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point of the claim handling process. As such, the methodology 
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insurance data, various applications are presented in which the 
score estimate of disability severity is of value to insurers, either 
for computing the claim compensation or for claim reserve 
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1 Introduction

Motor insurance is the most prevalent insurance line in the world and, in Europe, the largest

sector in non-life insurance. In 2006, European motor insurance companies generated a total

premium income of almost e130bn, though this represented a 1% fall on the 2005 �gure.

This negative growth is mainly attributable to the high level of competition in the motor

insurance industry (CEA, 2007) in which motor insurance companies need to implement

adequate claim handling practices as a cost-saving mechanism.

Our aim in this study is to analyze the factors which in�uence the disability severity sus-

tained by victims of motor vehicle accidents that the insurance company has to compensate.

Speci�cally, the underlying disability severity is modelled here by means of a zero-in�ated

generalized Poissson (ZIGP) regression model. To the best of our knowledge, a ZIGP model

that allows a regression on the overdispersion and zero in�ation has not been previously used

in the actuarial literature. We show that the estimated injury severity may subsequently

be expressed in �nancial terms and an estimation of the injury claim cost can be provided.

Applications in the claim handling process are derived from the cost estimation of injuries,

such as the amount required either to reach a compensation agreement or to reserve the

claim.

Motor claims involving bodily injury (BI) have di¤erent characteristics to material dam-

age claims which means that, in practice, these two types of claim are separately processed

by most motor insurance companies. More speci�cally, BI claims are less frequent, but

involve larger compensation payouts, greater variability in the payments and higher litiga-

tion rates. As a result, BI claim settlements have the largest impact on insurers� claims

expenditure (Bell, 2006; CEA, 2007) and entail a long handling period. This study focuses

on BI claims made in Spain where a legislative compensation system is in force for claim

settlements. The legislation stipulates the �nancial compensation to be awarded to victims

according to the degree of injuries sustained. To some extent, the �nancial compensation
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awarded is automatically �xed according to the severity of the injury. Therefore, the main

discrepancies between insurer and plainti¤ are concerned with the underlying severity of

bodily injuries rather than the sum to be awarded.

In conducting the injury severity evaluation a distinction needs to be drawn between

disability and temporary disability. At the claim settlement moment, the victim may have

either fully recovered or may present stable injuries. As such, the duration of the period

of temporary disability can, in principle, be proved (by the claimant) and veri�ed (by the

insurer). By contrast, the disability refers to the physical impairment that the victim will

su¤er for the rest of his life. In line with the de�nition provided by the European Commit-

tee on Legal A¤airs and the Internal Market (EC, 2003), disability can be de�ned as �the

de�nitive reduction of physical and/or mental potential which can be identi�ed or explained

medically, together with the pain and mental su¤ering known by the doctor to be a normal

concomitant of the sequela plus the everyday consequences which commonly and objectively

accompany that sequela�, where sequela is any negative after-e¤ect resulting from the ac-

cident. In Spain, the evaluation of the disability severity is undertaken using a disability

scoring scale. In practice, medical examinations with di¤erent severity scores for disability

are often submitted as evidence by both parties, the insurer and the plainti¤, to a claim

settlement. This means that the severity of the disability is one of the main issues when the

compensation is being sought.

In this study the severity score is estimated by means of a ZIGP regression model. The

ZIGP model is useful for analysing overdispersed count data with a large amount of zeros

and our motor BI claim insurance data show both features. The data present many zeros as

many bodily injury victims do not su¤er permanent disability and the distribution presents

a heavy right tail. Many studies have been undertaken in the �eld of motor insurance claims

dealing with count data that present an excess of zeros and long right tails (see, for instance,

Boucher and Denuit, 2008; Boucher et al., 2007; Yip and You, 2005). In these research

papers zero-in�ated count models are used in modelling the motor claim frequency rather
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than the claim severity. The severity of motor claims has traditionally been investigated

from a �nancial viewpoint, i.e., modelling the claim cost. Several examples of statistical

applications can be found where the event studied is -the logarithmic transformation of- the

motor claim payout (for claim reserves, see Antonio et al., 2006; for fraud investigation, Hoyt

et al., 2006; Crocker and Tennyson, 2002; Weisberg and Derrig, 1998; for the evaluation of

tort reforms, Browne and Puelz, 1996; 1999; Browne and Wells, 1999; and for the analysis of

speci�c e¤ects such as gender and age on the compensation amount awarded, Doerpinghaus

et al., 2008).

