
 
 
 

NONPARAMETRIC ESTIMATION IN 
RANDOM COEFFICIENTS BINARY CHOICE MODELS 

 
 

By 
 

Eric Gautier and Yuichi Kitamura 
 
 
 

August 2009 
 
 
 
 
 
 

COWLES FOUNDATION DISCUSSION PAPER NO. 1721 
 
 
 
 
 
 
 
 
 
 
 
 
 

COWLES FOUNDATION FOR RESEARCH IN ECONOMICS 
YALE UNIVERSITY 

Box 208281 
New Haven, Connecticut 06520-8281 

 
 http://cowles.econ.yale.edu/  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6302464?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NONPARAMETRIC ESTIMATION IN RANDOM COEFFICIENTS BINARY

CHOICE MODELS

ERIC GAUTIER AND YUICHI KITAMURA

Abstract. This paper considers random coefficients binary choice models. The main goal is to

estimate the density of the random coefficients nonparametrically. This is an ill-posed inverse prob-

lem characterized by an integral transform. A new density estimator for the random coefficients is

developed, utilizing Fourier-Laplace series on spheres. This approach offers a clear insight on the

identification problem. More importantly, it leads to a closed form estimator formula that yields a

simple plug-in procedure requiring no numerical optimization. The new estimator, therefore, is easy

to implement in empirical applications, while being flexible about the treatment of unobserved hetero-

geneity. Extensions including treatments of non-random coefficients and models with endogeneity are

discussed.

1. Introduction

Consider a binary choice model

(1.1) Y = I
{
X ′β ≥ 0

}

where I denotes the indicator function and X is a d-vector of covariates. We assume that the first

element of X is 1, therefore the vector X is of the form X = (1, X̃ ′)′. The vector β is random. The

random element (Y, X̃, β) is defined on some probability space (Ω,F ,P), and (yi, x̃i, βi), i = 1, ..., N

denote its realizations. The econometrician observes (yi, x̃i), i = 1, ..., N , but βi, i = 1, ..., N remain

unobserved. The vectors X̃ and β correspond to observed and unobserved heterogeneity across agents,

respectively. Note that the first element of β in this formulation absorbs the usual scalar stochastic
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2 GAUTIER AND KITAMURA

shock term as well as a constant in a standard binary choice model with non-random coefficients.

This formulation is used in Ichimura and Thompson (1998), and is convenient for the subsequent

development in this paper. Our basic model maintains exogeneity of the covariates X̃:

Assumption 1.1. β is independent of X̃,

Section 6.3 considers ways to relax this assumption. Under (1.1) and Assumption 1.1, the choice

probability function is given by

r(x) = P(Y = 1|X = x)(1.2)

= Eβ [I {x′β > 0}].

Discrete choice models with random coefficients are useful in applied research since it is often crucial

to incorporate unobserved heterogeneity in modeling the choice behavior of individuals. There is

a vast and active literature on this topic. Recent contributions include Briesch, Chintagunta and

Matzkin (1996), Brownstone and Train (1999), Chesher and Santos Silva (2002), Hess, Bolduc and

Polak (2005), Harding and Hausman (2006), Athey and Imbens (2007), Bajari, Fox and Ryan (2007)

and Train (2003). A common approach in estimating random coefficient discrete choice models is to

impose parametric distributional assumptions. A leading example is the mixed Logit model, which is

discussed in details by Train (2003). If one does not impose a parametric distributional assumption,

the distribution of β itself is the structural parameter of interest. The goal for the econometrician is

then to recover it nonparametrically from the information about r(x) obtained from the data.

Nonparametric treatments for unobserved heterogeneity distributions have been considered in

the literature for other models. Heckman and Singer (1984) study the issue of unobserved heterogene-

ity distributions in duration models and propose a treatment by a nonparametric maximum likelihood

estimator (NPMLE). Elbers and Ridder (1982) also develop some identification results in such models.

Beran and Hall (1992) and Hoderlein et al. (2007) discuss nonparametric estimation of random co-

efficients linear regression models. Despite the tremendous importance of random coefficient discrete

choice models, as exemplified in the above references, nonparametrics in these models is relatively

underdeveloped. In their important paper, Ichimura and Thompson (1998) propose an NPMLE for

the CDF of β. They present sufficient conditions for identification and prove the consistency of the

NPMLE. The NPMLE requires high dimensional numerical maximization and can be computationally

intensive even for a moderate sample size. Berry and Haile (2008) explore nonparametric identification

problems in a random coefficients multinomial choice model that often arises in empirical IO.
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This paper considers nonparametric estimation of the random coefficients distribution, using a

novel approach that shares some similarities with standard deconvolution techniques. This allows us

to reconsider the identifiability of the model and obtain a constructive identification result. Moreover,

we develop a simple plug-in estimator for the density of β that requires no numerical optimization or

integration. It is easy to implement in empirical applications, while being flexible about the treatment

of unobserved heterogeneity.

Since the scale of β is not identified in the binary choice model, we normalize it so that β is a

vector of Euclidean norm 1 in R
d. The vector β then belongs to the d − 1 dimensional sphere S

d−1.

This is not a restriction as long as the probability that β is equal to 0 is 0. Also, since only the angle

between X and β matters in the binary decision I{X ′β ≥ 0}, we can replace X by X/‖X‖ without

any loss of information. We therefore assume that X is on the sphere S
d−1 as well in the subsequent

analysis. Results from the directional data literature are thus relevant to our analysis. We aim to

recover the joint probability density function fβ of β with respect to the uniform spherical measure σ

over S
d−1 from the random sample (y1, x1), . . . , (yN , xN ) of (Y,X).

The problem considered here is a linear ill-posed inverse problem. We can write

(1.3) r(x) =

∫

b∈Sd−1

I
{
x′b ≥ 0

}
fβ(b)dσ(b) =

∫

H(x)
fβ(b)dσ(b) := H (fβ) (x)

where the set H(x) is the hemisphere {b : x′b ≥ 0}. The mapping H is called the hemispherical

transformation. Inversion of this mapping was first studied by Funk (1916) and later by Rubin

(1999). Groemer (1996) also discusses some of its properties. H is not injective without further

restrictions and conditions need to be imposed to ensure identification of fβ from r. Even under an

additional condition which guarantees identification, however, the inverse of H is not a continuous

mapping, making the problem ill-posed. To see this, suppose we restrict fβ to be in L2(Sd−1). Since

the kernel of H is square integrable by compactness of the sphere, it is Hilbert-Schmidt and thus

compact. Therefore if the inverse of H were continuous, H−1H would map the closed unit ball in

L2(Sd−1) to a compact set. But the Riesz theorem states that the unit ball is relatively compact if and

only if the vector space has finite dimension. The fact that L2(Sd−1) is an infinite dimensional space

contradicts this. Therefore the inverse of H cannot be continuous. In order to overcome this problem,

we use a one parameter family of regularized inverses that are continuous and converge to the inverse

when the parameter goes to infinity. This is a common approach to ill-posed inverse problems in

statistics (see, e.g. Carrasco et al., 2007).
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Due to the particular form of its kernel that involves the scalar product x′b, the operator H is an

analogue of convolution in R
d, as illustrated in a simple example in Section 2. This analogy provides a

clear insight into the identification issue. In particular, our problem is closely related to the so-called

boxcar deconvolution (see, e.g. Groeneboom and Jongbloed (2003) and Johnstone and Raimondo

(2004)), where identifiablity is often a significant problem. The connection with deconvolution is also

useful in deriving an estimator based on a series expansion on the Fourier basis on S
1 or its extension

to higher dimensional spheres called Fourier-Laplace series. These bases are defined via the Laplacian

on the sphere, and they diagonalize the operator H on L2
(
S

d−1
)
. Such techniques are used in Healy

and Kim (1996) for nonparametric empirical Bayes estimation in the case of the sphere S
2. The kernel

of the integral operator H, however, does not satisfy the assumptions made by Healy and Kim. Unlike

Healy and Kim (1996), we make use of so-called “condensed” harmonic expansions. The approach

replaces a full expansion on a Fourier-Laplace basis by an expansion in terms of the projections on the

finite dimensional eigenspaces of the Laplacian on the sphere. This is useful since an explicit expression

of the kernel of the projector is available. It enables us to work in any dimension and does not require

a parametrization by hyperspherical coordinates nor the actual knowledge of an orthonormal basis.

This approach, to the best of our knowledge, appears to be new in the econometrics literature.

The paper is organized as follows. In Section 2 we introduce a toy model and the tools from

harmonic analysis that are used for the development of our estimation procedure and its asymptotic

analysis. Section 3 deals with identification and presents a general estimation procedure for the random

coefficients density. In Section 4 we study a nonparametric estimator of the choice probability function

and derive its asymptotic properties. This is important since it yields a nonparametric estimator for

the random coefficients density with a simple closed form, which is the main proposal of the paper.

We derive the convergence rates of the estimators in all the Lq spaces for q ∈ [1,∞] and also prove a

pointwise CLT in Section 5. Some extensions, such as estimation of marginals, treatments of models

with non-random coefficients, and the case with endogenous regressors are presented in Section 6.

Simulation results are reported in Section 7. Section 8 concludes.

2. Preliminaries

This section introduces tools for making connections between the estimation of the density of

β and a deconvolution problem, and presents some results on the hemispherical transform.

2.1. A Toy Model. As noted above, the key insight for our estimation procedure lies in the fact the

estimation of fβ in (1.3) is mathematically equivalent to a statistical deconvolution problem. To see
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this, it is useful to first consider the case with d = 2. We parameterize the vectors b = (b1, b2)
′ and

x = (x1, x2)
′ on S

1 by their angles φ = arccos (b1) and θ = arccos (x1) in [0, 2π). As is often the case

when Fourier series techniques are used, we consider spaces of complex valued functions. Let Lp(S1)

denote the Banach space of Lebesgue p-integrable functions and its norm by ‖ · ‖p. In the case of

L2(S1), the norm is derived from the hermitian product
∫ 2π
0 f(θ)g(θ)dθ. Let rθ and fφ denote r and

fβ after the reparameterization. Our task is then to obtain fφ from the knowledge of rθ. Rewrite

(1.3) using these definitions, then divide both sides by π, to get:

(2.1)
rθ
π

(θ) =
H(fβ)

π
(x) =

∫ 2π

0

(
1

π
I {|θ − φ| < π/2}

)
fφ(φ)dφ.

If we further define fθ := rθ/π and fη(η) := 1
π I{|η| < π/2}, then using the standard notation for

convolution, (2.1) can be written as fθ = fη ∗ fφ. It is now obvious that the estimation of fφ (thus

fβ) is linked to the following statistical deconvolution problem: unobservable random variables φ and

η with densities fφ and fη are related to an observable random variable θ according to θ = η+φ, and

one wishes to recover fφ from fθ, the density of θ, when fη is known (and it is Uniform[−π/2, π/2] in

this case).1

The problem of deconvolution on the unit circle can be conveniently solved using Fourier

series. The set of functions
(
exp(−int)/

√
2π
)
n∈Z

is the orthonormal basis of L2(S1) used to define

Fourier series. This system is also complete in L1(S1). Reparameterize a function f ∈ L1(S1) it

using angles as above, and denote it by ft. Denoting the Fourier coefficients of f ∈ L1(S1) by

cn(ft) =
∫ 2π
0 ft(t) exp(−int)dt/(2π),

(2.2) ft(θ) =
∑

n∈Z

cn(ft) exp(int)

holds in the L1(S1) sense. Recall also that for f and g in L1(S1), after the same reparameterization,

(2.3) cn(ft ∗ gt) = 2πcn(ft)cn(gt).

Using equation (2.3) we obtain the following proposition.

Proposition 2.1. c0(rθ) = πc0 (fφ) and for n ∈ Z \ {0}, cn(rθ) = cn (fφ) 2 sin (nπ/2) /n.

1It is also useful to note that the inversion of H is closely related to differentiation. Differentiating the right hand-side

of expression (2.1) with respect to θ identifies fφ(θ + π/2) − fφ(θ − π/2) where fφ is defined on the line by periodicity.

If fφ is supported on a semicircle, with an assumption that is elaborated further in Section 3.1, fφ (which is positive) is

identified. Thus if the model is identified the inverse of H is a differential operator and as such unbounded.
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As in classical deconvolution problems on the real line, our aim is to obtain ft (thus fβ) using

equation (2.2) and Proposition 2.1. Proposition 2.1 shows that c2p(rθ) = 0 holds for all non-zero p’s,

regardless of the values of c2p(fφ), p ∈ Z\{0}. Thus from r(x) = rθ(θ) one can only recover the Fourier

coefficients cn(fφ) for n = 0 (which is easily seen to be 1/2π, by integrating both sides of (2.1) and

noting that fβ is a probability density function) and n = 2p+1, p ∈ Z. The same phenomenon occurs

in higher dimensions, as explained in Section 2.2.

Remark 2.1. The vector spaces H2p+1,2 = span
{
exp(i(2p+ 1)t)/

√
2π, exp(−i(2p+ 1)t)/

√
2π
}
, p ∈

N are eigenspaces of the compact self-adjoint operator H on L2(S1). These eigenspaces are associated

with the eigenvalues 2(−1)p

2p+1 . Also,
⊕

p∈N\{0}H
2p,2 is the null space ker H.

