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Abstract

The paper analyzes the network structure of international trade.
Adapting a network approach developed in the physical sciences, we
propose that international trade functions like a scale-free network. For
each commodity group we calculate a characteristic parameter which
reflects the structure of its trading network. We then insert this vari-
able into an expanded gravity model to explore the effect of the network
structure on the value of bilateral trade. The estimation suggests that,
inter alia, globalization has reduced the value of trade per product
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1 Introduction

Many relationships in nature, society and the economy are structured as net-

works. Economic theory, however, has been slow to integrate networks into

its analysis due to two methodological challenges. First, social networks

require rather sophisticated mathematical tools. Secondly, networks that

were traditionally analyzed in mathematics were inappropriate for describ-

ing economic networks. However, recent developments in network theory

derived from the physical sciences can be adapted, thus advancing the eco-

nomic analysis of networks.

The aim of this paper is to demonstrate the importance of network effects in

international trade using an extension of the gravity model. Our approach

was inspired by [9] who was the first to consider a network/search view

of trade. Rauch’s analysis incorporates the fact that differentiated prod-

ucts are, contrary to theory, not traded on markets but in networks into

the gravity model by classifying products according to their differentiability

into three distinct classes, and estimating the model for each class sepa-

rately. Broadly speaking, Rauch uses the term network as a proxy for the

costliness of the matching process, where differentiated products are traded

in networks and homogenous goods on organized markets. We apply a dif-

ferent notion of the term network that takes into account the fact that every

good, irrespective of its characteristics can only be traded in an international

network.

In this paper, we analyze the structure of the network of international trade

for various product groups. Our approach entails three innovations. First,
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from a theoretical point of view, we offer an adaption of the physical sci-

ences approach to network theory in the field of economics. Second, from a

methodological point of view, we expand the gravity model of international

trade by adding, for each product group, an explicit network term into the

model. Third, from an empirical point of view, we demonstrate that the

network structure of international trade has a significant effect on the vol-

ume of its bilateral trade.

This paper is organized as follows: section 2 provides an overview of network

theory and discusses networks in international trade, section 3 calculates a

single parameter that characterizes the connectivity of a network and esti-

mates the extended gravity model, and section 4 concludes.

2 Network Theory

2.1 Small-world networks

By the term network we understand a set of elements, called vertices, which

are connected to each other through interactions, called edges [5]. Adapting

this definition to international trade, each country is a node and the trading

links are edges. While there are many more examples of economic systems

as complex networks, economists have only recently begun to focus on net-

works in the economy (two notable examples are [4] and [12]). One limiting

factor for analyzing networks in economics has been the complicated math-

ematics [5]. Network analysis is complicated by interactions that posses a

intricate topology, by diversified nodes (e. g. more or less wealthy agents)

and edges (e. g. the volume of a transaction), and by dynamically evolving
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networks [10].

Due to these complexities, one of two simplifying assumptions can be adapted

to proceed in the analysis. Either a simplistic topology of the network is as-

sumed in order to analyze its interactions. Or the interactions are assumed

to be binary interactions (i. e. of relevance is only whether a connection be-

tween nodes exist or not). In the following we adapt the second approach.

We will therefore focus on whether one country exports to another country

at all, neglecting the volume of these exports.

Economists also often neglect networks because for years mathematicians

have analyzed classes of networks which seemed to be of little relevance

in economics. Originally, the most important distinction between different

types of networks has been whether the network was structured or random.

That is, if a network did exhibit some kind of regularity it was called a

structured network, if it had been modelled to describe a structure that had

evolved through a process of uncoordinated actions by agents it was called

a random network.

Structured networks are highly clustered, i. e. two neighboring vertices of a

vertex tend to be closely connected with each other, too. On the other hand

they have rather large average path length, i. e. two arbitrarily chosen ver-

tices must use in general a large number of intermediary vertices to connect

to each other.

Random networks, on the other hand, have short average path lengths and

small clustering coefficients.

A third class of networks, so called small world networks, can be under-

stood as a combination of random and structured network. They posses
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two important features [2]:

1. preservation of the local neighborhood (clustering)

2. the average shortest distance between all possible pairs of vertices

increases logarithmically with the number of vertices n.