An alternative methodology for modelling the size of motor insurance claims is provided

by Ayuso and Santolino (2007). The authors deal with the injury severity of victims in-

volved in motor claims. The injuries are categorized by degrees of severity and estimated

by means of a sequential ordered logit model at di¤erent stages in the claim history. This

qualitative approach to motor injury severity, although not well known in the �eld of in-

surance, is familiar to other audiences such as medical scientists and public health planners

(e.g. Eluru et al., 2008; O�Donell and Connor, 1996; Wang and Kockelman, 2005; Abdel-Aty

and Abdelwahab, 2004). In common with Ayuso and Santolino (2007), we also focus on the

severity of bodily injuries sustained by motor victims in this study. However, we analyse the

observed severity scoring of injuries rather than use a qualitative classi�cation of the claim

severity. The advantage of this approach is that modelling the score is more �exible than

modelling qualitative levels. In addition, the score estimate may be directly expressed in

�nancial terms since the compensation to be awarded is stipulated by law according to the

stated score. By contrast, a summary measure of the compensation cost (as, for instance,

the mean compensation) has to be used when severity categories are considered.

In the latter part of this study we present a number of examples in which the severity score

estimate of the disability might have practical applications for the insurer. In particular,

we show that the information provided by the disability severity estimate can be used as

an indicator of the inability to work, to compute the compensation to be awarded or for
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claim reserving purposes, among others. Although the model results are valid only for

Spain, they may be accommodated to other European States that also apply disability

scales in the evaluation of the disability in motor insurance claims. Examples of States with

medical scales for the assessment of BI claim compensations include Italy, Portugal, Belgium

and France. In addition, a project is now underway in the European Union to harmonize

disability assessment practices involving the application of a European disability rating scale

(EC, 2003).

The rest of the paper is organised as follows: in the second section, we describe the

insurance BI claim data set used in the empirical study. In the next section, a revision

of the zero-in�ated generalized Poisson regression model is provided. In section four, we

describe the model regressors and present the main results of this study. Applications of

these results to the insurer�s claim handling process are described in section �ve. Finally, in

the last section, our main conclusions are summarized.

2 The data

The study consists of a sample of 180 bodily injury claim settlements provided by a Spanish

insurance company. Each claim comprises a non-fatal bodily injury victim who has been

seeking compensation from the insurance company. Motor liability insurance policy is com-

pulsory in Spain. Therefore, only no-fault victims involved in motor accidents are entitled

to compensation for bodily injuries. All claims were settled by Court decision between 2001

and 2003.

Two classes of bodily injury are entitled to �nancial compensation: disability and tem-

porary disability. The temporary disability can be de�ned in reference to the period of time

from the accident until the victim is fully recovered or presents a stable medical condition.

Disability, on the other hand, is any residual impairment su¤ered by the victim once his

medical situation has stabilized. As mentioned above, the degree of disability is evaluated
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in accordance with the legislative disability scoring scale in force in Spanish1 . The scale

ranges from zero to a hundred points according to the degree of severity. The disability scale

describes the possible sequelae resulting from tra¢ c accidents and provides a maximum-

minimum score for each. The score awarded for a sequela is an integer inside the established

bounds based on its degree of severity. In case where more than one sequela is sustained by

the victim, a recursive formula is provided to ensure that the aggregated score for disability

sets an integer with an upper bound of 100.

The goal of this study is to analyse and estimate the degree of disability sustained by

each injured victim. Therefore, the severity score awarded by Court for the disability is

the dependent variable of the regression model, and this is labelled as score. The variable

score is discrete and takes a value of zero when the victims make a full recovery after

the period of temporary disability. An examination of the empirical distribution of the

variable score is provided in Table 1. The empirical distribution seems to show extra of

zeros in comparison with the Poisson distribution. Speci�cally, almost 70 victims only

su¤ered temporary disability as a result of the motor accident (score equal to zero). An

overdispersion of data also seems likely. It is broadly known that the variance is equal to the

mean in the Poisson distribution. Nevertheless, the empirical distribution shown in Table

1 would have a very heavy right tail to satisfy this condition. The mass of observations

concentrates on victims with a score below 15 points, although there are several claims with

larger scores. Given these characteristics, the zero-in�ated generalized Poisson distribution

may provide a better �t to the permanent disability scoring data.