2.2. Tools for Higher Dimensional Spheres. Let us introduce some concepts used for the treat-

ment of the general case d ≥ 2. We consider functions defined on the sphere S
d−1, which is a d − 1

dimensional smooth submanifold in R
d. The canonical measure on S

d−1 (or the spherical measure) is

denoted by σ. It is a uniform measure on S
d−1 satisfying

∫
Sd−1 dσ = |Sd−1|, where |Sd−1| signifies the

surface area of the unit sphere. The latter is given by
∣∣Sd−1

∣∣ = 2πd/2

Γ(d/2) where Γ is the usual Gamma

function. Lp(Sd−1) with norm ‖ · ‖p is the usual space of p-integrable complex functions and L2(Sd−1)

is equipped with the hermitian product (f, g)L2(Sd−1) =
∫

Sd−1 f(x)g(x)dσ(x). We use the following

notation throughout the paper:

Notation. For two sequences of positive numbers (an)n∈N and (bn)n∈N, we write an ≍ bn when there

exists a positive M such that M−1bn ≤ an ≤Mbn for every positive n.

Recall that the basis functions exp(±int)/
√

2π are eigenfunctions of − d
dt2

associated with

eigenvalue n2. In a similar way, the Laplacian on the sphere S
d−1, d ≥ 2, denoted by ∆S , can be used

to obtain an orthonormal basis for higher dimensional spheres. It can be defined by the formula

(2.4) ∆Sf = (∆f )̌̂

where ∆ is the Laplacian in R
d, f̌ the radial extension of f , that is f̌(x) = f(x/‖x‖), and f̂ the

restriction of f to S
d−1. Likewise the gradient on the sphere is given by:

(2.5) ∇Sf = (∇f )̌̂

where ∇ is the gradient in R
d.

Definition 2.1. A surface harmonic of degree n is the restriction of a homogeneous harmonic poly-

nomial (a homogeneous polynomial p whose Laplacian ∆p is zero) of degree n in R
d to S

d−1.
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The reader is referred to Müller (1966) and Groemer (1996) for clear and detailed expositions

on these concepts and important results concerning spherical harmonics used in this paper. Erdélyi

et al. (1953, vol. 2, chapter 9) provide detailed accounts focusing on special functions. Here are some

useful results:

Lemma 2.1. The following properties hold:

(i) −∆S is a positive self-adjoint unbounded operator on L2(Sd−1), thus it has orthogonal eigenspaces

and a basis of eigenfunctions;

(ii) Surface harmonics of degree n are eigenfunctions of −∆S for the eigenvalue ζn,d := n(n+d−2);

(iii) The dimension of the vector space Hn,d of surface harmonics of degree n is

(2.6) h(n, d) :=
(2n+ d− 2)(n+ d− 2)!

n!(d− 2)!(n+ d− 2)
;

(iv) A system formed of orthonormal bases (Yn,l)
h(n,d)
l=1 of Hn,d for each degree n = 0, . . . ,∞ is

complete in L1(Sd−1), that is, for every f ∈ L1(Sd−1) the following equality holds in the L1(Sd−1)

sense:

f =
∞∑

n=0

h(n,d)∑

l=1

(f, Yn,l)L2(Sd−1) Yn,l.

Thus h(n, d) is the multiplicity of the eigenvalue ζn,d, and Hn,d is the corresponding eigenspace.

Lemma 2.1 (i), (ii) and (iv) give the decomposition

L2(Sd−1) =
⊕

n∈N

Hn,d.

The space of surface harmonics of degree 0 is the one dimensional space spanned by 1. A series

expansion on an orthonormal basis of surface harmonics is called a Fourier series when d = 2, a

Laplace series when d = 3 and in the general case a Fourier-Laplace series.

Orthonormal bases of surface harmonics usually involve parametrization by angles, such as the

spherical coordinates when d = 3 as used by Healy and Kim (1996) or hyperspherical coordinates for

d > 3. Instead, here we work with the decomposition of a function on the spaces Hn,d as presented

in the next definition so that we avoid specific expressions of basis functions.

Definition 2.2. The condensed harmonic expansion of a function f in L1(Sd−1) is the series
∑∞

n=0Qn,df ,

where Qn,d is the projector from L2(Sd−1) to Hn,d.
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This leads to a simple method both in terms of theoretical developments and practical imple-

mentations. The projector Qn,d can be expressed as an integral operator with kernel

(2.7) qn,d(x, y) =

h(n,d)∑

l=1

Yn,l(x)Yn,l(y),

where (Yn,l)
h(n,d)
l=1 is any orthonormal basis of Hn,d. The kernel has a simple expression given by the

addition formula:

Theorem 2.1 (Addition Formula). For every x and y ∈ S
d−1, we have

(2.8) qn,d(x, y) = ♭qn,d(x
′y), ♭qn,d(t) :=

h(n, d)C
ν(d)
n (t)

|Sd−1|Cν(d)
n (1)

where Cν
n are Gegenbauer polynomials and ν(d) = (d− 2)/2.

The Gegenbauer polynomials are defined for ν > −1/2 and are orthogonal with respect to the

weight function (1 − t2)ν−1/2dt on [−1, 1]. Note that Cν
0 (t) = 1 and Cν

1 (t) = 2νt for ν 6= 0 while

C0
1 (t) = 2t. Moreover, the following recursion relation holds

(2.9) (n+ 2)Cν
n+2(t) = 2(ν + n+ 1)tCν

n+1(t) − (2ν + n)Cν
n(t).

Implementation of our estimator requires evaluation of the Gegenbauer polynomials for a series of

successive values of n. The recursion relation (2.9) is therefore a powerful tool. Useful results on these

polynomials are gathered in the appendix: see also Erdélyi et al. (1953, vol. 1, p. 175-179).

Definition 2.3. The Sobolev space Ws
p(S

d−1) for p ∈ [0,∞] and s ≥ 0 is the space of functions f in

Lp(Sd−1) for which the distribution

(
−∆S

)s/2
f :=

∞∑

n=0

ζ
s/2
n,dQn,df

belongs to Lp(Sd−1). It is equipped with the norm

‖f‖p,s = ‖f‖p +
∥∥∥
(
−∆S

)s/2
f
∥∥∥

p
.

For the case where p = 2, that is, for the Sobolev space Hs(Sd−1) := Ws
2(S

d−1), it is also

possible to use an equivalent norm, the square of which is equal to

∞∑

n=0

(1 + ζn,d)
s ‖Qn,df‖2

2.
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Note that the following integration by parts holds for functions f in H1(Sd−1)

(2.10) −
∫

Sd−1

f(x)∆Sf(x)dσ(x) =

∫

Sd−1

∇S
xf

′∇S
xfdσ(x)

and as a consequence for the second definition of the norm of H1(Sd−1) we have

‖f‖2
2,1 = ‖f‖2

2 + ‖∇Sf‖2
2.

We use these Sobolev spaces to make smoothness assumptions.

In Section 2.1 we observed the close relationship between the random coefficient binary choice

model and convolution for d = 2. This connection remains valid in higher dimensions. Suppose

a function f(x, y) defined on S
d−1 ⊗ S

d−1 depends on x and y only through the spherical distance

d(x, y) = arccos(x′y) (that is, f is a zonal function). Consider the following integral:

h(x) =

∫

Sd−1

f(x, y)g(y)dσ(y) := f ∗ g(x),

then the function h is a convolution on the sphere. We now see that the choice probability function

r(x) = H(fβ)(x) =
∫

Sd−1 I{x′b ≥ 0}fβ(b)dσ(b) is a special case of h and therefore can also be regarded

as convolution. Obtaining fβ from r (or, inverting H) is therefore a deconvolution problem.

In what follows we often write f(x, ⋆) when a function f on S
d−1 ⊗ S

d−1 is regarded as a

function of ⋆. Also, the notation ‖f(x, ⋆)‖p is used for the Lp norm of f(x, ⋆), that is, ‖f(x, ⋆)‖p =
∫

Sd−1 |f(x, y)|pdσ(y). Note that if f is a zonal function as in the above definition of spherical convolu-

tion, its Lp norm ‖f(x, ⋆)‖p does not depend on x. The following Young inequalities for convolution

on the sphere (see, for example, Kamzolov, 1983) are useful:

Proposition 2.2 (Young inequalities). Suppose f(x, ⋆) and g belong to Lr(Sd−1) and Lp(Sd−1), re-

spectively. Then h(x) = f ∗ g(x) is well-defined in Lq(Sd−1) and

‖h‖q ≤ ‖f‖r‖g‖p,

where 1 ≤ p, q, r ≤ ∞ and 1
q = 1

p + 1
r − 1.

Let PT denote the projection operator onto
⊕T

n=0H
n,d, i.e.

PT f(x) =
T∑

n=0

Qn,df(x) =

∫

Sd−1

DT (x, y)f(y)dσ(y)

where

DT (x, y) =

T∑

n=0

qn,d(x, y).
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The kernel DT extends the classical Dirichlet kernel on the circle to the sphere S
d−1. The sum over

T in the definition of DT also has the simple closed form in terms of derivatives of Gegenbauer

polynomials; see Equation (52) in Müller (1966). The linear form f →
∫

Sd−1 DT (x, y)f(y)dσ(y)

converges to
∫

Sd−1 f(y)dδx(y) = f(x) as T goes to infinity, where δx denotes the Dirac measure. The

Dirichlet kernel yields the best approximation PT f of f in L2(Sd−1) by polynomials that belong to
⊕T

n=0H
n,d, but is known to have flaws. For example, DT does not satisfy

∀f ∈ L1(Sd−1), lim
T→∞

‖DT ∗ f − f‖L1(Sd−1) = 0,

that is, the sequence DT , T = 0, 1, ... is not an approximate identity (see, e.g., Devroye and Gyorfi

1985) in L1(Sd−1). Indeed, the L1(Sd−1) norm of the kernel is not uniformly bounded; more precisely,

we have

(2.11) ‖DT (·, x)‖1 ≍ T (d−2)/2

when d ≥ 3 and

(2.12) ‖DT (·, x)‖1 ≍ log T

when d = 2 (as noted above, these norms do not depend on the value of x ∈ S
d−1). These bounds

can be found in Gronwall (1914) for d = 3 and Ragozin (1972) and Colzani and Traveglini (1991) for

higher dimensions. Also, DT does not have good approximation properties in L∞(Sd−1); in particular,

we do not have

∀f ∈ L∞(Sd−1), lim
T→∞

‖DT ∗ f − f‖L∞(Sd−1) = 0.

Near the points of discontinuity of f , DT ∗ f has oscillations which do not decay to zero as T grows to

infinity, known as the Gibbs oscillations. This phenomenon deteriorates as the dimension increases.

These problems can be addressed by using kernels that involves extra smoothing instead of the Dirich-

let kernel DT . To this end, define a general class of kernel

(2.13) KT (x, y) =
T∑

n=0

χ(n, T )qn,d(x, y)

for some sequence χ(n, T ). These are called smoothed projection kernels. Typically the function χ

is chosen so that it puts more weight on lower frequencies. In particular we impose the following

conditions:

Assumption 2.1. (i) ‖KT (x, ⋆)‖1 is uniformly bounded in T .



11

(ii) There exists constants C and α such that for all x, y, z ∈ S
d−1,

|KT (z, x) −KT (z, y)| ≤ C‖x− y‖Tα,

where ‖ · ‖ denotes the Euclidean norm.

(iii) For p ∈ [1,∞] and s > 0, there exists a constant C such that for every f in Ws
p(S

d−1),

∥∥∥∥f(·) −
∫

Sd−1

KT (·, y)f(y)dσ(y)

∥∥∥∥
p

≤ CT−s ‖f‖p,s .

(iv) χ(·, T ) takes values in [0, 1] and is such that there exists c > 0 such that for all 0 ≤ n ≤ ⌊T/2⌋,
χ (n, T ) ≥ c.

The smoothed projection kernel KT (x, y) depends on x and y only through d(x, y), thus the

value of the norm ‖KT (x, ⋆)‖1 in Assumption (i) does not depend on x ∈ S
d−1. Assumption (i) could

be relaxed, but imposing this on KT allows us to make relatively weak assumptions on the smoothness

of the density of the covariates later in this paper. Assumption (ii) is used to establish the L∞-rates

of convergence of our estimators. Assumption (iii) provides bounds for approximation errors. Under

this condition, KT ∗ f approximates f ∈ Lp(Sd−1) with an error of the same order as that of the

best n-th degree spherical harmonic approximation of a function f ∈ Lp(Sd−1) in Ws
p(S

d−1) (see e.g.

Kamzolov 1983 and Ditzian 1998). This is useful in our treatment of the bias terms in our estimators.

As concrete examples, the following two choices for the weight function χ in (2.13) satisfy Assumption

2.1, as shown in the appendix. The first and the second choices of χ correspond to the Riesz kernel

and the delayed means kernel, respectively.

Proposition 2.3. In the definition of the smoothed kernel (2.13), let

χ(n, T ) =

(
1 −

(
ζn,d

ζT,d + 1

)s/2
)l

,

where l is an integer satisfying l > (d− 2)/2, or

χ(n, T ) = ψ(n/T ), T = 2j for some j

where ψ : [0,∞) → [0,∞) is infinitely differentiable, nonincreasing, such that ψ(x) = 1 if x ≤ 1/2

and ψ(x) = 0 if x ≥ 1. Then KT satisfies Assumption 2.1.

The delayed means kernel has the nice property that it does not require prior knowledge of the regu-

larity s in Assumption 2.1. The Dirichlet kernel satisfies (ii), (iii) (for p = 2) and (iv) of Assumption
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2.1. Like the delayed means kernel, it achieves the optimal rate of approximation without the prior

knowledge of s.

The notion of the odd and even part of a function defined on the sphere is important in the

development of our identification analysis.

Definition 2.4. We denote the odd part and the even part of a function f by

f−(b) = (f(b) − f(−b))/2

and

f+(b) = (f(b) + f(−b))/2,

respectively, for every b in S
d−1.