Small-world networks can be further distinguished according to the prob-

ability distribution of the number of connections each node has, i. e. its

degree distribution. There are then at least two representations of small-

world networks: (a) single-scale (or exponential) networks, characterized

by a connectivity distribution with an exponentially decaying tail and (b)

scale-free networks, characterized by a connectivity distribution that follows

a power law [2].

Most research in the field of small-world networks has been traditionally

devoted to single-scale networks because researches believed that the over-

whelming majority of networks displayed their properties. Indeed, empirical

research has found relevant examples of such networks, including electric

power grid systems and the number of flight connections of an airport [2].

In a seminal article, Barabási and Albert [5] introduce the concept of scale-

free networks. Real-world examples are the actor collaboration network and

the World Wide Web. The connectivity distribution of scale-free networks

follows a power law, that is, P (x) ∼ ax−γ , with x denoting the number of

connections per node. This implies that even though vertices with a large

number of connections are rare, they are statistically significant.

For example, most of the web sites on the internet have only a few outgoing

and incoming links. However, a small number of sites, such as Yahoo, act

4



as hubs and tend to be extremely well connected. A similar pattern can

be observed with the pool of all actors. In many movies a large number of

unknown actors are cast with a few famous actors. These few famous ac-

tors usually are well connected. The supporting actors, despite forming the

overwhelming bulk of the actors’ pool, tend to be rather poorly connected.

Clearly, modelling the process that leads to the emergence of a scale-free

network has to differ in some important aspects from that of an exponential

network. Barabási and Albert [1] identified two important mechanisms that

are responsible for the emergence of power law scaling: preferential attach-

ment and a growing network. Whereas the exponential models assume that

the numberN of vertices remains fixed, scale-free networks require that their

number must be growing by adding new nodes. This implies that scale-free

networks can be modelled by starting with a small number m0 of nodes and

then adding at each period a new node with m ≤ m0 edges. These new edges

have to be connected to the network, but whereas the connection procedure

for exponential networks is characterized by choosing a vertex with uniform

probability, scale-free networks require that the probability Π that a node

i will receive an edge of a new node is proportional to its connectivity xi,

that is, Π(xi) = xi∑
j xj

. Clearly, after t periods this network has N = t+m0

nodes and mt edges and for t→∞ the degree distribution follows a power

law, i. e. P (x) ∼ 2m2x−γ , with an exponent γ = 3 which is independent of

time [1].
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2.2 Scale-free networks

Given our prior knowledge of the international trading system, we hypoth-

esize that international trade takes place within a scale-free network, i. e.

that it posses for every good (a) a high clustering coefficient, (b) a short

average path length, and (c) a degree distribution that follows a power law.

We propose that these properties are unifying principles. This section will

motivate our hypothesis from a theoretical point of view. In particular, we

discuss the implicit assumption that the distribution of trading links follows

a power law and we consider ways in which the model of scale-free networks

and international trade may diverge.

We have not calculated the average path lengths and clustering coefficients

explicitly. Nevertheless, it is rather obvious with regard to (a) that if two

countries, say France and Italy, trade with another country, say Germany,

they tend to trade with each other too, and with regard to (b) that coun-

tries that are far apart have to use only a small number of intermediaries to

connect to each other.

Condition (c) is also intuitively plausible, especially when considering inter-

industry trade. Countries export those goods in which they are special-

ized. This implies that for a given good only a few countries export heavily

whereas the majority is rather poorly connected. Consider for example the

product group crude oil. There are only a handful of countries that produce

oil. However, these few countries supply oil to almost every other country.

Therefore, if we plot the number of trade links per exporting country against

the number of countries which have that many links, we expect to discover
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a distribution which has very high values in the beginning but radically de-

caying values to the right on the x-axis.

On the other hand, a large amount of international trade is intra-industry

trade. A good example is butter, which is produced all over the world. Still

a significant amount of trading is taking place because, for instance, the

French buy butter from Ireland and the Irish buy French butter. There-

fore, a more complex but also more even pattern of trade might be observed

in the case of butter. There are more countries than in the case of crude

oil exporting to a significant number of other countries and there are fewer

countries with a negligible number of export links.