1Although the application of the scale is compulsory only for the evaluation of motor victims, it is broadly
used by the Courts in the medical assessment of any injured victim.
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Table 1. Frequency of the variable score

Scoring awarded by
Courts for disability

Number of claims

0 69
1 12
2 15
3 14
4 13
5 8
6 5
7 4
8 3
9 3
10 6
11 3
12 3
13 4
14 3
15 3
16 1
18 1
21 3
22 1
24 1
25 1
26 1
27 1

>=28 2
N=180; Mean=4.761; Variance=7.203.

The individual characteristics of each BI claim were recorded in 43 covariates, of which

�ve were continuous variables. Twenty seven variables relate to general information about

the BI claim. Thus, 13 variables report on the victim�s personal attributes (age, sex, marital

status and working status) and 14 report characteristics of the accident (e.g. party at

fault, position inside the car, etc.). The remaining variables relate to whether follow-up

examinations were carried out by the insurance sta¤ during the claim handling or whether

independent examiners were responsible for these tasks. One of our objectives was to analyse

whether the length of the time that the victim spent recovering from his or her injuries

could explain the severity of permanent disability. The temporary disability sustained by

the victim was monitored by the number of days required to recover as stated by the forensic
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scientist 2 .

3 Methodology

Count data with a large zero fraction and a heavy tail are common in a number of appli-

cations. The standard Poisson distribution does not �t properly when data present these

features. Here the Poisson distribution is extended by overdispersion and zero-in�ation

parameters, known as the zero-in�ation generalized Poisson (ZIGP) distribution. This dis-

tribution is particularly �exible for modelling count data with an excess of zeros because it

simultaneously allows for the two sources of overdispersion. Speci�cally, the ZIGP distri-

bution is a mixture of a Bernoulli distribution and a generalized Poisson distribution (Joe

and Zhu, 2005; Czado et al., 2007). Joe and Zhu (2005) compared the ZIGP distribution

with the zero-in�ated negative binomial and concluded that the ZIGP distribution would �t

more appropriately when there was a large zero fraction and long tail.

The ZIGP regression model, introduced by Famoye and Singh (2003), assumes that the

excess of zeros is generated by a bimodal distribution (Cheung, 2002; Lord et al.; 2005;

2007). Here we follow the de�nition of accident severity provided by Chang and Mannering

(1999) in which severity is determined according to the level of injury sustained by the most

seriously injured occupant. An interpretation for our data set could be, for instance, that

victims with only temporary disability belong to two di¤erent groups of accident according

to the type of road on which the crash occurred, in an urban area or on an inter-urban road.

Motor accidents in urban areas are mild crashes which mainly result in material damages and

temporary injuries of a minor severity (e.g., bruising, whiplash). By contrast, inter-urban

road crashes are more severe accidents in which the degree of disability sustained by the

casualties, including victims with only temporary disability, follows a generalized Poisson

process.

2 In Spain, victims must bring a lawsuit in order to be entitled to compensation payment. When the
lawsuit follows a criminal procedure, a forensic doctor examines the recovered victim and �les a report.
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Let the response variable score take the value yi which is the severity score awarded by

the Courts to the motor accident victim i for the disability sustained, i = 1; : : : ; n where n

is the number of individuals in the study sample. The probability density function of the

zero-in�ated generalized Poisson regression model is de�ned as,

P (Y = yi) = !i + (1� !i) exp(��i
'i
) yi = 0

= (1� !i)�i(�i+('i�1)yi)
yi�1

yi!
'�yii exp(��i+('i�1)yi

'i
) yi 6= 0

(1)

where yi = 0; 1; 2; : : : : The function �i satis�es �i = exp(x0i�) where xi is the (p �

1) vector of covariates and � the (p � 1) vector of unknown parameters. The dispersion

function is denoted by 'i. We should stress that the model de�nition provided by (1)

also allows for underdispersion ('i < 1). Nevertheless, an important constraint in the

case of underdispersion is that the lower bound of 'i will depend on �i (for details, see

Czado and Min, 2005). Here, we focus on the more frequent case in which the data are

overdispersed. In particular, 'i is modelled as 'i = 1+ exp(z0i
) to ensure 'i > 1, where zi

is the (q � 1) vector of covariates and 
 the (q � 1) vector of unknown parameters. Finally,

the probability of there being an extra zero !i 2 [0; 1] is modelled via the logit function

!i = exp(�
0
i�)=(1 + exp(�

0
i�)) where �i is the (r � 1) vector of covariates and � the (r � 1)

vector of unknown parameters. Note that zero-in�ation and overdispersion presented in (1)

are not constrained to be constant which might be overly restrictive for certain data sets

(Bae et al., 2005; Famoye and Singh, 2006; Czado et al., 2007).

The mean and variance (conditional on the covariates) for yi are given by E(yi) =

(1 � !i)�i and V ar(yi) = E(yi)('i + !i�i); respectively. Model (1) reduces to the zero-

in�ated Poisson (ZIP) when 'i = 1, to the generalized Poisson (GP) when !i = 0 and to

the Poisson regression when 'i = 1 and !i = 0. The log-likelihood of the ZIGP(�i; 'i; !i)

regression model de�ned in (1) can be written as,
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log (L) =
P

yi=0
log
h
!i + (1� !i) exp(��i

'i
)
i

+
P

yi>0

n
log
h
(1�!i)�i

'i

i
� log(yi!) + (yi � 1) log

h
�i+('i�1)yi

'i

i
� �i+('i�1)yi

'i

o (2)

Parameters are estimated by di¤erentiating (2) and solving simultaneously the likelihood

equations. Maximum Likelihood (ML) estimates satisfy the properties of consistency and

asymptotic normality although the ZIGP distribution does not belong to the exponential

family (Czado and Min, 2005; Czado et al., 2007). Asymptotic Wald statistics are provided

to check the signi�cance of the covariate parameters. Goodness of �t and model selection

were analysed by the log-likelihood using the Akaike information criterion (see, for instance,

Li et al., 2008; Czado et al., 2007; Yip and Yau, 2005). As in previous studies (Li et al.,

2008; Lee and Mannering, 2002; Czado et al., 2007), the comparison between the zero in�ated

generalized Poisson (ZIGP) regression model and the generalized Poisson (GP) regression

model is conducted by means of the Vuong�s test (Vuong, 1989). For a description of the

Vuong�s test and its application in testing the hypothesis of zero-in�ation, we refer to Lee and

Mannering (2002). To test the appropriateness of using the overdispersed model as opposed

to the traditional model we also applied the Vuong�s test. Additionally, we include the test

recently proposed by Clarke for model comparisons (Clarke, 2007). The null hypothesis

tested by the Clarke statistic is that the ZIGP and the Poisson (either the GP or the ZIP, as

applicable) are equally good regression models against the alternative hypothesis that the

ZIGP regression model is better.

4 Results

The ZIGP regression model was �tted to our data and adjusted for covariates. The parameter

estimation was obtained using maximum likelihood according to the methodology presented

in section 3. We conducted the analysis on a variety of regression designs. All regression

models were estimated by using the ZIGP package v.2.7 for R available on CRAN (Erhardt,
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2008). A sequential backward criterion was followed in the model selection. Only covariates

with signi�cant coe¢ cients were included in the models. Design matrices di¤ered between

the regression models and, for this reason, the AIC criterion was used for model selection.

In Table 2 a detailed description of the explanatory variables selected in the �nal model is

provided and their descriptive statistics are shown.

Table 2. Descriptive statistics of variables

Variable Description Mean Std.Dev.

Dependent variable
score Severity scoring awarded by Trial Court for disability. 4:761 7:203

Regressors
year Accident year (1=2003, 2=2002, . . . , 10=1994). 4:000 1:398

fault
1 if fault of the accident is not clearly attributable according
to the internal evaluation of the insurer; 0 otherwise.