If the function f is in L2(Sd−1) then Equations (2.8) and (9.8) imply that Q2p,df(x) =

Q2p,df(−x) and Q2p+1,df(x) = −Q2p+1,df(−x) for p ∈ N. Consequently, the odd order terms in the

condensed harmonic expansions of f , f+ and f− satisfy Q2p+1f
− = Q2p+1f and Q2p+1f

+ = 0. Like-

wise, for the even order terms in the condensed harmonic expansions of these functions Q2pf
+ = Q2pf

and Q2pf
− = 0 hold. We conclude that the sum of the odd order terms in the condensed harmonic

expansion corresponds to f− and that of the even order terms to f+. As anticipated from the analysis

of the d = 2 case, the operator H reduces the even part of fβ to a constant 1
2 , therefore Fourier-Laplace

series expansions for fβ derived later involve only odd order terms.

We now provide a formula that is later used to obtain our estimator for fβ . If a non-negative

function f has its support included in some hemisphere of S
d−1 then

(2.14) f(x) = 2f−(x)I
{
f−(x) > 0

}
.

Denote the support of f by suppf and let −suppf = {x|−x ∈ suppf}, then this formula follows from

the fact that f−(x) = f+(x) ≥ 0 on suppf while f−(x) = −f+(x) ≤ 0 on −suppf and both f− and

f+ are 0 on S
d−1 \ (suppf

⋃−suppf).

Remark 2.2. If f is a probability density function, the coefficient of degree 0 in the expansion of f

on surface harmonics is 1/|Sd−1|. Conversely, any harmonic polynomial or series such that its degree

0 coefficient is 1/|Sd−1| integrates to one.

The next theorem shows that Fourier-Laplace series on the sphere is a natural tool for the

study of the operator H.
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Theorem 2.2 (Funk-Hecke Theorem). If g belongs to Hn,d for some n, and a function F on (−1, 1)

satisfies ∫ 1

−1
|F (t)|2(1 − t2)(d−3)/2dt <∞,

then

(2.15)

∫

Sd−1

F (x′y)g(y)dσ(y) = λn(F )g(x)

where

λn(F ) = |Sd−2|Cν(d)
n (1)−1

∫ 1

−1
F (t)Cν(d)

n (t)(1 − t2)
d−3
2 dt.

In other words, the kernel operator defined by

f ∈ L2(Sd−1) 7→
(
x 7→

∫

Sd−1

F (x′y)f(y)dσ(y)

)
∈ L2(Sd−1)

is, in the subspace Hn,d, equivalent to the multiplication by λn(F ). Thus a basis of surface harmonics

diagonalizes an integral operator if its kernel is a function of the scalar product x′y.

Remark 2.3. Healy and Kim (1996) use Fourier-Laplace expansions to analyze a deconvolution prob-

lem on S
2. As we shall see below, the Addition Formula along with condensed harmonic expansions

provide a general treatment that works for arbitrary dimensions.

2.3. The Hemispherical Transform. The hemispherical transform H, defined by Hf(x) =
∫

Sd−1 I{x′y ≥
0}f(y)dσ(y), plays a central role in our analysis. It is a special case of the operator considered in the

Funk-Hecke theorem above, with F (t) = I{t ∈ [0, 1]}, therefore the next proposition follows.

Notation. We define λ(n, d) = λn (I {t ∈ [0, 1]}) for d ≥ 3 and λ(n, 2) = 2 sin(nπ/2)
n .

Proposition 2.4. When d ≥ 2, the coefficients λ(n, d) have the following expressions

(i) λ(0, d) = 2
|Sd−1|

(ii) λ(1, d) = |Sd−2|
d−1

(iii) ∀p ∈ N, λ(2p, d) = 0

(iv) ∀p ∈ N, λ(2p+ 1, d) = (−1)p|Sd−2|1·3···(2p−1)
(d−1)(d+1)···(d+2p−1) .

For the sake of completeness we give a simple proof of this result in the appendix (see also

Groemer (1996) and Rubin (1999)). Define L2
odd(S

d−1) and Hs
odd(S

d−1) as the restrictions of L2(Sd−1)

and Hs(Sd−1) to odd functions and similarly L2
even(S

d−1) and Hs
even(S

d−1) for even functions. The

following corollary is a direct consequence of the Funk-Hecke Theorem and Proposition 2.4, and

corresponds to an observation made in Remark 2.1 for the d = 2 case.
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Corollary 2.1. The null space of the hemispherical transform H is given by

ker H =
∞⊕

p=1

H2p,d =

{
f ∈ L2

even(S
d−1) :

∫

Sd−1

f(x)dσ(x) = 0

}
,

when H is viewed as an operator on L2(Sd−1). The spaces H0,d and H2p+1,d for p ∈ N are the

eigenspaces associated with the non-zero eigenvalues of H.

As a consequence of Proposition 2.4, H is not injective and restrictions have to be imposed

in order to ensure identification of fβ . Section 3 presents sufficient conditions that allows us to

reconstruct fβ from f−β .

The following proposition can be found in Rubin (1999).

Proposition 2.5. H is a bijection from L2
odd(S

d−1) to H
d/2
odd(S

d−1).

We can also easily check (see the proof in the appendix) that

Proposition 2.6. For all s > 0, there exists positive constants Cl and Cu such that for all f in

Hs(Sd−1)

Cl

∥∥f−
∥∥

2,s
≤
∥∥H(f−)

∥∥
2,s+d/2

≤ Cu

∥∥f−
∥∥

2,s
.

The factor d/2 corresponds to the degree of “regularization” due to smoothing by H. Now the

inverse of an odd function f− is given by

(2.16) H−1(f−)(y) =
∞∑

p=0

1

λ(2p+ 1, d)

∫

Sd−1

q2p+1,d(x, y)f
−(x)dσ(x).

This is straightforward given our results at hand: for example, operate H on the RHS to see:

H




∞∑

p=0

1

λ2p+1

∫

Sd−1

q2p+1,d(x, y)f
−(x)dσ(x)



 =
∞∑

p=0

1

λ2p+1
HQ2p+1f

−

=
∞∑

p=0

λ2p+1

λ2p+1
Q2p+1f

− (by the Funk-Hecke Theorem)

= f−.

If f− belongs to Hd/2(Sd−1), then H−1(f−)(b) is a well-defined L2(Sd−1) function. Otherwise it

should be understood as a distribution and is only defined in a Sobolev space with negative exponent.

Moreover, if d is a multiple of 4, it is possible to relate the inverse of the operator H with differentiation

as in the case of d = 2:



15

Proposition 2.7. If d is a multiple of 4,

H−1 = |Sd−2|
d/4∏

k=1

[−∆S + 2(k − 1)(d− 2k)].

See the appendix for the proof. This connection between the inverse of H and differentiation suggests

that a Bernstein-type inequality might hold for H−1. Indeed, even though the above inversion for-

mula is concerned with d’s that are multiples of 4, the following Bernstein inequality holds for every

dimension.

Theorem 2.3 (Bernstein inequality). For every d ≥ 2 and every q ∈ [1,∞], there exists a positive

constant B(d, q) such that for all P in
⊕T

p=0H
2p+1,d,

(2.17) ‖H−1P‖q ≤ B(d, q)T d/2‖P‖q.

This result is proved in the appendix. It is important for our subsequent analysis of the estimation of

the random coefficients density.

Rubin (1999) gives other inversion formulas for the Hemispherical transform in terms of dif-

ferential operators. The fact that the inversion roughly corresponds to differentiation is another

manifestation of the ill-posedness of our problem at hand. The inverse operator H−1 is indeed un-

bounded. We call the factor d/2 in (2.17) the degree of ill-posedness of the inverse problem. For the

case q = 2, there exists a lower bound for ‖H−1P‖q in (2.17) of order T d/2 as well, implying that the

upper bound T d/2 in the order of T obtained in Theorem 2.3 is tight.

3. General Results

3.1. Identification in the Random Coefficient Model. In this section we address the following

two questions:

(Q1) Under what conditions is fβ identified?

(Q2) Does the random coefficients model impose restrictions?

Let us start with the question (Q1). As noted in Section 2.3, operating H reduces the even part of a

function to a constant 1 and therefore it is impossible to recover f+
β from the knowledge of r, which is

what observations offer. Our identification strategy is therefore as follows: (Step 1) Assume conditions

that guarantee the identification of f−β ; then (Step 2) Show that fβ is uniquely determined from f−β

under a reasonable assumption. We first consider Step 1. Define H+ = H(n) = {x ∈ S
d−1 : x′n ≥ 0},

where n = (1, , 0, ..., 0)′, that is, the northern hemisphere of S
d−1. For later use, also define its southern
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hemisphere H− = H(−n). Since the model we consider has a constant as the first element of the

covariate vector before normalization, the same vector after normalization is necessarily an element

of H+. We make the following assumption, which also appears in Ichimura and Thompson (1998),

and show that it achieves Step 1.

Assumption 3.1. The support of X is H+.

This assumption demands that X̃, the vector of non-constant covariates in the original scale, is

supported on the whole space R
d−1. It rules out discrete or bounded covariates; see Section 6 for a

potential approach to deal with regressors with limited support. In what follows we assume that the

law of X is absolutely continuous with respect to σ and denote its density by fX .

Step 1 of our identification argument is to show that the knowledge of r(x) on H+, which is

available under Assumption 3.1, identifies f−β . The problem at hand calls for solving r = Hfβ =

1
2 + Hf−β for f−β , and the inversion formula derived in (2.16) is potentially useful for the purpose.

A direct application of the formula to r is inappropriate, however, since it requires integration of r

on the whole sphere S
d−1, but r is defined only on H+ even when X̃ has full support on R

d−1. An

appropriate extension of r(x), x ∈ H+ to the entire S
d−1 is in order. Using the random coefficients

model (1.1) and Assumption 1.1, then noting that fβ is a probability density function, conclude

(3.1) H(fβ)(−x) =

∫

H(−x)
fβ(b)dσ(b) = 1 −H(fβ)(x) = 1 − r(x)

for x in H+. This suggests an extension R of r to S
d−1 as follows:

(3.2) ∀x ∈ H+, R(x) = r(x), and ∀x ∈ H−, R(x) = 1 − r(−x) = 1 −R(−x).

The function R is well-defined on the whole sphere under Assumption 3.1. Later we derive a formula

for f−β in terms of R(x), x ∈ S
d−1, which shows the identifiablity of f−β under Assumption 3.1.

Note that

R(x) = R+(x) +R−(x)(3.3)

=
1

2
[R(x) +R(−x)] +R−(x)

=
1

2
[R(x) + (1 −R(x))] +R−(x) by (3.2)

=
1

2
+R−(x)
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thus R is completely determined by its odd part and therefore,

R(x) =
1

2
+ H

(
f−β

)
(x),

or

(3.4) R− = Hf−β .

We can invert this equation to obtain f−β .

Now we turn to Step 2 in our identification argument. Obviously f−β does not uniquely de-

termine fβ without further assumptions. This is a fundamental identification problem in our model.

We need to identify fβ from the choice probability function r, but we can choose an appropriate even

function g so that fβ + g is a legitimate density function (see the proof of Proposition 3.1 for such a

construction). Then r = H (fβ + g), and the knowledge of r identifies fβ only up to such a function g.

Ichimura and Thompson (1998, Theorem 1) give a set of conditions that imply the identification of the

model (1.1). One of their assumptions postulates that there exists c on S
d−1 such that P(c′β > 0) = 1.

This, in our terminology, means that:

Assumption 3.2. The support of β is a subset of some hemisphere.

As noted by Ichimura and Thompson (1998), Assumption 3.2 does not seem too stringent

in many economic applications. It is often reasonable to assume that an element of the random

coefficients vector, such as a price coefficient, has a known sign. If the j-th element of β has a known

sign (and positive), then Assumption 3.2 holds with c being a unit vector with its j-th element being 1.

This is a case in which the location of the hemisphere in Assumption 3.2 is known a priori, though the

knowledge about its location is not necessary for identification. Assumption 3.2 implies the following

mapping from f−β to fβ developed in (2.14):

(3.5) fβ(b) = 2f−β (b)I
{
f−β (b) > 0

}
.

This is useful because it shows that Assumption 3.2 guarantees identification if f−β is identified.

Moreover, it will be used in the next section to develop a key formula that leads to a simple and

practical estimator for fβ that is guaranteed to be non-negative.

Remark 3.1. Assumption 3.2 is testable since it imposes restrictions on f−β , which is identified under

weak conditions. For example, for values of b with f−β (b) > 0, f−β (−b) < 0 must hold. Or, it implies

that f−β integrates to 1/(2|Sd−1|) on a hemisphere H(x) for some x, and −1/(2|Sd−1|) on the other

H(−x).
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The following proposition answers question (Q2), and a proof is given in the appendix.

Proposition 3.1. A [0, 1]-valued function r is compatible with the random coefficient model (1.1)

with fβ in L2(Sd−1) and Assumption 1.1 if and only if r is homogeneous of degree 0 and its extension

R according to (3.2) belongs to Hd/2(Sd−1).

The global smoothness assumption that R belongs to Hd/2(Sd−1) imposes substantial restriction

on the property of observables, that is, the behavior of the choice probability function r. Note that

the smoothness condition in this proposition is stated in terms of R, and even if the choice probability

function r is sufficiently smooth on the support of X, which is H+, it is not necessarily consistent with

the random coefficient binary choice model (1.1) unless its extension is smooth globally on S
d−1. In

particular, the Sobolev embedding of Hs(Sd−1) into the space of continuous functions for s > (d−1)/2

implies that if the extension R is in Hd/2(Sd−1), it has to be continuous on S
d−1. This, in turn, means

that the corresponding r has to satisfy certain matching conditions at a boundary point x of H+ (i.e.

x′n = 0) and its opposite point −x.