Our hypothesis that the trading network can be modelled as a scale-free

network is further supported by the fact that it evolves through a process

of preferential attachment. That is, countries tend to import a certain good

from countries that are already established exporters of that good.

There are some potential divergences between the characteristics of scale-

free networks and of the world trading system. First, a scale-free network

must be growing while in the world economy the number of countries re-

mains largely fixed. However, this is, in our view, not a hinderance for our

empirical analysis because the aim of this requirement is to ensure that not

every node is connected to the whole network after a couple of time periods.

In our case we may consider the time periods to be quite large, new links

are added in decades rather than in days.1

1Furthermore, during the time span that is covered by our empirical analysis (1976-
2002) the number of countries has indeed grown significantly with the disintegration of
the USSR and the Federal Republic of Yugoslavia, the partition of Czechoslovakia, the
independence of Eritrea and East Timor etc.
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Second, a somehow more intriguing feature of international trade that is not

matched by the model of [1] is that the number of trading links a country

has is decisive in increasing its probability of receiving additional links and

is reducing the probability that another country receives an additional link.

Once an importing country is obtaining a certain good from one country its

need to connect to a second exporting country will shrink. This implies that

the number of edges a new vertex can have, too, should be subject to some

kind of randomization. A third dissimilarity would be the fact that links

are added not only by nodes that are new to the system but between nodes

that already exist.

Third, discussing small-world properties in the context of trade in disaggre-

gated goods might be inappropriate. A valid critique would be that bilateral

trade largely takes place without intermediating countries. However, this is

not always true. For instance, there are notable exceptions such as the trade

in diamonds which revolves around the Netherlands, and countries like Sin-

gapore and Hongkong which act as trading hubs. Furthermore, even though

there are no intermediating countries, there are indeed many intermediating

distributors, traders etc., that is nodes which have to be passed before a

good reaches its destination.

These are certainly exciting topics that should be explored further in future

research. In this paper, however, we focus on condition (c), namely on the

connectivity distribution of a country with respect to a particular good. In

this context, our example of Irish butter indicates the the issue of the dis-

tribution of connectivity is closely intervened with that of classification and

aggregation. If we only considered the product Irish Butter, we would find
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a far more uneven distribution of export links than for oil.

These discrepancies between the world trading network and the model of

scale-free networks concern the formation of networks. However, explor-

ing this issue in greater detail is beyond the scope of this paper as we are

only interested in the structure of the trading network, that is, whether it

connectivity distribution displays scale-free properties.

2.3 Characterizing scale-free networks with power law func-

tions

With the analysis of scale-free networks power laws have gained prominence

in network theory. If the degree distribution of a good k follows a power

law, its functional form can be given by P (xk) ∼ akx
−γk , with xk denoting

the number of links, γk a constant exponential parameter and ak represent-

ing a multiplicative factor. However, recognizing power laws in real-world

networks is challenging as for certain ranges power law and exponential (or

respectively logarithmic) distributions display similar shapes. Fortunately,

a rather applicable method for recognizing power law distributions emerges

by examining the log-log plot of the data. The reason is straightforward:

taking logs on both sides results in log yk = log akx
−γk = log ak − γk log x,

that is, if the data follows a power law in the original scale, its log-log plot

should be a linear function with a slope of −γk.

An interesting property of power law distributions is that they are invariant

of scale, and it is exactly this property which gives scale-free networks their
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name.2 The term scale-free derives from the fact that the shape of a power-

law function does not change if the scale of measurement is changed. More

formally, a power law distribution p(·) satisfies p(bx) = g(b)p(x) [8]. This

implies that for two values l and m the ratio of p(l) and p(m) remains un-

changed irrespective of scale. This property distinguishes power laws from

exponential functions which are sensitive to changes in scale (hence expo-

nential networks are also sometimes called single-scale networks).

One characteristic of power law functions that contrasts with our aim to

capture the network characteristics of trade in a single value is the fact that

the power law function which we use possesses two parameters, ak and γk.