0:144 0:352

moto 1 if the injured victim was a motorcyclist; 0 otherwise. 0:239 0:428
ped 1 if the injured victim was a pedestrian or cyclist; 0 otherwise. 0:111 0:315
age Age of the victim. 33:900 15:758

hrd
Number of days recovering in hospital as reported
by the forensic doctor.

2:167 8:155

drd
Number of days recovering out of hospital with a disability
preventing victim from working as reported by the forensic doctor.

71:383 97:861

open
Time elapsed between the occurrence of the motor accident
and the opening of the claim by the insurer (in days/100).

0:404 1:015

gender 1 if the victim is a man; 0 otherwise. 0:500 0:501

4.1 Parameter estimates

The �nal model design and the resulting parameter estimates are shown in Table 3. Eight

explanatory variables were included in the regression of the mean and one in the overdisper-

sion and zero-in�ation regressions, respectively. The Vuong test was estimated comparing

the zero-in�ated generalized Poisson regression model with the Poisson regression model

with equal mean design. The Vuong test results showed that the ZIGP regression model

was preferred (v : 5.43; p-value: 0.00). The ZIGP was also preferred in comparison with
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either the GP regression model (v : 2.87; p-value: 0.00) or the ZIP regression model (v :

3.73; p-value: 0.00) with the same matrix designs. No variations in the model selection were

found when the decision was based on the results of the Clarke statistic.

Table 3. Estimates of parameters

Poisson model GP model ZIP model ZIGP model

Variable Coe¤ p-value Coe¤ p-value Coe¤. p-value Coe¤. p-value

Mean
Intercept �0:7378 0:004 �0:7970 0:147 �0:3181 0:259 �1:3289 0:012
year 0:0810 0:003 0:1292 0:020 0:0475 0:098 0:1205 0:013
fault �0:7575 0:000 �0:6716 0:010 �0:4915 0:000 �0:3960 0:097
moto 1:0374 0:000 1:0540 0:000 0:7823 0:000 1:0308 0:000
ped 0:9092 0:000 1:1255 0:000 0:5303 0:000 1:1058 0:000
age 0:0489 0:000 0:0470 0:036 0:0640 0:000 0:0887 0:000
age2 �0:0004 0:000 �0:0004 0:087 �0:0009 0:000 �0:0009 0:000
hrd 0:0140 0:000 0:0080 0:313 0:0179 0:000 0:0205 0:002
drd 0:0042 0:000 0:0039 0:000 0:0034 0:000 0:0034 0:000

Over-dispersion
Intercept � � 0:5157 0:002 � � �0:0975 0:611
open � � 0:3719 0:012 � � 0:4960 0:003

Zero-in�ation
Intercept � � � � �1:1419 0:000 �2:4424 0:000
gender � � � � 1:0254 0:002 1:8377 0:007
Log-likelihood: �622:864 �421:746 �461:235 �395:975

AIC: 1263:728 865:492 944:470 817:951
N=180; The ZIGP model is the preferred model according to the Vuong statistic when compared with

either the Poisson model (v: 5.43; p-value: 0.00), the GP model (v: 2.87; p-value: 0.00) or the ZIP model
(v: 3.73; p-value: 0.00). The same model selection decisions are reached with the Clarke test. In all
cases, the ZIGP model is preferred at the 1% of signi�cance level.

Odds-ratio and relative risk estimates from the ZIGP regression model are shown in

Table 4. The odds-ratio (OR) measure is widely used with logistic regressions. The relative

risk (RR) is a standard measure in medical research used to compute the ratio between the

risk of an event relative to exposure (for details of both measures, see Simon, 2001). The

e¤ects of factors on the severity for disability matched up with the expected direction in most

cases. The odds for men were six times greater than those for women victims (ORgender:
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6.282), which means that women su¤er more severe injuries than men in motor accidents.

This result is also supported by previous �ndings (e.g. Kockelman and Kweon, 2002; Lee

and Abdel-Aty, 2005).