3.2. Nonparametric Estimation of fβ. If an appropriate estimator R̃− of R− is available, an

application of the inversion formula (2.16) to (3.4) suggests the following estimator for f−β :

f̃−β = H−1
(
R̃−
)

(3.6)

=
∞∑

p=0

1

λ(2p+ 1, d)

∫

Sd−1

q2p+1,d(·, x)R̃−(x)dσ(x).

Then use the mapping (3.5) to define

(3.7) f̃β(b) = 2f̃−β (b)I
{
f̃−β (b) > 0

}

as an estimator for fβ . Proposition 2.6 implies that if f̃−β −f−β ∈ Hs(Sd−1) then R̃−−R− ∈ Hσ(Sd−1),

σ = s+ d
2 and for v ∈ [0, s],

(3.8) ‖f̃−β − f−β ‖2,v ≍ ‖R̃− −R−‖2,v+d/2.

As discussed earlier, the estimation of fβ is related to deconvolution in S
d−1, and the degree of ill-

posedness in our model is d/2, which is indeed the rate at which the eigenvalues λ(n, d), n = 2p+1, p ∈
N converges to zero as n grows, as shown in (9.11). Existing results for deconvolution problems (see,

for example, Fan, 1991 and Kim and Koo, 2000) then suggest that we should be able to estimate fβ

at the rate N
s

2s+2d−1 in the L2(Sd−1) provided that fβ ∈ Hs(Sd−1). The relationship (3.8), evaluated

at v = 0, implies that this can be achieved if we can estimate R− at the rate N
σ−

d
2

2σ+d−1 in the ‖ · ‖2,d/2
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norm. The latter is the usual nonparametric rate for estimation of densities on d − 1 dimensional

smooth submanifolds of R
d (see, for example, Hendriks, 1990).

The estimation formula given in (3.6) is natural and reasonable, though it typically requires

numerical evaluation of integrals to implement it. Moreover, in practice one needs to evaluate the

infinite sum in (3.6), for example, by truncating the series. This results in a general estimator that

can be written in the following two equivalent forms

f̃−β = H−1
(
PTN

R̃−
)

(3.9)

=

TN∑

p=0

1

λ(2p+ 1, d)

∫

Sd−1

q2p+1,d(·, x)R̃−(x)dσ(x)

for suitably chosen TN that goes to infinity with N . The sequence H−1 ◦ PTN
, N = 1, 2, ... can be

interpreted as regularized inverses of H, with the spectral cut-off method often used in statistical

inverse problems. The next section gives an example of an estimator R̃− that implies a very simple

closed form expression for f̃β that avoids numerical evaluation of the integrals in (3.6).

4. Estimators for the Choice Probability Function

This section considers estimation of the choice probability function r and its extension R. We

propose an estimator for r, which, in turn, yields a computationally simple estimator for fβ . Also the

asymptotic results presented here are useful for the next section where we study the limiting properties

of our estimator for the random coefficients density fβ .

Since R is square integrable on S
d−1, it has a condensed harmonic expansion which enables us

to obtain the expressions in the next theorem.

Theorem 4.1. For x in S
d−1, we have

(4.1) R(x) =
1

2
+

∞∑

p=0

E

[
(2Y − 1)

fX(X)
q2p+1,d(X,x)

]
.

This suggests an estimator of the form R̂1(x) = 1
2 + R̂−

1 with

R̂−
1 (x) =

1

N

N∑

i=1

(2yi − 1)

f̂X(xi)

TN∑

p=0

q2p+1,d(xi, x)

where f̂X is an estimator of fX and TN is a suitably chosen sequence diverging to infinity with N .

Note that the second summation corresponds to the Dirichlet kernel. We can generalize this, by
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introducing a class of estimators of the form

(4.2) R̂−
2 (x) =

1

N

N∑

i=1

(2yi − 1)

f̂X(xi)
K−

2TN
(xi, x)

where K−
2TN

is the odd part of a kernel of the form (2.13) satisfying Assumption 2.1, such as the two

kernels in Proposition 2.3.

The estimator (4.2) is convenient, though the plug-in term f̂X has to be treated with care. We

avoid restrictive assumptions on the distributions of covariates and allow fX(x) to decay to zero as x

approaches the boundary of its support H+. To deal with the latter problem, we modify (4.2) using

a trimming factor to define

(4.3) R̂−(x) =
1

N

N∑

i=1

(2yi − 1)K−
2TN

(xi, x)

max
(
f̂X(xi), aN

)

where aN is a sequence of the form

(4.4) aN = log(N)−r

for some positive r. Our estimator for R is then

(4.5) R̂ =
1

2
+ R̂−.

Remark 4.1. Alternative estimators of R− are available. For example, one may use kernel regression

on the sphere to estimate r in order to obtain an estimator for R−. As noted before, however, we

then need to use numerical integration to evaluate (3.9) to calculate f̂−β .

Various nonparametric estimators for fX can be used in (4.3), since estimation of densities

on compact manifolds have been studied by several authors, using histogram (Ruymgaart (1989)),

projection estimators (see, e.g. Devroye and Gyorfi (1985) for the circle and Hendriks (1990) for

general compact Riemannian manifolds) or kernel estimators (see, e.g. Devroye and Gyorfi (1985) for

the case of the circle, and Hall et al. (1987) and Klemelä (2000) for higher dimensional spheres). We

now assume that the following holds for fX and its estimator f̂X .

Assumption 4.1. Suppose for q and σ that will be specified later

(i)

σ
({

0 < fX < (logN)−r
})

= o




(

N

(logN)2r+(1−2/q)I{q≥2}

)−
σ+(d−1)(1−1/q)

2σ+d−1



 , sup
x∈H+

fX(x) <∞

holds for some r > 0, and fX and f̂X satisfy either
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(ii)

(
N

(logN)2r+(1−2/q)I{q≥2}

) σ
2σ+d−1

(logN)r max
i=1,...,N

∣∣∣∣∣∣
max (fX(xi), log(N)−r)

max
(
f̂X(xi), log(N)−r

) − 1

∣∣∣∣∣∣
= Op(1)

or

(iii) for some constant C,

limN→∞

(
N

(logN)2r+1

) σ
2σ+d−1

(logN)r max
i=1,...,N

∣∣∣∣∣∣
max (fX(xi), log(N)−r)

max
(
f̂X(xi), log(N)−r

) − 1

∣∣∣∣∣∣
≤ C a.s.

Assumption 4.1 (ii) (or (iii)) can be met easily when fX is smooth enough. In the simulation

experiment we use

(4.6) f̂X(x) = max

(
1

N

N∑

i=1

KTN
(xi, x), 0

)

for a suitably chosen TN that depends on the sample size and the smoothness of fX and KTN
is a

kernel of the form (2.13) satisfying Assumption 2.1. Theoretical details of this estimator will appear

elsewhere but note that its rate of convergence in sup-norm can be obtained in the same manner

as the proof of Theorem 5.1. This estimator is in the spirit of the projection estimators of Hendriks

(1990), but here we are able to derive a closed form using the condensed harmonic expansions together

with the Addition Formula. Note also that KTN
is a smoothed projection kernel (note the factor χ

in (2.13)), which is used here in order to have good approximation properties in the Lq(Sd−1) norms

with arbitrary q ∈ [1,∞], in particular in the L∞(Sd−1) norm.

We now present asymptotic properties of the estimators for R. The proofs are very similar to

those of Theorems 5.1 and 5.2 of Section 5 given in the appendix and thus omitted. We first state

results on the rate of convergence, including the strong uniform convergence rate. Apart from the log

correction due to trimming of fX , the rate is comparable to the usual nonparametric rates.

Theorem 4.2 (Convergence rates in Lq(Sd−1)). Suppose Assumptions 2.1, 3.1, 4.1(i) and 4.1(ii) hold.

If R belongs to Wσ
q (Sd−1) with q in [1,∞] and σ positive, and TN satisfies

TN ≍
(

N

(logN)2r+(1−2/q)I{q≥2}

) 1
2σ+d−1

,

then
∥∥∥R̂−R

∥∥∥
q

= Op

((
N

(logN)2r+(1−2/q)I{q≥2}

)− σ
2σ+d−1

)
.
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Moreover, if Assumptions 4.1 (i) and 4.1 (iii) hold then there exists a constant C such that

limN→∞

(
N

(logN)2r+1

) σ
2σ+d−1

∥∥∥R̂−R
∥∥∥
∞

≤ C a.s.

Assumption 4.1(i) is used to achieve a rate of convergence logarithmically close to the desired

nonparametric rate N
1

2σ+d−1 . Relaxing it while still keeping the exponent 1
2σ+d−1 (up to a logarithmic

term) seems difficult.

Next we consider asymptotic normality:

Theorem 4.3 (Asymptotic normality of R̂). Suppose R belongs Wσ
∞(Sd−1) with σ positive and As-

sumptions 2.1 and 3.1 hold. If fX , f̂X , fX , TN and r satisfy

N1/2T
−(d−1)/2
N (logN)r max

i=1,...,N

∣∣∣∣∣∣
max (fX(xi), log(N)−r)

max
(
f̂X(xi), log(N)−r

) − 1

∣∣∣∣∣∣
= op(1),(4.7)

N−1/2T
(d−1)/2
N (logN)r+ǫ = o(1) for some arbitrary ǫ > 0,(4.8)

N1/2T
− 2σ+d−1

2
N = o(1),(4.9)

N1/2T
(d−1)/2
N σ

({
0 < fX < (logN)−r

})
= o(1), sup

x∈H+

fX(x) <∞,(4.10)

then

N
1
2 s−1

1N (x)
(
R̂(x) −R(x)

)
d→ N(0, 1)

where

s21N (x) := var

(
(2Y − 1)K−

2TN
(X,x)

max (fX(X), (logN)−r)

)
.

The lower bound for the rate of TN implied by (4.9) is faster than the optimal rate (un-

dersmoothing). This ensures that the approximation bias vanishes asymptotically. Condition (4.7)

guarantees that the effect of replacing fX with f̂X is also asymptotically negligible. Viewed as a

condition on fX and f̂X , it becomes more stringent as the rate for TN gets slower, but as far as

N
σ

2σ+d−1 (logN)r max
i=1,...,N

∣∣∣∣∣∣
max (fX(xi), log(N)−r)

max
(
f̂X(xi), log(N)−r

) − 1

∣∣∣∣∣∣
= Op(1)

holds, every TN that satisfies the lower bound (4.9) automatically fulfills (4.7). On the other hand,

(4.8) imposes an upper bound for the growth rate of the parameter TN . It is a technical condition

under which the Lyapounov condition for asymptotic normality holds. Also, we impose (4.10) under

which the bias due to trimming is asymptotically negligible. It becomes increasingly more restrictive

as the growth rate for TN rises.
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5. A Closed Form Estimator of fβ

This section presents a computationally convenient estimator for fβ , and shows that it has

desirable asymptotic properties. It is based on an estimator for f−β of the form

f̂−β = H−1
(
R̂−
)

= H−1



 1

N

N∑

i=1

(2yi − 1)K−
2TN

(xi, ·)
max

(
f̂X(xi), (logN)−r

)



 .

Computing f̂−β is straightforward. First, note that the estimator (4.3) for R− resides in a finite

dimensional space
⊕TN

p=0H
2p+1,d, therefore PTN

R̂− = R̂− holds. Consequently, unlike in (3.9) where

a general estimator for R− is considered, we do not need to apply any additional series truncation to

R̂− prior to the inversion of H. Second, the estimator requires no numerical integration. To see this,

note the formula

H−1
(
K−

2TN
(xi, ·)

)
(b) =

TN−1∑

p=0

χ(2p+ 1, 2TN )

λ(2p+ 1, d)
q2p+1,d(xi, b),

which follows from

∫

Sd−1

q2p+1,d(x, b)K
−1
2TN

(x, xi)dσ(x) =

∫

Sd−1

q2p+1(x, b)

TN−1∑

p′=1

χ(2p′ + 1, 2TN )q2p′+1,d(x, xi)dσ(x)

= χ(2p+ 1, 2TN )q2p+1,d(b, xi).

Thus

f̂−β (b) =
1

N

N∑

i=1

(2yi − 1)H−1
(
K−

2TN
(xi, ·)

)
(b)

max
(
f̂X(xi), (logN)−r

)

=
1

N

N∑

i=1

(2yi − 1)
∑TN−1

p=0
χ(2p+1,2TN )

λ(2p+1,d) q2p+1,d(xi, b)

max
(
f̂X(xi), (logN)−r

) .

Using (3.7) and the Addition formula, we arrive at an estimator for fβ with the following explicit

form:

f̂β(b) = 2f̂−β (b)I{f̂−β (b) > 0},(5.1)

where f̂−β (b) =
1

|Sd−1|

TN−1∑

p=0

χ(2p+ 1, 2TN )h(2p+ 1, d)

λ(2p+ 1, d)C
ν(d)
2p+1(1)



 1

N

N∑

i=1

(2yi − 1)C
ν(d)
2p+1(x

′
ib)

max
(
f̂X(xi), (logN)−r

)



 .