However, it is in order to consider only the exponential parameter. Because

we are considering density functions, we have to normalize them according

to:

1 =
∫ ∞

xmin

p(x)dx = ak

∫ ∞

xmin

x−γkdx =
ak

1− γk

[
x−γk+1

]∞
xmin

. (1)

If γk > 1, it follows that ak = (γk−1)xγ−1
min, which implies for the normalized

expression of the power law function:

p(x) =
γk − 1
xmin

(
x

xmin

)−γk

. (2)

2It is regularly asserted that scale-free networks derive their name from the fact that
power laws do not have a ”mean” connectivity. However, the last explanation is somehow
imprecise. Under certain conditions it is possible that an average amount of connections
can be established (even though interpreting this moment might not be very meaningful).
The mean of a random variable x, which is distributed according to a power law, is given
by E(x) =

∫∞
xmin

xp(x)dx = ak

∫∞
xmin

x−γ+1dx = ak
2−a

[
x−γ+2

]∞
xmin

. A mean exists for

γ > 2; and this is a requirement that is fulfilled for most real world networks [5]. What
is actually meant by stating that these distributions do not have a mean connectivity
is that there is no value where the distribution has a peak, that is, they do not have a
characteristic value around which the distribution is centered.
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That is, once we are dealing with normalized power law functions, the expo-

nential parameter fully characterizes its scaling properties, and it is sufficient

to estimate only that parameter.

Another obstacle in modelling real world networks using power law func-

tions is that one has to choose a minimum threshold xmin > 0. A minimum

threshold is needed because the power law functions we are interested in

have a negative exponent and have, therefore, a singularity at x = 0. How-

ever, it should be noted that we can expect to find x = 0 in our trade data

rather frequently.

3 Data and Estimation

3.1 The network variable

In addition to the well known economic determinants, social, political and

institutional factors are crucial albeit unobservable determinants of interna-

tional trade. The γ variable however can be understood as a pooled measure

for the various unobservable product and production characteristics that de-

termine the structure of the trading network. For example, if some good is

produced by a large number of countries, then the γ variable will tend to be

small. If some good is so differentiated that the trade of this good requires

a large amount of social interaction, and only a small number of countries

have such well established ties, then the γ variable will tend to be large.

Different goods will tend to absorb these countervailing effects differently,

and thereby produce unique trading structures.

After expanding the gravity model with the γ-variable, we will calculate a

11



distinct coefficient for the relationship of a given network structure and the

amount of trade.

One major advantage of this approach is that, unlike [9], we do not have to

classify goods first with regard to their differentiability into discrete classes in

order to deduce their trading structure, but are able to provide a continuous

measure of the trading structure. By doing so, we can capture implicitly the

degree of homogeneity of a good. We are then able to distinguish between

determinants of trade that should be attributed to the respective countries

(e. g. GDPs, Distance etc.) and determinants that can be attributed to the

specific good that is traded.

A simple reason why we could expect that an uneven trading structure tends

to increase the value of trade is that the exporting countries can restrict the

supply deliberately and act as if they had a mono- or oligopoly (which would

result precisely in a smaller volume, but in a larger value of exports). On

the other hand, we may argue no less convincingly that a small number of

well connected countries tends to reduce supply in a manner that the lower

volume outweighs a possibly higher price, and thereby reduces the value of

trade.

An important feature of the trading network is that the number of vertices

and, therefore, the number of edges that can be found is rather small.3 This

implies that the statistical noise may be quite large and fitting the data to

a power law function might be difficult. Using data from the Direction of

Trade Statistics Database (DOTS) of the IMF, we plot in figure 1 the fre-

3There are n(n−1)
2

possible edges with n denoting the number of countries, as one
country can have at most n − 1 links. The exact value of n, however, is ambiguous and
may range from 192 (member states of the UN) to more than 220.
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quency distribution of the number of trading partners per country.4 Even

Figure 1: Frequency distribution of the number of trade partners per coun-
try.