The generalized Poisson part of the model showed that the relative risk of motorcycle

victims compared to that of car occupants was higher than one. Speci�cally, the estimated

mean of the severity score for the disability of motorcyclists was 2.8 times higher than that

computed for car victims (RRmoto: 2.803). Similar results were found for pedestrian victims

compared with car victims (RRped: 3.022). These results are consistent with �ndings in

the existing literature (e.g., Eluru et al., 2008; Chang and Wang, 2006; Majdzadeh et al.,

2008). In addition, we found a quadratic linear relationship between the victim�s age and

the logarithmic of the severity score for disability. The RR of the age factor was higher than

one for victims below the age of 44 years. Above this age, the relationship was inverted to

a relative risk lower than one. As appointed out by Kima et al. (2008), this could be due

to the fact that older drivers tend to be more cautious. Another interesting result is that

BI claims that remain unsettled for long periods of time are associated with an expected

higher severity score for permanent disability (RRyear: 1.128).

We should emphasize that the length of time that the victim was temporarily disabled

has explanatory capacity over the disability. In particular, the variables that record the

number of recovery days in hospital and recovery days out of hospital show risk factors of

1.021 and 1.003, respectively. An interesting result is that the relative risk is lower than

one for those victims involved in accidents where the attribution of the fault is unclear. As

mentioned above, the Spanish compensation system is based on the liability for the accident.

Therefore, the RRfault lower than one means that, on average, the Courts trend to award

lower severity scores for disability when the fault is unclear. Finally, we would like to stress

that the greater the time period that is allowed to elapse between the occurrence of the

crash and the opening of the claim, the greater the overdispersion in the severity score of

disability is expected for the BI claim observation (RRopen: 1.642).
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Table 4. Summary of relative risks and odds ratios from
ZIGP regression model (95% CI)

Mean Relative risk� (95% CI)

year 1:128 (1:026; 1:241)
fault 0:673 (0:421; 1:075)
moto 2:803 (1:976; 3:978)
ped 3:022 (1:920; 4:755)

age + age2 1:027 (0:953; 1:107)
hrd 1:021 (1:008; 1:034)
drd 1:003 (1:002; 1:004)

Over-dispersion Relative Risk� (95% CI)

open 1:642 (1:188; 2:269)

Zero-in�ation Zero-in�ated odds ratio (95% CI)

gender 6:282 (1:632; 24:167)

�For binary regressors, the relative risk (RR) of the k -th factor is computed

as RRk =
�̂jxk=1
�̂jxk=0 : When the regressor is continuous, RRk =

�̂jxk=�x+1
�̂jxk=�x .

�
The overdispersion RR is computed as RRk =

'̂�1jxk=�x+1
'̂�1jxk=�x .

5 Applications

Various applications can be derived from individual estimates of the permanent bodily in-

jury severity recorded in motor accidents claims. First, we show that the severity score

estimate may be used to detect victims for whom special follow-up examinations are re-

quired. However, the main applications are likely associated with claim cost estimations. In

particular, we show that the severity score estimate may be used for assessing compensation

for non-pecuniary damages resulting from disability and that this claim cost estimation has

implications in various �elds of the insurance industry as regards claim settlement or reserve

estimation.
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5.1 Claim handling practices

While only a few motor accident claims involve severely injured victims, they represent the

largest cost for insurers. As a result, follow-up examinations are carried out by insurers in

the case of bodily injury claims with high severity scores for disability. In such instances,

victims registering a high severity score estimate are likely to have su¤ered injuries that

make it impossible for them to work3 . When victims are unable to work, we can expect

large sums of compensation to be awarded as pecuniary damages. Consequently, claims

involving an estimated high severity score need to be monitored by the insurers�medical

experts on a case-by-case basis so as to determine whether the victim is also incapacitated

for work.

A further statistic that needs to be carefully observed by an insurer�s sta¤ is the severity

score variance, since a particularly high value can negatively a¤ect the representability of

the point estimation. For instance, the variance depends positively on the over-dispersion

function 'i which is explained by the time that has elapsed between the occurrence of the

accident and the opening of the claim. Therefore, the insurer is able to monitor the e¤ect

on the expected variance of a reduction in this time.