This is our main proposal, on which the rest of the paper focuses.
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Remark 5.1. Our estimator f̂β requires neither numerical integration nor optimization. Recall that

h(n, d) = (2n+d−2)(n+d−2)!
n!(d−2)!(n+d−2) , ν(d) = (d− 2)/2 and λ(2p+ 1, d) = (−1)p|Sd−2|1·3···(2p−1)

(d−1)(d+1)···(d+2p−1) by (2.6), Theorem

2.1 and Proposition 2.4(ii)(iv), respectively, so these are trivial to calculate. As discussed in Section

2.2 the polynomial C
ν(d)
2p+1 can be evaluated recursively using (2.9). Examples of the specification of χ

are given in Proposition 2.3.

The proof of the following result is given in the appendix.

Theorem 5.1 (Convergence rates in Lq(Sd−1)). Suppose Assumptions 2.1, 3.1, 4.1(i) and 4.1(ii) with

σ = s+ d
2 hold. If f−β belongs to Ws

q(S
d−1) with q in [1,∞] and s > 0, and TN satisfies

TN ≍
(

N

(logN)2r+(1−2/q)I{q≥2}

) 1
2s+2d−1

then

(5.2)
∥∥∥f̂β − fβ

∥∥∥
q

= Op

((
N

(logN)2r+(1−2/q)I{q≥2}

)− s
2s+2d−1

)
.

Moreover, if Assumptions 4.1(i) and 4.1 (iii) hold then there exists a constant C such that

(5.3) limN→∞

(
N

(logN)2r+1

) s
2s+2d−1

∥∥∥f̂β − fβ

∥∥∥
∞

≤ C a.s.

The rate N− s
2s+2d−1 is in accordance with the L2 rate in Healy and Kim (1996) who study

deconvolution on S
2 for non-degenerate kernels. Kim and Koo (2000) prove that the rate in Healy

and Kim (1996) is optimal in the minimax sense. Their statistical problem, however, involves neither

a plug-in method nor trimming. Also, somewhat less importantly, it does not cover the case when the

convolution kernel is given by an indicator function, which appears in our operator H. In a recent

important paper, Hoderlein et al. (2007) study a linear model of the form W = X ′β where β is a

d-vector of random coefficients. They obtain a nonparametric random coefficients density estimator

that has the rate N− s
2s+2d−1 without the log correction,2 when fX is assumed to be bounded from

below and thus no trimming is required. Our log correction is closely related to the speed at which

the density fX decays to zero as x approaches the boundary of H+. Also, our result covers Lq loss

for all q ∈ [1,∞].

The next theorem is concerned with pointwise asymptotic normality. The proof is given in the

appendix.

2Note that the dimension of their estimator is d, whereas that of ours is d − 1. On the other hand, in their problem

W is observable, and it is obviously more informative than our binary outcome Y , which causes difficulties both in

identification and estimation.
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Theorem 5.2 (Asymptotic normality). Suppose f−β belongs to Ws
∞(Sd−1) with s > 0, and Assump-

tions 2.1 and 3.1 hold. If f̂X , fX , TN and r satisfy

N1/2T
−(d−1)/2
N (logN)r max

i=1,...,N

∣∣∣∣∣∣
max (fX(xi), log(N)−r)

max
(
f̂X(xi), log(N)−r

) − 1

∣∣∣∣∣∣
= op(1),(5.4)

N−1/2T
(d−1)/2
N (logN)r+ǫ = o(1) for some arbitrary ǫ > 0,(5.5)

N1/2T
− 2s+2d−1

2
N = o(1),(5.6)

N1/2T
(d−1)/2
N σ

({
0 < fX < (logN)−r

})
= o(1), sup

x∈H+

fX(x) <∞,(5.7)

then

(5.8) N
1
2 s−1

N (b)
(
f̂β(b) − fβ(b)

)
d→ N(0, 1)

holds for b such that fβ(b) 6= 0, where s2N (b) := 4var(ZN (b)), ZN (b) =
(2Y −1)H−1

“

K−

2TN
(X,·)

”

(b)

max(fX(X),(log N)−r)
.

Note that the conditions (5.4), (5.5), (5.6) and (5.7) are the same as conditions (4.7), (4.8),

(4.9) and (4.10) in the case of estimation of R. To see this for (5.6) it is enough to set σ = s+ d
2 . The

standard error sN (b) is 2 times the standard deviation of

ZN (b) =
1

|Sd−1|

TN−1∑

p=0

χ(2p+ 1, 2TN )h(2p+ 1, d)

λ(2p+ 1, d)C
ν(d)
2p+1(1)

(
(2Y − 1)C

ν(d)
2p+1(X

′b)

max (fX(X), (logN)−r)

)

(see equation (5.1)), which can be estimated by replacing fX with f̂X .

6. Discussion

6.1. Estimation of Marginals. In Section 3 we have provided an expression for the estimator of

the full joint density of β, from which an estimator for a marginal density can be obtained. Let

σk denote the surface measure and σk = σk/|Sk| the uniform probability measure on S
k. We write

β =
(
β
′
, β

′)′
and wish to obtain the density of the marginal of β which is a vector of dimension

d − k. Also define P and P the projectors such that β = Pβ and β = Pβ and denote by P ∗σd−1

and P ∗σd−1 the direct image probability measures. One possibility is to define the marginal law of β

as the measure P ∗Pβ , where dPβ = fβdσ. This may not be convenient, however, since the uniform

distribution over S
d−1 would have U-shaped marginals. The U-shape becomes more pronounced as

the dimension of β increases. In order to obtain a flat density for the marginals of the uniform joint

distribution on the sphere it is enough to consider densities with respect to the dominating measure

P ∗σd−1. Notice that sampling U uniformly on S
d−1 is equivalent to sampling U according to P ∗σd−1
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and then given U forming ρ
(
U
)
V where V is a draw from the uniform distribution σd−1−k on S

d−1−k

and ρ
(
U
)

=

√
1 −

∥∥∥U
∥∥∥

2
. Indeed given U , U/ρ

(
U
)

is uniformly distributed on S
d−1−k. Thus, when

g is an element of L1(Sd−1) we can write for k in {1, . . . , d− 1},

(6.1)

∫

Sd−1

g(b)dσd−1(b) =

∫

Bk

[∫

Sd−1−k

g
(
ρ
(
b
)
u, b
)
dσd−1−k(u)

]
dP ∗σd−1

(
b
)

where B
k is the k dimensional ball of radius 1. Setting g = |Sd−1|fβ(b)I

{
b ∈ A

}
for A Borel set of B

k

shows that the marginal density of β with respect to the dominating measure P ∗σd−1 is given by

(6.2) f
β

(
b
)

= |Sd−1|
∫

Sd−1−k

fβ

(
ρ
(
b
)
u, b
)
dσd−1−k(u).

One can use deterministic methods to compute the integral (e.g., Hesse et al. (2007) for quadrature

methods on the sphere) or for example one may use a Monte-Carlo method, by forming

(6.3) f̂M

β

(
b
)

=
1

M

M∑

j=1

f̂β

(
ρ
(
b
)
uj , b

)

where uj , j = 1, ...,M are draws from independent uniform random variables on S
d−1−k.

6.2. Treatment of non-random coefficients. It may be useful to develop an extension of the

method described in the previous sections to models that have non-random coefficients, at least for

two reasons.3 First, the convergence rate of our estimator of the joint density of β slows down as

the dimension d of β grows, which is a manifestation of the curse of dimensionality. Treating some

coefficients as fixed parameters alleviates this problem. Second, our identification assumption in

Section 3.1 precludes covariates with discrete or bounded support. This may not be desirable as

many random coefficient discrete choice models in economics involve dummy variables as covariates.

As we shall see shortly, identification is possible in a model where the coefficients on covariates with

limited support are non-random, provided that at least one of the covariates with “large support” has

a non-random coefficient as well. More precisely, consider the model:

(6.4) Yi = I{β1i + β′2iX2i + α1Z1i + α′
2Z2i ≥ 0}

where β1 ∈ R and β2 ∈ R
dX−1 are random coefficients, whereas the coefficients α1 ∈ R and α2 ∈ R

dZ−1

are nonrandom. The covariate vector (Z1, Z
′
2)

′ is in R
dZ , though the (dZ − 1)-subvector Z2 might

have limited support: for example, it can be a vector of dummies. The covariate vector (X ′
2, Z1)

′

is assumed to be, among other things, continuously distributed. Normalizing the coefficients vector

3Hoderlein et al. (2007) suggest a method to deal with non-random coefficients in their treatment of random coefficient

linear regression models.
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and the vector of covariates to be elements of the unit sphere works well for the development of our

procedure, as we have seen in the prevous sections. The model (6.4), however, is presented “in the

original scale” to avoid confusion.

Define β∗1(Z2) := β1 + α′
2Z2. We also use the notation

τ(Z2) :=
(β∗1(Z2), α1, β2)

′

‖(β∗1(Z2), α1, β′2)‖
∈ S

dX+1,W :=
(1, Z1, X

′
2)

′

‖(1, Z1, X ′
2)

′‖ ∈ S
dX+1.

Then (6.4) is equivalent to:

Y = I{(β∗1(Z2), α1, β2)(1, Z1, X
′
2)

′ ≥ 0}

= I
{
τ(Z2)

′W ≥ 0
}
.

This has the same form as our original model if we condition on Z2 = z2. We can then apply previous

results for identification and estimation under the following assumptions. First, suppose (β1, β
′
2)

′ and

W are independent, instead of Assumption 1.1. Second, we impose some conditions on fW |Z2=z2
, the

conditional density of W given Z2 = z2. More specifically, suppose there exists a set Z2 ⊂ R
dZ−1,

such that Assumption 3.1 holds if we replace fX and d with fW |Z2=z2
and dX + 1 for all z2 ∈ Z2. If

Z2 is a vector of dummies, for example, Z2 would be a discrete set. By (4.1) and (2.16) we obtain

(6.5) f−τ(Z2)|Z2=z2
(t) =

∞∑

p=0

1

λ(2p+ 1, dX + 1)
E

[
(2Y − 1)q2p+1,dX+1(W, t)

fW |Z2=z2
(W )

∣∣∣∣Z2 = z2

]

for all z2 ∈ Z2, where the right hand side consists of observables. This determines fτ(Z2)|Z2=z2
. That

is, the conditional density

f

(
(β∗1(Z2), α1, β2)

‖(β∗1(Z2), α1, β2)′‖

∣∣∣∣Z2 = z2

)

is identified for all z2 ∈ Z2 (Here and henceforth we use the notation f(·|·) to denote conditional

densities with appropriate arguments when adding subscripts is too cumbersome). This obviously

identifies

(6.6) f

(
(β∗1(Z2), α1, β2)

‖β2‖

∣∣∣∣Z2 = z2

)

for all z2 ∈ Z2 as well. If we are only interested in the joint distribution of β2 under a suitable

normalization, we can stop here. The presence of the term α1Z1 in (6.4) is unimportant so far.

Some more work is necessary, however, if one is interested in the joint distribution of the

coefficients on all the regressors. Notice that the distribution (6.6) gives

f

(
β∗1(Z2)

‖β2‖

∣∣∣∣Z2 = z2

)
= f

(
β1 + α′

2Z2

‖β2‖

∣∣∣∣Z2 = z2

)
,
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from which we can, for example, get

E

(
β∗1(Z2)

‖β2‖

∣∣∣∣Z2 = z2

)
= E

(
β1

‖β2‖

)
+ E

(
1

‖β2‖

)
α′

2z2 for all z2 ∈ Z2.

Define a constant

c := E

(
1

‖β2‖

)

then we can identify cα2 as far as z2 ∈ Z2 has enough variation and

E

(
α1

‖β2‖

)
= cα1

is identified as well. Let

(6.7) f

(
(β′2, α1, α

′
2)

′

‖β2‖

)

denote the joint density of all the coefficient (except for β1, which corresponds to the conventional

disturbance term in the original model (6.4), normalized by the length of β2). Then

f

(
(β′2, α1, α

′
2)

′

‖β2‖

)
= f









IdX−1 0

0 1
... cα2

cα1








β2

‖β2‖

α1
‖β2‖








.

In the expression on the right hand side, f ((β′2, α1)
′/‖β2‖) is available from (6.6), and cα1 and cα2 are

identified already, therefore the desired joint density (6.7) is identified. Obviously (6.7) also determines

the joint density of (β′2, α1, α
′
2)

′ under other suitable normalizations as well.

The density (6.5) is estimable: when Z2 is discrete, one can use the estimator of Section 5 to

each subsample corresponding to each value of Z2. If Z2 is continuous we can estimate fW |Z2=z2
and

the conditional expectation by nonparametric smoothing. An estimator for the density (6.6) can be

then obtained numerically.

6.3. Endogenous Regressors. Assumption 1.1 is violated if some of the regressors are endogenous

in the sense that the random coefficients and the covariates are not independent. This problem can

be solved if an appropriate vector of instruments is available. To be more specific, suppose we observe

(Y,X,Z) generated from the following model

(6.8) Y = I{β1 + β̃′X ≥ 0}

with

(6.9) X = ΓZ + V
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where V is a vector of reduced form residuals and Z is independent of (β, V ). Note that Hoderlein et

al. (2007) utilize a linear structure of the form (6.9) in estimating a random coefficient linear model.

The equations (6.8) and (6.9) yield

Y = I{
(
β1 + V ′β̃

)
+ Z ′Γ′β̃}.

Suppose the distribution of ΓZ satisfy Assumption 3.1. It is then possible to estimate the density

of τ = τ/‖τ‖ where τ =
(
β1 + V ′β̃, β̃

)′
by replacing Γ with a consistent estimator, which is easy to

obtain under the maintained assumptions. This yields an estimator for the joint density of β̃/‖τ‖, the

random coefficients on the covariates under scale normalization.

