΠkXt−k + µ + εt, t = 1, ..., T, (9)

According to Paruolo (1994), this results in the presence of linear and, most importantly, quadratic

trends in the data. This is best seen in the corresponding common stochastic trends representation7
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of the model given in (9):

Xt = C2

∑t
s=1

∑s
i=1 (εi + µ) + C1

∑t
i=1 (εi + µ) + C∗ (L) εt,

Xt = 1
2C2µt2 +

(
1
2C2µ + C1µ

)
t + C2

∑t
s=1

∑s
i=1 εi + C1

∑t
i=1 εi + C∗ (L) εt,

(10)

where

C2 = β2 (α′2θβ2)
−1

α′2

β′C1 = α′ΓC2

β′1C1 = α′1 (I − θC2) ,

and the matrix lag polynomial C∗ (L) has all the roots strictly outside the unit circle.

The model (10) allows for the I(2) process Xt with quadratic trends given by 1
2C2µt2. Next,

by defining the I(1) relations as β′1Xt we annihilate both the stochastic I(2)- and the quadratic

deterministic trends such that the resulting I(1) linear combinations have only at most a linear

deterministic trend given by β′1C1µt. Finally, due to the equality restriction β′C1 = α′ΓC2 there

are no linear deterministic trends in the multicointegrating relations β′Xt − δβ′2∆Xt.

Notice that the model (10) does not allow for different stochastic and deterministic orders in

either of I(2), I(1), or I(0) directions. In particular, as opposed to the parametrization of Rahbek

et al. (1999) it does not allow for the trend-stationary multicointegrating relations. Despite the

fact that we do not have a more general model that, by allowing both for quadratic trends and

trend-stationary relations, encompasses the specification of Paruolo (1994), we still are able to

address the issue of the existence of the linear trend in the multicointegrating relation. This line

of argument uses the interesting similarities of the inference procedure for integration indices that

exists between these two mentioned model specifications. But before doing this we describe the

steps of the inference procedure on the integration indices.

Rahbek et al. (1999) and Paruolo (1994) show that in the presence of the imposed restrictions

on the deterministic terms inference on the integration indices is performed in the likelihood-based

two-step procedure similar to Johansen (1995). Essentially, at the first step we address the reduced

rank of Π = αβ′ by testing the restricted model Hr against the unrestricted alternative Hp. For

later use in the empirical section, we denote the corresponding test statistic as S (r) . Then, by

fixing the rank of the matrix Π at each of the following values r = 0, ..., p−1 we address the reduced

rank of the other matrix α′⊥Γβ⊥ = ξη′ by testing the restricted model Hrs against the alternative

Hr,p−r model. Finally, because of the fact that in practice the reduced rank of the matrix Π is

unknown and since the models are nested as discussed earlier, inference on the integration indices is

based on the joint hypothesis of Hrs against the unrestricted Hp model. The relevant test statistic
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is referred to as S (r, s).

As discussed, in the first step both specifications address the number of stationary relations in

the model given by the rank of the Π matrix. At this stage, the models of Paruolo (1994) and

Rahbek et al. (1999) differ in that the latter allows for the linear trend to be restricted to the

cointegration space. Moreover, according to Rahbek et al. (1999) the likelihood-ratio test statistic

for the trend exclusion has χ2(r) asymptotic distribution for the given rank r of the Π matrix. This

result holds regardless of the values of other integration indices, see Corollary 4.1 in Rahbek et al.

(1999). Thus, ignoring the I(2) nature of the model we can address the issue of trend-stationarity

of the multicointegrating relations using the standard inference procedure.

We have argued above that the bivariate multicointegrating model contains two cointegrating

vectors that essentially appear in the form of a single polynomially cointegrating vector. In the

next section we demonstrate how these equilibrium relations can be incorporated into VECM

representations for multicointegrated variables.

4 The VECM for Multicointegrating Variables.

Engsted and Haldrup (1999) suggest two types of vector error correction models (VECM) for the

multicointegrating variables. The first type shows how the flow variables react to deviations from

an equilibrium. The second type shows disequilibrium responses in the stock variables.