5.2 Individual claim cost

The bodily injury compensation stipulated by the legal system comprises compensatory

awards for non-pecuniary and pecuniary damages. The total sum awarded by the Court to

to victim i in the settlement year j is computed as follows:

3Obviously, there is no speci�c severity score which might be considered the threshold for incapacity for
work, since this depends on other factors such as the type of injury or the victim�s profession. However, it
is unlikely that victims with fewer than 20 points on the permanent disability scale will su¤er any type of
incapacity for work.
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�ij = (yi � Cppij +Nrdhi � Crdhj +Nrdii � Crdij +Nrdwii � Crdwij)�(1+cfij)+CCpIij

where �ij is the �nancial compensation awarded for bodily injuries. The total compen-

sation for non-pecuniary damages is computed as the sum of the compensation for disability

and the compensation for temporary disability. The former is calculated as the total score

for disability yi multiplied by the �nancial compensation per point Cppij , where the value

of Cppij depends on the settlement year j, the victim�s age and the total score recorded

for disability yi. The latter is obtained by multiplying the number of days that the victim

spent recovering from his injuries by a �nancial compensation per day of recovery. The legal

system distinguishes between the number of days spent recovering in hospital Nrdhi, the

number of days recovering out of hospital while unable to work Nrdii and the number of

days recovering out of hospital while being able to work4 Nrdwii and establishes a distinct

�nancial award per day for each, Crdhj , Crdij and Crdwij , respectively. The amount

stipulated per day of recovery depends only on the year of settlement.

Once the compensation for non-pecuniary damages has been computed, the compensa-

tion for the pecuniary damages resulting from the injury is calculated by multiplying the

assessed compensation for non-pecuniary damages by a correction factor5 cfij . This cor-

rection rate is �xed as a percentage that ranges between zero and 75% as a function of

the annual incomes of the victim during the year of settlement. Finally, a complementary

compensation for pecuniary damages CCpIij is awarded in those cases in which the victim

has su¤ered permanent incapacity for work as a result of the accident. The CCpIij damages

are determined on the basis of the degree of incapacity and the year of settlement.

4Since 1999 the Spanish legal compensation system has awarded compensation for the days that the
victim is still recovering from the accident yet is able to work. This variable was removed from the ZIGP
regression model as it did not present a signi�cant coe¢ cient

5Since 2000 victims have been entitled to claim the real pecuniary damage sustained during the recovery
period whether the fault of the accident is exclusively attributable to the other party (Constitutional Court
ruling 181/2000, June 20th). Given the di¢ culty in attributing the entire fault in a motor accident, most
compensation awards for pecuniary damages during the recovery period are, in practice, still computed by
applying the correction factors as shown in the standard formula.
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5.2.1 Claim settlement

Insurers will always seek to reach an amicable agreement with the plainti¤ in order to

settle BI claims as quickly as possible, since keeping a claim open incurs a �nancial cost

(i.e., interest rate payments, judicial expenses and so forth). In practice, only 1% of motor

accident claims are settled in the Courts with most claims being settled before the trial takes

place (Lewis, 2006; Derrig and Rempala, 2006). Thus, in this context, the individual claim

estimate of the severity score for permanent disability is of great value.

The claim agreement is pursued when the victim is fully recovered. In this way the

insurer can establish the period of time it took for the victim�s injuries to stabilize. It is not

expected for there to be any disagreements as regards the annual income of the victim, his

age and the year of settlement. By contrast, di¤erences may appear in the evaluation of the

disability and as regards the existence of, and the monetary quanti�cation of, the victim�s

incapacity for work. As pointed out above, however, very few cases of incapacity for work

arise. In addition, the severity score for disability may be used by the insurance company

as an indicator of incapacity for work. Thus, the most controversial issue in a compensation

agreement is typically determining the severity score yi. The methodology (1) provides

probability estimates of severity scores for disability. Therefore, the point estimate and the

upper bound for the expected �nancial award for non-pecuniary damages that result from

the disability can be derived from,

E[yi � Cppij ] =
100X
h=1

Pr[yi = h] � yi � CppijjYi=h

V ar(yi � Cppij) = E[(yi � Cppij)2]� (E[yi � Cppij ])2
(3)

where 100 is the highest disability severity score for disability, given that the probability

of yi being equal to 100 is negligible so we do not need to sum any more terms. We

suggest that this estimate of the expected compensation to be awarded by the Courts is the

amount that should be o¤ered by the insurer in the negotiation process for non-pecuniary
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damages derived from the disability. In addition, the variance estimate of the compensation

allows the insurer to estimate the upper-bound of the �nancial compensation for a given

con�dence level. The upper-bound estimate is the expected maximum deviation from the

point estimate and as such it can be interpreted as the maximum amount of compensation

that can be accepted by the insurer in order to avoid legal proceedings.