Figure 2: The distribution of (a) the number of trade partners and (b) the
log-log plot with a superimposed best line fit. Bins of the width 5 have been
applied.

though the distribution is right-skewed, it is erratic and for most of the

range the data might be fitted equally well by a uniform distribution. This
4In this case countries are thought to have a trading link if they trade at least one

good with each other, further below, however, we will disaggregate into different product
groups and use, therefore, other and more disaggregated data.
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is due to the fact that we have a small number of observations. As argued

above, the number of trade links can be expected to follow a power law, as

it is probable that countries are asymmetrically connected to the rest of the

world.

We can solve this problem either by increasing the amount of observations

(i. e. for example by considering trade between regions) or by binning the

observations. We adopt the second approach as the first requires data that

is not readily available. In the histogram of figure 2a, we can recognize a

smooth power law relationship, a presumption which is reinforced by in-

specting the log-log plot. (figure 2b)

Another problem, already mentioned above, stems from the fact that we

have a large amount of zero observations in our data which we cannot ap-

proximate with a power law function because of its singularity at x = 0. We

resolve this issue by using the midpoint of the lowest bin as xmin.

We now turn to our calculation of the γk. The data has been taken from

the Trade and Production Database of the CEPII5. The dataset contains,

inter alia, the bilateral trade flows for 27 product groups, classified according

to the International Standard Industrial Classification (ISIC) at the 3-digit

level, for a large number of countries (approximately 210).6 The database
5http://http://www.cepii.com/anglaisgraph/bdd/TradeProd.htm
6The product groups and their respective codes are: food products (311), beverages

(313), tobacco (314), textiles (321), wearing apparel, except footwear (322), leather prod-
ucts (323), footwear, except rubber or plastic (324), Wood products, except furniture
(331), furniture, except metal (332), paper and products (341), printing and publishing
(342), industrial chemicals (351), other chemicals (352), petroleum refineries (353), rubber
products (355), plastic products (356), pottery, china, earthenware (361), glass and prod-
ucts (362), other non-metallic mineral products (369), iron and steel (371), non-ferrous
metals (372), fabricated metal products (381), machinery, except electrical (382) , ma-
chinery, electric (383), transport equipment (384), professional and scientific equipment
(385 ), other manufactured products (390).
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is based on data from the World Bank, which in turn originated from the

UN COMTRADE Database for trade and the UNIDO industrial statistics

for production. The extension of the World Bank database with regard to

trade was done by using data from the CEPII’s BACI database.

Given that we only consider the existence of bilateral trading links but not

the volume of bilateral trade, describing the trading network is straightfor-

ward: We start with a matrix in which for every product group the exports

Fij of country i to county j are denoted in the respective cells. Then we ap-

ply the following algorithm: A new matrix is created with the same number

of rows and columns. If the volume of trade surpasses a certain percentage p

of international trade the value in the original matrix is replaced by 1 in the

new matrix, otherwise by 0. This is repeated for all cells. The sum of each

row then denominates the number of significant trading links per country.

Then bins of the wide z are created and the number of trading links in each

bin is calculated. Finally, the distribution is fitted to a power law function

by nonlinear regression in order to estimate the exponential parameter, that

is the network parameter γk for each product category.

3.2 Summary statistics

Our results for the k = 27 product groups are given in the form of summary

statistics in table 1 for p = 0.001 and z = 3 for the years 1976, 1980, 1990,

2000, and 2002. As it is evident from figure 3 the distribution of γk is fitted

rather well by a log-normal distribution for any given year.7 For instance,
7We apply the following specification for the density:

f(y) = 1
y−θ

1√
2πσ

exp

(
− 1

2

(
log(y−θ)−ζ

σ

)2
)

, for y > θ.
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Figure 3: The distribution of the γs, fitted by a log-normal distribution.

16



Year γ γ0.5 γmin γmax

√
s2

1976 1.534 1.499 1.422 1.782 0.095
1980 1.369 1.361 1.311 1.483 0.039
1990 1.339 1.331 1.286 1.449 0.036
2000 1.304 1.297 1.269 1.361 0.024
2002 1.286 1.280 1.259 1.324 0.016

Table 1: Summary statistics for γ of all product groups.

for 2000 we estimated ζ = 0.2654, σ = 0.0183 assuming a threshold param-

eter θ = 0. The distribution is clearly right-skewed and eventually a cutoff

emerges.