Engsted and Haldrup (1999) present the VECM for the general case, potentially embracing more

than two variables. Since we operate in the bivariate system, we know that multicointegration in

such a system implies the following integration indices: r = 1, s = 0, and p−r−s = 1. This knowl-

edge allows us to simplify significantly the presentation of the VECM for the multicointegrating

variables which is given below.

Definition 1 The bivariate flow VECM representation for the multicointegrating variables:

∆xt = α[Qt−1 − δβ′2xt−1]− ζ1∆Qt−1 + Φ(L)∆xt + εt, (11)

where xt = (yt, ct)′, Qt =
∑t

j=1 β′xj represents the stock of cumulative equilibrium errors and

Φ(L) =
∑k−2

i=1 ΦiL
i contains the coefficients of the short-run dynamics. The adjustment coefficients

α and ζ1 = Γβ have the equal dimensions of p × r, with β = β(β′β)−1. The matrix δ = α′Γβ2 is

r × (p− r − s), where α and β2 are defined similarly to β.

Notice that this VECM incorporates several control mechanisms, as discussed in Hendry and

von Ungern-Sternberg (1981), for example. For instance, the integral control mechanism, [Qt−1 −
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δβ′2xt−1], represents the multicointegrating relation. The proportional control mechanism, ∆Qt−1 =

β′xt−1, represents the first step cointegrating relation between the variables in levels, and lastly,

the derivative control mechanism is given by the lagged ∆xt’s.

Definition 2 The bivariate stock VECM representation for the multicointegrating variables

∆x̃t = Mα[Qt−1 − δβ′2xt−1]− ζ̃1∆Qt−1 + (12)

+Φ̃(L)∆x̃t + MΦ(L)β2∆β′2xt−1 + Mεt,

where in addition to the variables and the model parameters defined above we have ∆x̃t = (∆Q′
t, ∆x′tβ2)′,

M = (β, β2)′, ζ̃1 = (ιr − Mζ1) with ιr = (1, 0)′, and Φ̃(L) = MΦ(L)M−1D⊥(1) such that

M−1 = (β
′
, β
′
2) and

D(L) =




∆ 0

0 1


 D⊥(L) =




1 0

0 ∆


 D(L)D⊥(L) =




∆ 0

0 ∆


 .

The latter VECM representation is worth commenting further on. First, note that the equilib-

rium relations are the same as in the former representation. Secondly, the variables that adjust to

the previous period disequilibrium state are the stock variable, Qt =
∑t

j=1 β′xj , as well as the flow

variables that appear in the VECM as the first difference of the I(2) trends, β′2xt. Finally, note

that the ”∼” parameters in (12) retain the same dimension as the parameters without the ”∼”

sign in (11).

5 The Empirical Application.

In this study we use the same data set as in Campbell (1987)8. This data set contains quarterly

data for the period of 1953:2 to 1984:4 with 127 observations. The data are the seasonally adjusted

time series of real disposable income and real total private consumption expenditure taken from

the National Income and Product Accounts with some adjustments made by Blinder and Deaton

(1985). The data are in per capita values in units of thousands US$. As noted above, by addressing

this sample period we are able to compare our results with those of Campbell.

The upper panel of Figure 1 displays the actual values of the real total disposable income, yt,

and the real total private consumption expenditure, ct
9. As seen, both the time series develop very

synchronously. Given the results of the ADF test reported in Campbell (1987) and Table 2 that

these variables are I(1), this is the first sign that they might be cointegrated. However, we are
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interested in testing whether the variables in question are multicointegrated.

Insert Table 2 about here.

Insert Table 3 about here.