5.2.2 Claims reserving

The disability severity score estimate can also be applied to claim reserving. Traditionally,

the actuarial literature has focused on aggregate reserving techniques in computing provi-

sions for motor accident claims (for a review see England and Verrall, 2002; 2006). However,

statistical methods based on individual claim information, since their introduction by Taylor

and Campbell (2002), have grown in importance in recent years (see, among others, Norberg,

1999; Antonio et al., 2006, Roholte Larsen, 2007, Ayuso and Santolino, 2007; 2008).

In this section we suggest that the claim compensation estimated according to equation

(3) can be interpreted by the insurer as the individual claim provision for non-pecuniary

damages derived from the disability. As appointed out above, the legal �nancial compensa-

tion per point of disability severity Cpp is positively correlated with the total score recorded

for disability. That means, in order to obtain the expected compensation for disability, larger

severity scores are multiplied by higher values of Cpp. As such, this would seem to constitute

a prudential criterion for claim reserving. Alternatively, E[Yi] �CppijjYi=E[Yi] could also be

used to compute the individual provision6 of the i -th claim, i = 1; :::; n.

In Table (5) the total compensation awarded by the insurer to the plainti¤s for non-

pecuniary damages for disability is compared with the sum of �nancial compensations es-

6Let us suppose, for instance, that a twenty-year-old victim injured in an accident in 2008 has a score of
10 points on the disability severity scale with a probability of 0.5 or 20 points with the same probability. In
this case, the compensation he can expect in the form of non-pecuniary damages derived from the disability
is computed as 0:5 � (10 � 923:24) + 0:5 � (20 � 1233:67) which is equal to 16952.9 euros, where 923:24
and 1233:67 are the legally established rates of compensation per point when the total severity scores are
10 and 20 respectively. However, the expected disability severity score for this victim is 15 points which is
associated with an established rate per point of 1085.05 euros (16275.75 euros in total, an amount that does
not match the expected compensation).
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timated by (3). Additionally, the resulting claims provision where E[Yi] � CppijjYi=E[Yi] is

applied to estimate the individual claim provision for the non-pecuaniary damages of the

disability is provided. Note that both provision estimates work well. Nevertheless, the

claims provision estimated by
NX
i=1

E[Yi � Cppij ] seems the safest one of the two.

Table 5. Estimated claims provision for non-pecuniary damages resulting from the disability

Total amount
(in euros)

Estimated provision
Empirical compensation

Empirical compensations 631294:10 -

A)

Estimated claims provision

(computed as
NX
i=1

E[Yi � Cppij ]).
691922:52 109:60%

B)

Estimated claims provision

(computed as
NX
i=1

E[Yi] � CppijjYi=E[Yi] ). 609870:82 96:61%

6 Conclusions

The settlement of bodily injury claims represents the largest aggregate claim costs faced

by motor insurers. Suitable techniques for estimating the claim compensations during the

handling process are widely required by motor insurance companies since the expected size of

claim costs will have implications for both the compensation o¤ered in the claim settlement

and the required level of reserves, among others.

In the Spanish market we show that this problem can be reduced to an estimate of the

disability severity sustained by accident victims, since the remaining factors determining the
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amount of the claim are known at the time of settlement. The main advantage of modelling

injury severity rather than directly modelling the �nancial compensation is that the former

methodology does not depend on economic factors such as the settlement year, the in�ation

rate or the cost of medical services, among others. This means that any �nancial e¤ects are

withdrawn from the motor accident BI claim assessment allowing insurance companies to

monitor the real severity level underlying the claim. As a result, the methodology proposed

allows us, for instance, to compare the expected severity of BI claims regardless of the

year in which the motor accidents occurred. In the same fashion, it is expected that this

methodology remains valid when it is applied to estimate the injury severity of motor claims

settled in a period other than the one under review.
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