A comparison of the γk over time reveals that significant changes have taken

place in the trading network. The most remarkable feature is the contin-

uous decline of the values of γk. The mean value for γ in 1976 was 1.534,

whereas in 2002 its value was only 1.286, a drop of 16 percent. The maxi-

mal and minimal values display a similar pattern. This feature implies that

the distribution of connectivity has become less uneven as more and more

countries are becoming better connected for most of the goods. Therefore,

the γs reflect the increased integration of countries in international trade.

From that point of view, γ could be interpreted as an indicator of globaliza-

tion. Further insights into the trading network can be gained by comparing

γ accros to product groups k. in figure 4 we have plotted the development

of γ for three different product groups: food products, petroleum refineries

and scientific equipment. We find that γ is always the largest for petroleum

refineries, whereas it is more or less the same for food products and scientific

equipments. This does not suggest a clear causal relationship between char-

acteristics of goods and the value of γ. Scientific equipment, for instance,
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Figure 4: Development of γ for different product gropus
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requires a sophisticated production process, strongly implying that only few

countries should be able to supply this product group to the world mar-

ket. Food products (as an aggregated product group), on the other hand,

requires little specialization . However, both product groups display largely

the same trading structure, indicating that many other effects have a role to

play in determining the trading structure. In the case of food, for instance,

protectionist policies might prohibit many countries from exploiting their

comparative advantage.

3.3 Estimation of the gravity model

The gravity model of international trade predicts at its core a relationship

for trade flows based on Newton’s famous Law of Universal Gravitation.

There are several theoretical models that are capable of producing ”gravity”

between countries, including [3], the monopolistic competition approach and

the Heckscher-Ohlin model. Empirically, the gravity model approach is well

established through numerous studies.

We estimate an expanded gravity model using data from the CEPII’s Trade

and Production database. Data on GDP and GDP per capita was retrieved

from the World Bank’s country fact book.

We apply the following general (4-way) specification with all continuous
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variables in logs:

Fijkt =αi + βj + λt + νk + ω(GDPitGDPjt) + σ(PGDPitPGDPjt)

+ δDISTANCEij + κNETtk + εADJACENTij + ψCOLONYij

+ ξCOMLANGij + ηEECij + θEFTAij + uijkt,

(3)

with Fijkt denoting the bilateral exports from country i to country j of good

k in period t. On the right hand side of equation 3 we specify typical gravity

model predictors, that is the product of the GDPs (GDPitGDPjt) and GDPs

per capita (PGDPitPGDPjt) of both countries, their great circle distance

(DISTANCEij) and several dummy variables indicating the closeness of

two countries, that is whether they share a common border (ADJACENT ),

speak a common language (COMLANG), whether colonial ties are present

(COLONY ) or whether they are members of the same trading bloc (EU

and EFTA). We have also included time-constant country-specific effects

(αi, βj), a time-effect that is constant across cross-sectional units (λt) and

an intercept for the various goods (νk).

We then extend these classic gravity model predictors by the variable NET .

This variable is the same as the γ in equation 2 (we have decided to rename

this variable because in equation 3 Greek letters are used as coefficients). It

is used as a proxy for the network structure of the trading network in which a

particular good is traded. By including this variable we differentiate between

determinants that can be attributed to particular goods, thereby providing

an extension to [9].
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There are nevertheless major differences between both approaches. Whereas

[9] was concerned about the homogeneity of goods, we focus on the homo-

geneity of a good’s trading structure. Even though it can be argued that

both approaches converge with the level of disaggregation, the data we apply

requires that we assume that a competitive market persists when a good’s

trading structure is even. An uneven trading structure is understood as a

proxy for costly matching processes as there will be fewer suppliers inclined

to provide many variations.

Following [7] we can denote equation 3 in compact matrix notation.

X = Diα+Djβ +Dkν +Dtλ+ Zρ+ µ, (4)

with the (NxNxKxT )x1 matrix X denoting a vector of bilateral exports

of good k at time t, Di and Dj denoting dummy-variable matrices, captur-

ing respectively the origin and target country effects and Dt representing a

dummy-variable matrix capturing the time effects. Their magnitudes can

be retrieved from [7]. The matrix Z is the non-dummy subset of the design

matrix with magnitude (NxNxKxT )xM .