In order to sort this out, we first transform the variables into their cumulative counterparts, Yt

and Ct, which are shown in the lower panel of Figure 1. Next we use these newly generated

I(2) variables to form a parsimonious bivariate VAR(7) model. Table 3 summarizes the results of

both the univariate and multivariate diagnostic tests of the estimated residuals. The univariate

diagnostic tests comprise: FAR8 - test for autocorrelation of most 8 th order (see Godfrey (1978));

Normality - test for the normally distributed residuals (see Doornik and Hansen (1994); FHET -

White (1980) test for heteroscedasticity based on the original and squared regressors; FARCH4 -

Engle (1982) test for the 4 th order AutoRegressive Conditional Heteroscedasticity. The multivariate

test statistics denoted with the superscript v were derived in Doornik and Hansen (1994) for vector

normality, and in Doornik (1995) for vector autocorrelation and vector heteroscedasticity. The

graphics, regression output, and residual diagnostic tests were calculated using GiveWin 2.2 and

Pc-Give 10.2 (see Doornik and Hendry, 2001a,b).

Taken as a whole, it seems that the model residuals do not display autocorrelation, ARCH

effects, and heteroscedasticity when judged on the basis of both from the results of the univariate

and the multivariate specification tests. However, their is some deviation from the normality

assumption in the equation for Ct. An additional information can be obtained from Figure 2,

which provides a graphical analysis of the estimated residuals. It contains the estimated residuals,

their correlogram, spectral density, and histogram. As seen, the deviation from normality in the

equation for Ct occurs due to a small number of large negative residuals. The most important

assumption we require to be fulfilled is the absence of autocorrelation in the VAR residuals, since

it introduces nuisance parameters in the limiting distribution of the test statistics. This invalidates

the asymptotic critical values that we use in our statistical inference procedure. On the other hand,

Gonzalo (1994) showed that the FIML Johansen procedure is rather robust to minor departures

from the model assumptions due to non-normality.

The system dynamics is summarized by the eigenvalues of the companion form of (4)

(1.006, 0.9839± 0.0733i, 0.867± 0.2793i, 0.6281± 0.4737i, 0.06447± 0.5902i,

−0.5195± 0.2325i,−0.7123,−0.1898± 0.7429i).
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A priori, in the bivariate multicointegrating model we would expect two unit roots corresponding

to the one common I(2) trend. As seen for the given realization of the stochastic variables in

our model we have one explosive eigenvalue, but it needs not be significantly different from unity.

Hence, we assume it to be a unit root in the sequel. Furthermore, we have two pairs of compara-

tively large complex conjugate eigenvalues of moduli 0.986 and 0.910, respectively. The remaining

eigenvalues of rather smaller magnitude lie at some other different from the zero frequencies. Thus,

the unrestricted VAR model seems to contain at least two unit roots or, possibly, more.

The statistical inference10 of testing sequentially the hypotheses of the restricted submodel Hrs

against the unrestricted alternative Hp yields the results displayed in Table 4.

Insert Table 4 about here.

As seen from Table 4 the rank determination is problematic as practically every hypothesis is

rejected either at the 10% or 5% significance level. Hence, the results of formal testing suggest

that the variables of interest are I(0). This contradicts the decisive evidence from the unit root

tests, see Table 2, which suggests that the original variables in levels are I(1). Consequently, the

constructed cumulated variables should be I(2) and hence we should have at least one common I(2)

trend in the system. On the other hand, given the uniform rejection of the hypothesis r = 0, we

can conclude that at least one stationary relation exists in our model. Using these considerations,

we choose to restrict the values of the integration indices as follows: r = 1, s = 0, and p−r−s = 1.

That is we allow for the presence of one common I(2) trend and one stationary multicointegrating

relation in the system.

Having chosen the integration indices, we address the issue of possible trend stationarity of the

multicointegrating relation as discussed above. The likelihood-ratio test statistics for the exclusion

of trend from the multicointegrating relation yields the value of 1.2, which is not significant when

compared with the usual critical values of the χ2(1) distribution. This is the evidence against the

trend-stationarity of the multicointegrating relation. This justifies application of specification of

the deterministic terms according to Paruolo (1994).

Insert Table 5 about here.