7. Numerical Examples

The purpose of this section is to illustrate the performance of our new estimator in finite

samples using simulated data. We consider the model of the form (1.1) with d = 3. The covariates are

specified to be X = (1, X1, X2) where (X2, X3)
′ ∼ N(

(
0
0

)
, 2 ·I2). The coefficients vector β = (β1, β2, 1)′

is set random except for the last element. Fixing the last component constant fulfills Assumption 3.2

for identification. Two specifications for the random elements (β1, β2) are considered. In the first

specification (Model 1) we let (β1, β2)
′ ∼ N(

(
0
0

)
, 0.3 · I2). In the second (Model 2) we consider a two

point mixture of normals

(
β1

β2

)
∼ λN




(
µ

−µ

)
,



 σ
2 ρσ2

ρσ2 σ2







+ (1 − λ)N




(−µ
µ

)
,



 σ
2 ρσ2

ρσ2 σ2







 ,

where µ = 0.7, σ2 = 0.3, ρ = 0.5 and λ = 0.5. Random samples of size 500 from each of the two

specifications are generated, then the new estimator (5.1) is computed. It is implemented using the

Riesz kernel with s = 2 and l = 3 (see Proposition 2.3). The truncation parameter TN is set at 3,

and the trimming parameter r is 2. It also requires a nonparametric estimator for fX , and we use the

projection estimator (4.6) based on the same Riesz kernel (i.e. s = 2, l = 3) and TN = 10.
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Figure 1. Nonparametric estimator of fβ for Model 1

Figure 2. Nonparametric estimator of fβ for Model 2
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Figure 1 presents the surface plot of the true density (blue mesh) and our estimate (multi-

colored surface) for Model 1. Our estimator (5.1) is defined on S
2 in this case, and we performed

an appropriate transformation to plot it as a density on R
2. With the reasonable sample size, the

location of the peak of the density, as well as its shape, are successfully recovered by our procedure.

Next, Figure 2 shows the estimation results for Model 2. Again, our procedure works well: the

estimated surface plot nicely captures the locations of the two peaks and their shapes of the true

density, thereby exhibiting the underlying mixture structure. While further experimentations are

necessary, these results seem to indicate our estimator’s good performance in practical settings.

8. Conclusion

In this paper we have considered nonparametric estimation of a random coefficients binary

choice model. By exploiting (previously unnoticed) connections between the model and statistical

deconvolution problems and applying results of integral transformation on the sphere, we have devel-

oped a new estimator that is practical and possesses desirable statistical properties. It requires neither

numerical optimization nor numerical integration, and as such its computational cost is trivial and

local maxima and other difficulties in optimization need not be of concern. Its rate of convergence

in the Lq norm for all q ∈ [1,∞] is derived. Our numerical example suggests that the new procedure

works well in finite samples, consistent with its good theoretical properties. It is of great theoretical

interest to examine rigorously whether the rate is optimal in a minimax sense, though it is a task

we defer to subsequent investigations. With appropriate under-smoothing, the estimator is shown to

be asymptotically normal, providing a theoretical basis for nonparametric statistical inference for the

random coefficient distribution.

9. Appendix

We first summarize some results on the Gegenbauer polynomials, which are used in various

parts of the paper. These can be found in Erdélyi et al. (1953) and Groemer (1996). The Gegenbauer

polynomials have the following explicit representation

(9.1) Cν
n(t) =

[n/2]∑

l=0

(−1)l(ν)n−l

l!(n− 2l)!
(2t)n−2l

where (a)0 = 1 and for n in N \ {0}, (a)n = a(a+ 1) · · · (a+n− 1) = Γ(a+n)/Γ(a). When ν = 0 and

d = 2, it is related to the Chebychev polynomials of the first kind, as

∀n ∈ N \ {0}, C0
n(t) =

2

n
Tn(t)
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and

C0
0 (t) = T0(t) = 1

hold for

Tn(t) = cos (n arccos(t)) , n ∈ N.

When ν = 1 and d = 4, C1
n(t) coincides with the Chebychev polynomial of the second kind Un(t),

which is given by

Un(t) =
sin[(n+ 1) arccos(t)]

sin[arccos(t)]
, n ∈ N.

The Gegenbauer polynomials are related to each other through differentiation, that is, they satisfy

(9.2)
d

dt
Cν

n(t) = 2νCν+1
n−1(t)

for ν > 0 and

(9.3)
d

dt
C0

n(t) = 2C1
n−1(t).

For ν 6= 0 the Rodrigues formula states that

(9.4) Cν
n(t) = (−2)−n(1 − t2)−ν+1/2 (2ν)n

(ν + 1/2)nn!

dn

dtn
(1 − t2)n+ν−1/2.

The following results are also used in the paper:

(9.5) sup
t∈[−1,1]

∣∣∣∣
Cν

n(t)

Cν
n(1)

∣∣∣∣ ≤ 1,

(9.6) ∀ ν > 0, ∀n ∈ N, Cν
n(1) =



 n+ 2ν − 1

n





(9.7) C0
0 (1) = 1 and ∀n ∈ N \ {0}, C0

n(1) =
2

n
,

(9.8) Cν
n(−t) = (−1)nCν

n(t).

These orthogonal polynomials are normalized such that

(9.9) ‖Cν(d)
n

(
x′·
)
‖2 =

∫ 1

−1
(Cν(d)

n (t))2(1 − t2)(d−3)/2dt =
|Sd−1|(Cν(d)

n (1))2

|Sd−2|h(n, d) .

In the proofs we often denote a constant that depends only on the dimension d by C, thus its

value is determined by the context it is used.
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Lemma 9.1. For p positive and d ≥ 2,

d

dt

(
♭qn,d

)
=
d|Sd+1|
|Sd−1|

♭qn−1,d+2

Proof. Using (2.8), (9.2), (9.3), (9.6) and (2.6)

(
d

dt

(
♭qn,d

))
(t) =

h(n, d)

|Sd−1|Cν(d)
n (1)

(d− 2)Cν(d)+1
n (t)

=
2n+ d− 2

|Sd−1|(d− 2)
(d− 2)C

ν(d+2)
n−1 (t).

The desired result follows, since, using again (9.6) and (2.6),

h(n− 1, d+ 2)

C
ν(d+2)
2p (1)

=
2n+ d− 2

d
.

�

Proof of Proposition 2.3. First consider the Riesz kernel. (i) follows from (2.4) in Ditzian (1998)

and by the fact that Cesàro kernels C l
h are uniformly bounded in L1(Sd−1) for l > d−2

2 (see, e.g. Bonami

and Clerc 1973, p. 225). To show (iii) we use Theorem 4.1 in Ditzian (1998), by letting P (D) = ∆S ,

λ = ζT,d + 1 = T (T + d− 2) + 1, α = s/2 and m = 1. Then it implies an approximation error upper

bound CKs/2(f,∆
S , (ζT,d + 1)−

s
2 ), which, in turn, is bounded by CT−s‖(−∆S)s/2f‖p (see equations

(4.2) and (4.1) therein). By the definition of the norm of the Sobolev space W s
p (Sd−1) (see Definition

2.3) the result follows. Concerning the delayed means, (i) corresponds to the inequality (A16) of

Hesse et al. (2007). To see (iii), use Proposition 15 in Hesse et al. (2007) to obtain an upper bound

C inf
g∈

LT/2
n=0 Hn,d ‖f−g‖p. Let λ = ζT/2,d+1 = T

2 (T
2 +d−2)+1, α = s/2,m = 1, P (D) = ∆S in Ditzian’s

(1998) Theorem 6.1, which gives an upper bound on the best spherical harmonic approximation in

Lp(Sd−1) to functions in Ws
p(S

d−1) (see also Kamzolov, 1983), then apply equation (4.1) in Ditzian

(1998) again to obtain the desired result. The proof of (ii) for both Riesz and delayed means kernels

is as follows. Write

|KT (z, x) −KT (z, y)| ≤
T∑

n=0

χ(n, T )
∣∣∣♭qn,d(z

′x) − ♭qn,d(z
′y)
∣∣∣
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where

∣∣∣♭qn,d(z
′x) − ♭qn,d(z

′y)
∣∣∣ =

∣∣∣∣∣

∫ z′y

z′x

(
d

dt
♭qn,d

)
(t)dt

∣∣∣∣∣

≤ d|Sd+1|
|Sd−1|

∥∥∥♭qn−1,d+2

∥∥∥
∞
|x− y| (by lemma 9.1)

≤ d|Sd+1|
|Sd−1|2 h(n− 1, d+ 2)|x− y| (by (2.8) and (9.5))

and conclude using that χ(n, T ) ∈ [0, 1] and (9.10) below. (iv) holds by setting c to (1/2)l in the case

of the Riesz kernel and to 1 in the case of the delayed means. �

The following results are useful.

Lemma 9.2.

h(n, d) ≍ nd−2,(9.10)

|λ(2p+ 1, d)| ≍ p−d/2.(9.11)

Proof. Estimate (9.10) is clearly satisfied when d = 2 and 3 since h(n, 2) = 2 and h(n, 3) = 2n + 1.

When d ≥ 4 we have

h(n, d) =
2

(d− 2)!
(n+ (d− 2)/2)[(n+ 1)(n+ 2) · · · (n+ d− 3)],

and the results follow. Next we turn to (9.11). When d is even and p ≥ d/2

|λ(2p+ 1, d)| =
κd

(2p+ 1)(2p+ 3) · · · (2p+ d− 1)

where

κd =
|Sd−2|1 · 3 · · · (d− 1)

d− 1

and (9.11) follows. Sterling’s double inequality (see Feller (1968) p.50-53), that is,

√
2πnn+1/2 exp

(
−n+

1

12n+ 1

)
< n! <

√
2πnn+1/2 exp

(
−n+

1

12n

)
,

implies that

(2pp!)2

(2p)!
≍ √

p

and therefore

1 · 3 · · · (2p− 1) ≍ √
p2 · 4 · · · (2p).
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Thus for p ≥ d/2 and d odd we have

|λ(2p+ 1, d)| ≍
√
p

(2p+ 2)(2p+ 4) · · · (2p+ d− 1)

and (9.11) holds for both even and odd d. �

Proof of Proposition 2.4. Define α(n, d) := C
ν(d)
n (1)|Sd−2|−1λn (I {t ∈ [0, 1]}). By the Funk-Hecke

theorem

α(n, d) =

∫ 1

0
Cν(d)

n (t)(1 − t2)(d−3)/2dt,

thus using (9.4),

α(n, d) =
(−2)−n(d− 2)n

n! ((d− 1)/2)n

∫ 1

0

dn

dtn
(1 − t2)n+(d−3)/2dt.

Therefore for n ≥ 1 and d ≥ 3,

α(n, d) = −(−2)−n(d− 2)n

n! ((d− 1)/2)n

dn−1

dtn−1
(1 − t2)n−1+(d−3)/2dt

∣∣∣∣
t=0

since the term on the right hand-side is equal to 0 for t = 1. To prove that the coefficients α(2p, d)

are equal to zero for p positive it is enough to prove

d2p+1

dt2p+1
(1 − t2)2p+1+m

∣∣∣∣
t=0

= 0, ∀m ≥ 1, p ≥ 0.

The Faá di Bruno formula gives that this quantity is equal to

∑

k1+2k2=2p+1

(−1)2p+1−k2(2p+ 1)!(m+ 1) · · · (2p+ 1 +m)

k1!k2!
(1 − t2)m+k2(2t)k1

∣∣∣∣∣∣
t=0

.

and the result follows since k1 in the sum cannot be equal to 0.

When n = 2p+1 for p ∈ N we obtain, again using the Faá di Bruno formula, that the derivative

at t = 0 is equal to

(−1)p (2p)!

p!
[(2p+ 1 + (d− 3)/2)(2p+ (d− 3)/2) · · · (p+ 2 + (d− 3)/2)] .

Together with (9.6), the desired result follows. For the case d = 2 we use Proposition 2.1. �

Proof of Proposition 2.6. By definition we have

‖H
(
f−
)
‖2
2,s+d/2 =

∞∑

p=0

(1 + ζ2p+1,d)
s+d/2‖Q2p+1,dH(f−)‖2

2
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where according to the Funk-Hecke Theorem

Q2p+1,dH(f−) = Q2p+1,dH




∞∑

q=0

Q2q+1,df





= Q2p+1,d




∞∑

q=0

λ(2q + 1, d)Q2q+1,df





= λ(2p+ 1, d)Q2p+1,df.

The result follows since Lemma 9.2 implies that (1 + ζ2p+1,d)
s+d/2λ2(2p+ 1, d) ≍ (1 + ζ2p+1,d)

s. �

Proof of Proposition 2.7. If we consider the case where d is even, we know from Proposition 2.4,

that
1

λ(2p+ 1, d)
= (−1)p|Sd−2|(2p+ 1)(2p+ 3) . . . (d+ 2p− 1).

Thus if d is a multiple of 4,

1

λ(2p+ 1, d)
= |Sd−2|

d/4∏

k=1

[−ζ2p+1,d + 2(k − 1)(d− 2k)].

Using this and (2.16),

H−1 =
∞∑

p=0

1

λ(2p+ 1, d)
Q2p+1,d

=
∞∑

p=0

|Sd−2|




d/4∏

k=1

[−ζ2p+1,d + 2(k − 1)(d− 2k)]



Q2p+1,d.

Recall Definition 2.3 and the proposition is proved. �

Proof of Theorem 2.3. We can write

H−1 = P1(D) − P2(D)

where P1(D) and P2(D) are defined for all odd function f− by

P1(D)f− =
∞∑

p=0

1

λ(4p+ 3)

∫

Sd−1

q4p+3(x, y)f
−(x)dσ(x)

P2(D)f− = −
∞∑

p=0

1

λ(4p+ 1)

∫

Sd−1

q4p+1(x, y)f
−(x)dσ(x).