Following [6] and [7], we employ a static fixed effects approach, which pro-

vides consistent estimators under moderate assumptions. Furthermore, it is

highly possible that the individual effects are correlated with the explana-

tory variables. We will therefore focus on static fixed effects estimation, even

though estimating fixed-effect models has the severe drawback that the time

constant effects are wiped out.

Simple (pooled) OLS was rejected and our focus on more complex mod-
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els vindicated by the F-test for heterogenous country specific effects. We

applied the Breusch-Pagan Lagrangian multiplier test and reject the null

of an homoscedastic error-structure (χ(1) = 1 exp 6, p < 0.0001). We have

also applied the Wooldridge-test for autocorrelation and found the null of

no-autocorrelation is rejected (F(1,139409) = 7794, 767, p < 0.0001).

We apply a robust estimation of a fixed effects model by using Stata’s xtgee

command with first-differenced data. As a robustness check, we first esti-

mate as a base model equation 3 without the NET variable (table 2). Then

we add the net variable in an extended model (also table 2). The traditional

gravity model predictors behave as expected. The estimated coefficient of

GDP is about unity and highly significant. The estimated coefficient of GDP

per capita is slightly negative, but not significant. Both results are plausible

and in accordance with the literature [9].

We find that the network coefficient is positive and highly significant, imply-

ing that the value of bilateral trade increases when a good’s trading structure

is inhomogeneous, that is when there are only few suppliers. This somewhat

surprising result. implies that specialization leads, ceteris paribus, to an

increase in the value of bilateral trade. In other words, the entry of new

suppliers into the trading network in the last three decades (i. e. a reduction

of γ) has lead to a decrease in the value in bilateral trade. This further im-

plies that the price-effects must have been stronger than the quantity-effect.
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Table 2: Fixed-effects with dependent variable bilateral trade
Variable Coefficient Coefficients with γ

(Std. Err.) (Std. Err.)

GDP 1.318∗∗∗ 1.316∗∗∗

(0.082) (0.082)

GDP per capita -0.013 -0.012
(0.075) (0.075)

NET – 0.912∗∗∗

– (0.314)

1998 -0.042∗∗∗ -0.040∗∗∗

0.004 (0.004)

1999 -0.076∗∗∗ -0.075∗∗∗

(0.004) (0.004)

2000 0.020∗∗∗ 0.018∗∗∗

(0.005) (0.005)

2001 -0.003 0.006
(0.004) (0.005)

2002 -0.025∗∗∗ -0.022∗∗∗

(0.004) (0.004)

N 605981 605981
Log-likelihood . .
χ2

(7) 3705.891 3716.803
Significance levels : ∗ : 10% ∗∗ : 5% ∗ ∗ ∗ : 1%
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4 Conclusions

In this paper we argue that the economy can be viewed as a network of

exchange relations. We demonstrated our notion with the example of inter-

national trade, drawing on network theory first developed in the physical

sciences. We conclude that scale-free networks display striking similarities

to the way countries export goods.

We then analyzed the trading network of different product groups using the

framework of scale-free networks. In particular, we analyzed the connec-

tivity distribution for various product groups and calculated a parameter

that can be used to describe its scaling properties. One important result

demonstrates that the world economy has become more integrated in the

last three decades, i. e. the number of countries which act as exporters has

increased considerably for most goods.

We also inquired whether this trend has lead to an increase in the value of

trade by estimating a gravity-model. We found that the effect of this trend

was negative, indicating that importers must have become better off due to

declining prices.

We demonstrated that applying a network perspective on trade is not only

of theoretical interest but it also leads does to new empirical applications.

By extending the traditional gravity model with a parameter that is capa-

ble of measuring the structure of trade we provided one such application.

Further work on this approach might involve using more detailed.

Several other applications of network theory in the field of international

economics appear promising. These include the clustering and small world
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properties of the trading network, and the analysis of clustering coefficients

and average path lengths for various goods.
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