Table 5 summarizes our estimation and inference results on the parameters of the multicointegrating
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relation. The unrestricted estimate has the following form:

t∑

j=1

(yj − 1.014cj)− 5.741yt − 5.664ct. (13)

As pointed out above, it embodies the first level cointegrating relation (1):

st = yt − 1.014ct, (14)

where the estimated γ parameter is γ̂ = 1/1.014 = 0.986. We are interested in testing of the

following two hypotheses. First, the hypothesis of the unitary MPC from the permanent income,

i.e. γ = 1. The corresponding likelihood ratio test statistic is 0.064 with the p−value 0.800

according to the asymptotic χ2(1) distribution. Thus we cannot reject the null hypothesis that

the MPC from the permanent income is one, i.e. income and consumption form a cointegrating

relation described by β = (1,−1)′. Second, we test the hypothesis whether the estimate of the

MPC reported in Campbell (1987) (γ̂ = 0.941) is consistent with our results. In other words, we

test whether income and consumption are cointegrated with the vector (1,−1.062)′ as given in

Campbell (1987, see Table I, p. 1260). The likelihood ratio test for imposing this restriction on the

obtained vector β yields the value of 7.295, which is significant even at the 1% level according to the

asymptotic χ2(1) distribution. In summary, our findings sharply contrast with those of Campbell

(1987). We cannot reject the null hypothesis of the unitary MPC at the conventional significance

levels, whereas we decisively reject the null hypothesis that the MPC takes value reported in

Campbell (1987). The difference is attributed to the fact that we employ I(2) analysis and allow

for existence of multicointegrating relation in the statistical model.

Furthermore, as suggested in Johansen (1992), after imposing the accepted restriction on the

β = (1,−1)′ vector, we transform the multicointegrating relation (13) into the following one:

t∑

j=1

(yj − cj)− 14.240
(0.500)

yt. (15)

Following suggestion of Kongsted and Nielsen (2002), the estimate and standard error of the mul-

ticointegrating parameter δ̃ has been obtained from the standard I(1) analysis on the transformed

I(2) system X̃t = ((B′Xt)′, (v′∆Xt)′)′ with Xt = (Yt, Ct)′, B = (1,−1)′, b = (1, 1)′, and v = (1, 0)′.

The null hypothesis that there are no cointegrating relations in the transformed system is decisively

rejected based on the trace test statistic of 21.399[0.005] with p−value in the squared parentheses,

and the null hypothesis that there is at least one cointegrating vector correspondingly accepted
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with the trace test statistic of 2.0253[0.155]. This result further reinforces our earlier conclusion

on the presence of the multicointegrating relation in the data under scrutiny.

We display the estimated cointegrating and multicointegrating relations in Figure 3.

As the final exercise we place the estimated equilibrium relations in the VECM discussed in

Section 4. The flow VECM looks as follows:




∆yt

∆ct


 =




−0.0000
(0.0027)

0.0084
(0.0026)∗∗∗




(
Qt−1 − 14.240

(0.500)∗∗∗
yt−1

)
+




−0.0061
(0.0888)

0.3071
(0.0859)∗∗∗


 (∆Qt−1) +

(16)

+lags{∆yt, ∆ct}+ constant + error term.

The stock VECM is




∆Qt

∆β̂′2 (yt, ct)
′


 =




−0.0084
(0.0023)∗∗∗

0.0083
(0.0049)∗




(
Qt−1 − 14.240

(0.500)∗∗∗
yt−1

)
+




0.6867
(0.0744)∗∗∗

0.3009
(0.1582)∗


 (∆Qt−1) +

(17)

+lags{∆yt, ∆ct}+ constant + error term.

where the stock variable is Qt =
∑t

j=1 (yj − cj) in both the VECMs. The standard errors are

reported below the estimated coefficients in the parentheses. The symbols ∗ ∗ ∗, ∗∗, ∗ indicate

significance at the 1%, 5%, and 10% level, respectively.