P1(D) and P2(D) are two unbounded operators on B = Lq
odd(S

d−1) with non-positive eigenvalues. We

apply Theorem 3.2. of Ditzian (1998) to −P1(D) and −P2(D) choosing α = 1. Condition (1.6) of
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Ditzian (1998) can be verified using Proposition 2.2 with r = 1 and p = q and the fact that for the

Cesaro kernels C l
h are uniformly bounded in L1(Sd−1) for l > d−2

2 (see, e.g. Bonami and Clerc, 1973).

We see, using the triangle inequality, that for all P in
⊕T

p=0H
2p+1,d,

‖H−1P‖q ≤ C
1

λ2(2T + 1, d)
‖P‖q

≤ CT d‖P‖q.

The last inequality follows from (9.11). �

Proof of Proposition 3.1. It is straightforward that the model (1.1) and Assumption 1.1 imply

that the choice probability function r given by (1.2) is homogeneous of degree 0. Proposition 2.5

along with the fact that R = 1
2 +H

(
f−β

)
with f−β ∈ L2

odd(S
d−1) implies that R belongs to Hd/2(Sd−1).

We now turn to the proof of sufficiency. If the extension R given by (3.2) belongs to Hd/2(Sd−1) then

so does R− and Proposition 2.5 shows that there exists a unique odd function f− in L2(Sd−1) such

that

R =
1

2
+ H

(
f−
)

= H
(

1

|Sd−1| + f−
)
.

Moreover, since 0 ≤ R(x) ≤ 1 holds for every x ∈ S
d−1, the above relationship implies that 1

2 ≥
Hf−(x),∀x ∈ S

d−1. But Hf−(x) ≥
∫
{f−(b)≥0} f

−(b)dσ(b) holds for some x. Therefore we conclude

that 1
2 ≥

∫
{f−(b)≥0} f

−(b)dσ(x) = −
∫
{f−(b)≤0} f

−(b)dσ(b), thus
∫

Sd−1 |f−(b)|dσ(b) ≤ 1. Also, following

the discussion in Section 2.2, 1
|Sd−1|

+ f− integrates to 1. We have seen in Corollary 2.1 that for even

function g that has 0 as the coefficient of degree 0 in its expansion on the surface harmonics (i.e. an

even function that integrates to zero over the sphere),

R = H
(
g +

1

|Sd−1| + f−
)

holds. Now consider

g = |f−| − 1

|Sd−1|

∫

Sd−1

|f−(b)|dσ(b),

then this certainly is even and integrates to zero. Using this, define

f∗β := g +
1

|Sd−1| + f− = 2f−I{f− > 0} +
1

|Sd−1|

(
1 −

∫

Sd−1

|f−(b)|dσ(b)

)
≥ 0.

Obviously f∗β
− = f−. This function f∗β is non-negative and integrates to one, and thus it is a proper

probability density function (pdf). It is indeed bounded from below by 1
|Sd−1|

(
1 −

∫
Sd−1 |f−(b)|dσ(b)

)
.

As a consequence, there exists a pdf f∗β such that

R = H
(
f∗β
)

=
1

2
+ H

(
f∗β

−)
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and for all x in H+, r(x) = H
(
f∗β

)
(x). �

Proof of Theorem 4.1. R has the following condensed harmonic expansion

R(x) =
1

2
+

∞∑

p=1

(Q2p+1,dR)(x).

We then write using (3.2), changing variables and using (9.8),

(Q2p+1,dR)(x) =

∫

Sd−1

q2p+1,d(x, z)R(z)dσ(z)

=

∫

H+

q2p+1,d(x, z)r(z)dσ(z) +

∫

H−

q2p+1,d(x, z)(1 − r(−z))dσ(z)

=

∫

H+

q2p+1,d(x, z)r(z)dσ(z) −
∫

H+

q2p+1,d(x, z)(1 − r(z))dσ(z)

=

∫

H+

q2p+1,d(x, z)(2r(z) − 1)dσ(z)

=

∫

H+

q2p+1,d(x, z)E

[
2Y − 1

fX(z)

∣∣∣∣X = z

]
fX(z)dσ(z)

= E

[
(2Y − 1)q2p+1,d(x,X)

fX(X)

]
.

�

Proof of Theorems 4.2 and 4.3. The proofs concerning the estimation of R is the same as that

of fβ below (though the latter requires a step that uses Theorem 2.3, which is not necessary for the

former). �

Now we turn to the proofs of Theorems 5.1 and 5.2. For notational convenience we simply

write I(b) := I{f−β (b) > 0} and Î(b) := I{f̂−β (b) > 0}. Then fβ = 2f−β I and f̂β = 2f̂−β Î. Define

f
−

β,T = H−1R
−

T

f
−

β = H−1R
−
.

where

R
−

T (x) =
1

N

N∑

i=1

(2yi − 1)K−
2T (xi, x)

max (fX(xi), (logN)−r)

R
−
(x) =

1

N

N∑

i=1

(2yi − 1)K−
2T (xi, x)

fX(xi)
.

We use the decomposition

(9.12) f̂−β − f−β =
(
f̂−β − f

−
β,T

)
−
(
f

−
β,T − E

[
f

−
β,T

])
−
(
E

[
f

−
β,T

]
− E

[
f

−
β

])
−
(
E

[
f

−
β

]
− f−β

)
,
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and denote the terms on the right hand side by Sp (stochastic component due to plug-in), Se (stochastic

component of the infeasible estimator f
−

β,T ), Bt (trimming bias) and Ba (approximation bias). Note

that the same decomposition, with H operated on each term, can be used to show Theorems 4.2 and

4.3.

Proof of Theorem 5.1. Take q ∈ [1,∞),

‖f̂β − fβ‖q
q =

∫
(f̂β(b) − fβ(b))qdσ(b)

=

∫

I(b)=1,̂I(b)=1
(f̂β(b) − fβ(b))qdσ(b) +

∫

I(b)=0,̂I(b)=1
(f̂β(b) − fβ(b))qdσ(b)

+

∫

I(b)=1,̂I(b)=0
(f̂β(b) − fβ(b))qdσ(b) +

∫

I(b)=0,̂I(b)=0
(f̂β(b) − fβ(b))qdσ(b)

:=A1 +A2 +A3 +A4.

Obviously

A1 =

∫

I(b)=1,̂I(b)=1
(2f̂−β (b) − 2f−β (b))qdσ(b)

and A4 = 0. Also,

A2 =

∫

I(b)=0,̂I(b)=1
(2f̂−β (b) − fβ(b))qdσ(b).

But given I(b) = 0 and Î(b) = 1, 2f̂−β (b) > 0, fβ(b) = 0 and 2f−β (b) ≤ 0, so replacing fβ with 2f−β in

the bracket,

A2 ≤
∫

I(b)=0,̂I(b)=1
(2f̂−β (b) − 2f−β (b))qdσ(b).

Similarly,

A3 =

∫

I(b)=1,̂I(b)=0
(f̂β(b) − 2f−β (b))qdσ(b).

and given I(b) = 1 and Î(b) = 0, 2f−β (b) > 0, f̂β(b) = 0 and 2f̂−β (b) ≤ 0, so replacing fβ with 2f−β in

the bracket,

A3 ≤
∫

I(b)=0,̂I(b)=1
(2f̂−β (b) − 2f−β (b))qdσ(b).

Overall,

‖f̂β − fβ‖q
q ≤ 4‖f̂−β − f−β ‖q

q.

A similar proof can be carried out replacing Lq(Sd−1) by L∞(Sd−1). Thus it is enough to consider

the behavior of f̂−β − f−β instead of f̂β − fβ . A noted above, the former can be decomposed into four

terms, Sp, Se, Bt and Ba.
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Let the sequence of smoothing parameters satisfy:

(9.13) TN =

(
N

(logN)2(r+(1/2−1/q)I{q≥2})

)γ

for some γ > 0. We later show that the above form with the choice γ = 1
2s+2d−1 leads to the optimal

rate of convergence for f̂β .

We start with the analysis of Sp. Note that for q ∈ [1,∞]

‖Sp‖q =

∥∥∥∥∥∥
H−1



 1

N

N∑

i=1

(2yi − 1)K−
2TN

(xi, ·)
max(fX(xi), (logN)−r)



 max (fX(xi), (logN)−r)

max
(
f̂X(xi), (logN)−r

) − 1









∥∥∥∥∥∥
q

≤ B(d, q)T
d/2
N

∥∥∥∥∥∥
1

N

N∑

i=1

(2yi − 1)K−
2TN

(xi, ·)
max(fX(xi), (logN)−r)



 max (fX(xi), (logN)−r)

max
(
f̂X(xi), (logN)−r

) − 1





∥∥∥∥∥∥
q

(by Theorem 2.3)

≤ B(d, q)T
d/2
N (logN)r

∥∥∥∥∥
1

N

N∑

i=1

|K2TN
(xi, ·)|

∥∥∥∥∥
q

max
i=1,...,N

∣∣∣∣∣∣
max (fX(xi), (logN)−r)

max
(
f̂X(xi), (logN)−r

) − 1

∣∣∣∣∣∣

holds, where we have used the triangle inequality. The Lq-norm on the right hand side is bounded

from above by

(9.14)

∥∥∥∥∥
1

N

N∑

i=1

|K2TN
(xi, ·)| − E |K2TN

(X, ·)|
∥∥∥∥∥

q

+ ‖E |K2TN
(X, ·)|‖q := ‖T1‖q + ‖T2‖q.

First consider the term ‖T1‖q. We begin with the case of q ∈ [1, 2]. By the Hölder inequality,

E
[
‖T1‖q

q

]
=

∫

Sd−1

E [T1(x)
q] dσ(x)

≤
∫

Sd−1

E
[
T1(x)

2
]q/2

dσ(x)
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where

E
[
T1(x)

2
]
≤ 1

N
E

[
(K2TN

(X,x))2
]

(9.15)

≤ C

N
‖K2TN

(⋆2, x)‖2
2 (boundedness assumption on fX)

=
C

N

∥∥∥∥∥

2TN∑

n=0

χ(n, 2TN )qn,d(⋆2, x)

∥∥∥∥∥

2

2

≤ C

N

2TN∑

n=0

‖qn,d(⋆2, x)‖2
2 (by Assumption 2.1(iv))

≤ C

N

2TN∑

n=0

h2(n, d)
∥∥∥Cν(d)

n (⋆′2x)
∥∥∥

2

2

|Sd−1|2(Cν(d)
n (1))2

≤ C

N

2TN∑

n=0

h(n, d) (by (9.9))

≤ CT d−1
N

N
(by lemma 9.2).

By the Markov inequality,

(9.16) T
d/2
N (logN)r‖T1‖q = Op

(
(logN)rN−1/2T

(2d−1)/2
N

)
,

providing a convergence rate for ‖T1‖q, q ∈ [1, 2]. So if we can establish a similar rate for ‖T1‖∞,

all Lq(Sd−1) convergence rates of T1 for q ∈ (2,∞] can be interpolated between the L2(Sd−1) and

L∞(Sd−1) convergence rates using the following inequality:

(9.17) ∀f ∈ L∞(Sd−1), ‖f‖q ≤ ‖f‖2/q
2 ‖f‖1−2/q

∞ .

To see this, note

‖f‖q = ‖f2|f |q−2‖1/q
1

≤
[
‖f2‖1‖|f |q−2‖∞

]1/q
(by Hölder)

= ‖f‖2/q
2 ‖f‖1−2/q

∞ .

We can thus focus on ‖T1‖∞. We cover the sphere S
d−1 by N(N, r, d) geodesic balls (caps) (Bi)

N(N,r,d)
i=1

of centers (x̃i)
N(N,r,d)
i=1 and radius R(N, r, d), that is, Bi = {x ∈ S

d−1 : ‖x− x̃i‖ ≤ R(N, r, d)}. As the

notation suggests, we let the radius of the balls depend on N , r and d, as specified more precisely

below. Note that N(N, r, d) ≍ R(N, r, d)−(d−1).
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We now prove that for every ǫ > 0 positive, there exists a positive M such that

(9.18) P

(
vNT

d/2
N (logN)r sup

x∈Sd−1

|T1(x)| ≥M

)
≤ ǫ

holds for an appropriately chosen sequence vN ↑ ∞. Write

P

(
vNT

d/2
N (logN)r sup

x∈Sd−1

|T1(x)| ≥M

)
(9.19)

≤ P




⋃

i=1,...,N(N,r,d)

{
vNT

d/2
N (logN)r|T1(x̃i)| ≥M/2

}




+ P

(
∃i ∈ {1, . . . ,N(N, r, d)} : vNT

d/2
N (logN)r sup

x∈Bi

|T1(x) − T1(x̃i)| ≥M/2

)

≤ N(N, r, d) sup
i=1,...,NN

P

(
vNT

d/2
N (logN)r|T1(x̃i)| ≥M/2

)

where the last inequality is obtained using Assumption 2.1 (ii) on the kernel and letting R(N, r, d) ≍
(logN)−rv−1

N T
−(d/2+α)
N M (where α is given in Assumption 2.1 (ii)). Notice

P

(
vNT

d/2
N (logN)r|T1(x̃i)| ≥M/2

)
(9.20)

= P





∣∣∣∣∣∣

N∑

j=1

|K2TN
(xj , x̃i)|

T d−1
N

− E

[
|K2TN

(X, x̃i)|
T d−1

N

]∣∣∣∣∣∣
≥ T

−(d−1)
N v−1

N T
−d/2
N (logN)−rNM/2





≤ 2 exp

{
−1

2

(
t2

ω + Lt/3

)}
(Bernstein inequality)

where

t = T
−(d−1)
N v−1

N T
−d/2
N (logN)−rNM/2

ω ≥
N∑

j=1

var

(
|K2TN

(Xj , x̃i)|
T d−1

N

)

∀j = 1, . . . , N,

∣∣∣∣∣
K2TN

(Xj , x̃i)

T d−1
N

∣∣∣∣∣ ≤ L (using (2.8) and (9.5)).