As seen, in the flow VECM (16) the income adjustment coefficients that correspond to the inte-

gral and proportional mechanisms are found to be insignificant. On the opposite, the consumption

adjustment coefficients are significant even at the 1% level and they are correctly signed. Hence,

consumption strongly reacts to the past deviations from the found equilibrium relations through

both adjustment channels. In the stock model, the first equation is of most interest to us, as

it describes the adjustment of the wealth stock to the past disequilibria. Again, the adjustment

coefficients are highly significant and correctly signed.
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6 Conclusions.

Using the same data set as in Campbell (1987), this study has been first in the literature to detect

the presence of multicointegrating relation between the consumption expenditure and disposable

income flows that was anticipated by Granger and Lee (1989, 1991). As it was initially suggested

by Engsted and Johansen (1999) and implemented in Engsted and Haldrup (1999), we perform

statistical inference and estimation of the multicointegrating relation using the I(2) technique based

on the Johansen (1995) FIML procedure.

Since we use the same data set as in Campbell (1987), we are able to make comparisons

with his parameter estimates. Campbell uses the Engle-Granger two step procedure to obtain

the super-consistent estimate of the parameter of his interest. The advantage of using the I(2)

technique applied here, is that in the presence of multicointegration we are able to estimate the same

parameter at the super-super consistent rate of Op(T−2). Also the two step procedure is generally

invalid when series are multicointegrated, see Engsted and Johansen (1999). Our estimation results

suggest that the hypothesis that income and consumption variables are cointegrating with the

vector β̂ = (1,−1/γ̂)′ = (1,−1.062)′ as reported in Campbell (1987) can be rejected at the 1%

significance level, where γ denotes the marginal propensity of consumption out of the permanent

income. On the other hand, we cannot reject the hypothesis that these variables are cointegrated

with the vector β̂ = (1,−1)′; paradoxically, this hypothesis has been rejected in Campbell (1987).

Thus, our results suggest that the marginal propensity of consumption out of the permanent income

equals unity, i.e. γ = 1.

The existence of a multicointegrating relation implies that there are two layers of cointegrating

relations in the bivariate model. We incorporated these two estimated equilibrium relations in the

error correction models for the multicointegrating variables that were initially proposed by Engsted

and Haldrup (1999). The estimated adjustment coefficients that are statistically significant appear

to be correctly signed in both VEC models.
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Notes

1Muellbauer and Lattimore (1995) summarize the economic role of assets on the consumption

decisions.

2We would like to distinguish between multi- and polynomial cointegration. The former refers

to the situation when the focus is on the long-run relations between the original I(1) variables and

their I(2) transformation, whereas the latter - on the long-run relations between the original I(2)

variables and its first differences or some other I(1) variables. For recent examples of polynomial

cointegration analysis see Kongsted (2003), Nielsen (2002), and Banerjee, Cockerell, and Russell

(2001).

3We assume zero initial values for yt and ct. Such scaling has no implications for the further

analysis, except that proper allowance for deterministic components in the model will be needed.

4The I(2) analysis in VAR models is technically involved. Therefore, in the further discourse

we mainly present the skeleton of the inference and estimation procedures we use. For a recent

review of the I(2) analysis as well as for the further technical details, see e.g. Haldrup (1998) and

the references therein.

5Observe that by using the I(2) formulation of the problem the single multicointegrating relation

involves the two layers of cointegration that follow from the usual I(1) analysis.

6This point has been made by Hans Christian Kongsted.

7In the common stochastic trends representation we omit the nuisance parameters introduced

by the initial conditions, see Johansen (1995).

8This dataset has been used extensively in the literature, for example, in Blinder and Deaton

(1985), Campbell and Deaton (1989), Flavin (1993), and Vahid and Engle (1993).

9As pointed out by Muellbauer and Lattimore (1995), when modelling the consumption func-
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tion one should be concerned with the possibility that the error term grows with the scale of

consumption. Consequentially, they suggest using the log transformations of the consumption and

explanatory variables in order to remedy this potential problem. Fortunately, this effects are ab-

sent in our data, see Figure 1. Therefore in the subsequent analysis we proceed with the variables

measured in the natural units. Further advantage of using the data in the present form is that in

the framework of the multicointegration analysis it is easier to interpret the measure of wealth in

terms of the cumulative savings.