The bound L in the last line is obtained by noting that |K2TN
(Xj , x̃i)| =

∣∣∣
∑2TN

n=0 χ(n, 2TN )qn,d(Xj , x̃i)
∣∣∣ ≤

C
∑2TN

n=0 |h(n, d)| ≍ T d−1
N , which follows from (2.8), (9.5) and (9.10). Here we can take ω = CNE[K2TN

(X, x̃i)
2],

then by the calculations in (9.15), we can write ω = CNT
−(d−1)
N . ω is the leading term in the denom-

inator of the exponent in the last inequality.
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If we take vN = (logN)−r−1/2N1/2T
−(2d−1)/2
N , then

(9.21)
t2

ω + Lt/3
≍ (logN)M2.

Also, use this vN and the form of TN as specified in (9.13) in our choice of R(N, r, d) made above to

get:

R(N, r, d) ≍ (logN)−rv−1
N T

−(d/2+α)
N M = (log(N))1/2N−1/2T

d−1
2

−α

N M

Thus

(9.22) N(N, r, d) ≍ R(N, r, d)−(d−1) = exp

(
1

2
(d− 1) logN + o(logN)

)
= exp (C1 logN + o(logN))

with C1 = 1
2(d− 1). (9.19), (9.20), (9.21) and (9.22) imply that, for a positive constants C and C2,

(9.23) P

(
vNT

d/2
N (logN)r sup

x∈Sd−1

|T1(x)| ≥M

)
≤ C exp

{
(logN)(C1 − C2M

2)
}

holds. For a large enough M , C1 − C2M
2 < 0 and the right hand side of (9.23) converges to zero, so

(9.18) follows. In summary, we have just shown that

T
d/2
N (logN)r‖T1‖∞ = Op

(
(logN)r+1/2N−1/2T

(2d−1)/2
N

)

and with (9.16) and (9.17) we also conclude that

T
d/2
N (logN)r‖T1‖q = Op

(
(logN)r+1/2−1/qN−1/2T

(2d−1)/2
N

)
.

Concerning ‖T2‖q, q ∈ [1,∞], since fX is bounded by assumption, there exists a positive C such that

‖T2‖q ≤ C
∥∥‖K2TN

(⋆1, ⋆q)‖1

∥∥
q

where integration in ‖ · ‖1 is with respect to argument ⋆1 and integration in ‖ · ‖q is with respect to

⋆q. But ‖K2TN
(⋆1, ⋆q)‖1 is a constant and does not depend on ⋆q, as previously noted. Thus

∥∥‖K2TN
(⋆1, ⋆q)‖1

∥∥
q

= |Sd−1|1/q ‖K2TN
(⋆1, ⋆q)‖1

and we conclude that this term is O(1) using Assumption 2.1 (i) on the kernel, thus

T
d/2
N (logN)r‖T2‖q = O

(
(logN)rT

d/2
N

)
.

For the choice made later for TN , this term is of smaller order than the first term T
d/2
N (logN)r‖T1‖q.

Analogously to our treatment of ‖T1‖q, we can prove that when q ∈ [1, 2],

‖Se‖q = Op

(
(logN)rN−1/2T

(2d−1)/2
N

)
,
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while for q ∈ (2,∞]

‖Se‖q = Op

(
(logN)r+1/2−1/qN−1/2T

(2d−1)/2
N

)
.

Let us now turn to the bias term induced by trimming

Bt(b) = E

[
(2Y − 1)H−1

(
K−

2TN
(X, ·)

)
(b)

fX(X)

(
fX(X)

max(fX(X), (logN)−r)
− 1

)]

=

∫

{z∈Sd−1: 0<fX(z)<(log N)−r}

E[2Y − 1|X = z]H−1
(
K−

2TN
(z, ·)

)
(b) (fX(z)(logN)r − 1) dσ(z).

Using Theorem 2.3 along with Proposition 2.2 with r = q and p = 1, where the Lq-norm of the kernel is

interpolated using Hölder’s inequality between the uniformly bounded L1-norm and the upper bound

on the sup norm of the order of T d−1
N seen previously, we have

‖Bt‖q ≤ T
d/2+(d−1)(1−1/q)
N σ(0 < fX < (logN)−r).

We finally treat Ba using Assumption 2.1 (iii) with the condition that f−β ∈ Ws
q(S

d−1):

‖Ba‖q ≤ CT−s
N .

We now choose TN to balance the bounds for the approximation bias Ba and the stochastic fluctuation

Se of the infeasible estimator f
−

β,T . This can be achieved by setting

(logN)r+(1/2−1/q)I{q≥2}N−1/2T
(2d−1)/2
N ≍ T−s

N .

Solve this to obtain (9.13) with γ = 1/(2s+2d− 1). For this choice of TN both terms are of the order

V −1
N =

(
N

(logN)2(r+(1/2−1/q)I{q≥2})

)−s/(2s+2d−1)

,

which is the desired rate of convergence. It is easy to check that Assumption 4.1 implies that

VN (logN)rT
d/2
N max

i=1,...,N

∣∣∣∣∣∣
max (fX(xi), (logN)−r)

max
(
f̂N

X (xi), (logN)−r
) − 1

∣∣∣∣∣∣
= Op(1)

VNT
3d/2−1−(d−1)/q
N σ(0 < fX < (logN)−r) = O(1).

This proves the Lq convergence result.

In order to prove the strong uniform consistency, noticing that the bias terms Bt and Ba are

not stochastic and bounded after proper scaling, we just have to focus on Sp and Se. Concerning Sp,

proceed as before and note that taking M large enough so that C1−C2M
2 < −1 implies summability
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of the left hand side in (9.23). We conclude from the first Borel-Cantelli lemma that the probability

that the events occur infinitely often is zero thus with probability one

limN→∞v
−1
N B(d,∞)T

d/2
N (logN)r sup

x∈Sd−1

|T1(x)| < M.

The term T2 is non-stochastic and its treatment in our previous analysis remains valid, therefore we

can use the same non-stochastic upper bound. We then use Assumption 4.1 (iii) instead of Assumption

4.1 (ii) to show that almost sure uniform boundedness of Sp after proper rescaling. The treatment of

Se is analogous to that of T1. �

Proof of Theorem 5.2. We first prove that the Lyapounov condition holds: there exists δ > 0 such

that for N going to infinity,

(9.24)
E

[
|ZN (b) − E [ZN (b)]|2+δ

]

N δ/2 (var (ZN (b)))1+δ/2
→ 0

(see, e.g. Billingsley, 1995). We start from deriving a lower bound on var (ZN (b)). Since E[ZN (b)]

converges to f−β (b), it is enough to obtain a lower bound on

E[Z2
N,1](b)

= 4

∫

H+

(
TN−1∑

p=0

χ(2p+ 1, 2TN )
q2p+1,d(z, b)

max (fX(z), (logN)−r)λ(2p+ 1, d)

)2

fX(z)dσ(z)

= 4

∫

H+

(
TN−1∑

p=0

χ(2p+ 1, 2TN )
q2p+1,d(z, b)

λ(2p+ 1, d)

)2(
1

fX(z)
I{fX ≥ (logN)−r} + fX(z)(logN)2r

I{fX < (logN)−r}
)
dσ(z)

≥ 4
1

‖fX‖∞

∫

H+

(
TN−1∑

p=0

χ(2p+ 1, 2TN )
q2p+1,d(z, b)

λ(2p+ 1, d)

)2

dσ(z)

− 4
1

‖fX‖∞

∫

{0<fX<(log N)−r}

(
TN−1∑

p=0

χ(2p+ 1, 2TN )
q2p+1,d(z, b)

λ(2p+ 1, d)

)2

dσ(z)

≥ 4
1

‖fX‖∞

TN−1∑

p=0

χ(2p+ 1, 2TN )2
∫

H+

q2p+1,d(z, b)
2

λ(2p+ 1, d)2
dσ(z)

− 4
1

‖fX‖∞

∫

{0<fX<(log N)−r}

(
TN−1∑

p=0

χ(2p+ 1, 2TN )
q2p+1,d(z, b)

λ(2p+ 1, d)

)2

dσ(z).

Using (9.5) and Lemma 9.2, we see that there exists a constant C such that

∥∥∥∥∥∥

TN−1∑

p=0

χ(2p+ 1, 2TN )
q2p+1,d(z, ⋆)

λ(2p+ 1, d)

∥∥∥∥∥∥
∞

≤ CT 3d/2−1,
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therefore using Proposition 2.2 we obtain

E[Z2
N,1](b) ≥

4

‖fX‖∞

TN−1∑

p=0

χ(2p+ 1, 2TN )2
∫

H+

q2p+1,d(z, b)
2

λ(2p+ 1, d)2
dσ(z) − CT 3d−2

N σ
(
0 < fX < (logN)−r

)
.

Using Assumption 2.1 (iv), the first term on the right hand side can be bounded from below by

C

⌊(TN−1)/2⌋∑

p=0

∥∥∥∥
q2p+1,d(z, b)

λ(2p+ 1, d)

∥∥∥∥
2

2

i.e. by CT 2d−1
N . Thus as σ (0 < fX < (logN)−r) decays fast enough to zero under the assumption of

the theorem (here it is enough to have σ (0 < fX < (logN)−r) = O(T−d+1
N )),

(9.25) E[Z2
N,1](b) ≥ CT 2d−1

N .

We now derive an upper bound of E

[
|ZN (b)|2+δ

]
using Theorem 2.3 and interpolation between

L∞(Sd−1) and L1(Sd−1) norms of the kernels using the Hölder inequality:

E

[
|ZN,1|2+δ

]
≤ ‖fX‖∞(logN)r(2+δ)

∥∥∥H−1
(
K−

2TN
(z, ·)

)∥∥∥
2+δ

2+δ

≤ ‖fX‖∞(logN)r(2+δ)B(d, 2 + δ)2+δT
d(2+δ)/2
N

∥∥∥K−
2TN

(z, ·)
∥∥∥

2+δ

2+δ

≤ C(logN)r(2+δ)T
d(2+δ)/2
N T

(d−1)(1+δ)
N .

By this and (9.25) an upper bound for the ratio appearing in (9.24) is given by

(logN)r(2+δ)

(
T d−1

N

N

)δ/2

.

Therefore the Lyapounov condition is satisfied if (5.5) holds, and it follows that N1/2s−1
N (b)Se

d→
N(0, 1).

We now need to prove that the remaining terms Sp, Bt and Ba, multiplied by N1/2s−1
N , are

op(1). The term Sp is treated in a similar manner as in the proof of Theorem 5.1.

|Sp(b)| ≤ 2



 1

N

N∑

i=1

∣∣∣H−1
(
K−

2TN
(xi, ·)

)
(b)
∣∣∣

max(fX(xi), (logN)−r)



 max
i=1,...,N

∣∣∣∣∣∣
max (fX(xi), (logN)−r)

max
(
f̂N

X (xi), (logN)−r
) − 1

∣∣∣∣∣∣
.

Using the Markov inequality, the empirical average in the parenthesis is of the stochastic order of

(logN)r
∥∥∥H−1

(
K−

2TN
(⋆, ·)

)∥∥∥
1
.
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But

(logN)r
∥∥∥H−1

(
K−

2TN
(⋆, ·)

)∥∥∥
1
≤ B(d, 1)T

d/2
N (logN)r

∥∥∥K−
2TN

(⋆, ·)
∥∥∥

1

≤ B(d, 1)T
d/2
N (logN)r ‖K2TN

(⋆, ·)‖1

where the first inequality follows from Theorem 2.3 and the second is obtained using the defini-

tion of the odd part and the triangle inequality. Note that the term ‖K2TN
(⋆, ·)‖1 in the last line

does not depend on · and is uniformly bounded. By the lower bound (9.25) it is enough to show

N1/2B(d, 1)T
−(d−1/2)
N |Sp(b)| = op(1). From the inequality above,

N1/2B(d, 1)T
−(d−1/2)
N |Sp(b)| ≤

(
N1/2T

−(d−1)/2
N (logN)r

)
max

i=1,...,N

∣∣∣∣∣∣
max (fX(xi), (logN)−r)

max
(
f̂X(xi), (logN)−r

) − 1

∣∣∣∣∣∣
.

Its right hand side is of op(1) if

max
i=1,...,N

∣∣∣∣∣∣
max (fX(xi), (logN)−r)

max
(
f̂X(xi), (logN)−r

) − 1

∣∣∣∣∣∣
= op

(
N−1/2T

(d−1)/2
N (logN)−r

)
,

which is met under (5.4).

Let us now consider the bias term induced by the trimming procedure. In the proof of Theorem

5.1 we have obtained an upper bound for ‖Bt‖∞ and we deduce that

N1/2T
−(d−1/2)
N ‖Bt‖∞ = o(1)

when condition (5.7) is satisfied. Finally, N1/2T
−(d−1/2)
N ‖Ba‖∞ = o(1) if condition (5.6) is satisfied.

We conclude that the asymptotic normality holds for b such that fβ(b) > 0. The factor 4 in the

variance comes from the fact that f̂β = 2f̂−β Î. �
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