10All I(2) analysis has been performed using the I(2) procedure written by Clara M. Jørgensen

for the CATS in RATS package( available online http://www.estima.com/procs/i2index.htm).
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Table 1: Hierarchy of the various models for p = 2.

r I(2) model I(1) model I(0)model

0 H00 ⊂ H01 ⊂ H02 = H0
0 ⊂ H0

∩

1 H10 ⊂ H11 = H0
1 ⊂ H1 ⊂ H2

p− r − s 2 1 0 0

Adapted from Johansen (1995).
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Table 2: Results of the ADF test.

Variable Deterministic terms Augmentation t-ratio 5% critical value

yt Constant, Trend 1,5 -2.027 -3.45a

ct Constant, Trend 2 -2.224 -3.45

aThe critical values are reported after Fuller (1976).
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Table 3: VAR (7). Residual diagnostic tests.

Univariate analysis Multivariate analysis

Yt : FAR8( 8, 97) = 1.4002 [0.2061] F v
AR8(32,176) = 0.9399 [0.5646]

Ct : FAR8( 8, 97) = 1.4423 [0.1888]

Yt : Normality χ2(2) = 2.3321 [0.31] Normalityv χ2(4) = 13.207 [0.01]

Ct : Normality χ2(2) = 17.043 [0.00]

Yt : FHET (28, 76) = 1.0256 [0.45] F v
HET (84,222) = 0.8891 [0.73]

Ct : FHET (28, 76) = 1.2864 [0.19]

Yt : FARCH4( 4, 97) = 0.2154 [0.93]

Ct : FARCH4( 4, 97) = 0.2222 [0.92]

The corresponding p-values are reported in the square brackets.
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Table 4: Test for integration indices.

p− r r S (r, s) S (r)

2 0 30.14* 21.49 ∗ ∗ 20.75**

30 .25 19 .79 15 .4

1 1 7.02 ∗ ∗ 5.33 ∗ ∗

5 .99 3 .8

p− r − s 2 1 0

**,* indicate rejection at the 5% and 10% significance levels, respectively.

The asymptotic 95% quantiles are reported in italics, see Table A1 in Paruolo

(1994).
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Table 5: Estimation and inference results, r = 1, s = 0, p− r − s = 1.

Unrestricted model Hypotheses testing

β̂ = (1,−1.014)′ δ̂ = 5.664 H0 : γ = 1,

β1 = 0 H0 : β = (1,−1)′ χ2(1) = 0.064[0.800]

β̂2 = (1.014, 1)′ H0 : γ = 0.941,

Restricted model H0 : β = (1,−1.062)′ χ2(1) = 7.295[0.007]

β̂ = (1,−1)′ ̂̃
δ = 14.240

(0.500)
1

β1 = 0

β̂2 = (1, 1)′

1 The parameter eδ and its standard error estimate are obtained from the standard

I(1) cointegration analysis of the transformed I(2) system fXt = ((B′Xt)
′, (v′∆Xt)

′)′

with Xt = (Yt, Ct)
′, B = (1,−1)′, b = (1, 1)′, v = (1, 0)′ as suggested in Kongsted and

Nielsen (2002).
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Figure 1

Data.

(a) Total real consumption expenditure, ct, total real disposable income, yt, per capita values in

thousands US$, seasonally adjusted.

(b) The cumulative series of ct and yt, denoted Ct and Yt, respectively.

Figure 2

Estimated residuals, their correlogram, spectral density, and histogram.

Figure 3

Paruolo (1994) specification: estimated cointegrating relation (CI): yt − 1.014ct, restricted cointe-

grating relation (CIrestr): yt−1−ct−1; estimated multicointegrating relation (MCI):
∑t

j=1 (yj − 1.014cj)−
5.741yt−5.664ct, and restricted multicointegrating relation (MCIrestr):

∑t
j=1 (yj − cj)−14.240yt.

All in deviations from the respective mean values and adjusted to have the same range.
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Figure 1:
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Figure 2:
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Figure 3:


