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1 Introduction

It is generally true that any linear combination of I(1) series is also I(1) by the dominant

property of the stochastic trends. However, it is possible that linear combinations of I(1)

stochastic processes generate an I(0) time series, in which case the time series are said to

be cointegrated in the sense of Engle and Granger (1987) �hereafter, the so-called �rst

level of cointegration. Moreover, it could also be possible that the cumulated cointegrated

residuals, I(1) by de�nition, cointegrate with the I(1) original variables. In this case, a

deeper level of cointegration �henceforth, second level of cointegration �occurs between

the original time series. Granger and Lee (1989) denote this sort of cointegration as

�multicointegration�and show that it is a long-run relationship that might be expected

to occur in economics. One appealing example is given by the consumption life-cycle

hypothesis. If income and consumption are I(1) variables the economic theory establishes

that saving must be stationary, so that income and consumption have to be cointegrated.

Furthermore, if we cumulate saving, which can be seen as the stock of consumers�wealth,

the life-cycle hypothesis predicts that wealth must cointegrate with consumption �see

Siliverstovs (2003) for an application of multicointegration to the analysis of the life-

cycle hypothesis of consumption for the US. Other relevant applications can be found in

the literature including the analysis of production and sales �Granger and Lee (1989) �

housing units started and new housing units completed �see Lee (1992) and Engsted and

Haldrup (1999) �the Ricardian Equivalence �see Leachman (1996) �the twin de�cits

hypothesis �see Leachman and Francis (2002) �and the sustainability of �scal practices

�see Leachman, Bester, Rosas and Lange (2005). The common feature that all these

empirical applications share is that they involve stock-�ow relationships among economic

variables.

The current de�nition of multicointegration assumes invariant parameters. However,

the longer the time period the higher the probability that structural breaks appear af-

fecting the behaviour of time series. Nowadays, it is well known that this feature may

cause bias in the statistical inference that is obtained when dealing with time series �

Perron (1989). To this end, unit root and stationarity tests have been designed to accom-
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modate the presence of structural breaks. Besides, cointegration testing procedures have

also been devised to account for the presence of instability either in the deterministic

and/or in the cointegrating vector of the long-run relationship. Perron (2006) o¤ers a

comprehensive overview of the �eld.

As described above, the concept of multicointegration is naturally derived from the de-

�nition of cointegration, which in turn might be subject to the e¤ects of structural breaks

�see Gregory and Hansen (1996). Therefore, the standard framework of analysis de�ned

in Granger and Lee (1989), and Engsted, Gonzalo and Haldrup (1997) should be extended

to accommodate the presence of structural breaks. In this paper we have addressed this

issue dealing with the di¤erent speci�cations that may arise depending on whether the

structural break a¤ects only the �rst and/or the second level of cointegration. Once

the models are de�ned, we propose to test the null hypothesis of non-multicointegration

without structural break against the alternative hypothesis of multicointegration with a

structural break using a residual-based Dickey-Fuller class statistic. It is worth mention-

ing that though the set-up that is used in this paper is bases on the multicointegration

framework, one appealing feature of our proposal is that it can be used to analyze long-

run relationships among I(2) stochastic processes, provided that multicointegration can

be understood as I(2) cointegration or polynomial cointegration. To the best of our

knowledge, this has not been previously addressed in the literature. The paper provides

di¤erent sets of critical values depending on the number and nature of the stochastic

regressors involved in the model and on the deterministic speci�cation that is used.

Our proposal is illustrated through the investigation of the sustainability of the ex-

ternal de�cit in the US. This topic has attracted the attention of economists both from

a theoretical and empirical point of view, especially in recent times where the external

de�cit of the US economy has been increasing. Previous empirical approaches in Leach-

man and Francis (2000, 2002) have used the multicointegration framework to analyze the

relationship between �ow variables (exports and imports) and the stock variable (foreign

debt). However, none of them has considered the presence of structural breaks in the

analysis, which is shown to lead to misleading conclusions. The statistics that have been
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applied in this paper allow us to conclude that the US time series of exports and im-

ports can be characterized as I(1) stochastic processes, which have been a¤ected by one

structural break. When we account for the presence of one unknown structural break in

the analysis, we �nd evidence that supports the existence of multicointegration relation-

ships among the US exports and imports, which contradicts previous conclusions in the

literature.

The paper is organized as follows. Section 2 describes the models that are speci�ed

depending on the e¤ect that the structural breaks have on the parameters of the di¤erent

components of the models. Section 3 describes the statistical procedure to test the null

hypothesis of non-multicointegration against the alternative hypothesis of multicointe-

gration with one structural break. The limiting distribution of the statistic is derived

and critical values are provided. Section 4 focuses on the �nite sample performance of

the proposal. To be speci�c, we analyze the empirical size and power of the test statis-

tic, as well as the use of information criteria to select among the di¤erent speci�cations

that have been proposed in the paper. In Section 5 we illustrate the application of the

proposal focusing on the sustainability of the external de�cit in the US. Finally, Section

6 presents some concluding remarks. All derivations are collected in the Appendix.

2 Multicointegration with structural break

Cointegration is a necessary condition for the presence of multicointegration as de�ned

in Granger and Lee (1989). Thus, if we consider one dimensional time series fytgn0 and

m1-dimensional time series fxtgn0 all being I(1) non-stationary stochastic processes, these

variables are assumed to satisfy the following standard cointegration model:

yt = c
0
t�+ x

0
t� + #t; (1)

t = 1; : : : ; n, where ct is an s0-dimensional deterministic sequence of general form �

typically, ct = 0, ct = 1 and ct = (1; t)0 �and where f#tgn0 is an I(0) series. Suppose

that the cumulated cointegration residuals, St =
Pt

j=1 #j, cointegrate with either fytgn0
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and/or fxtgn0 , in which case we obtain the standard multicointegration model, that is

St = m
0
t� + x

0
t
 + ut; (2)

where mt is the s1-dimensional deterministic sequence and where futgn0 is an I(0) series.

Following Engsted, Gonzalo and Haldrup (1997), we can write (2) as:

Yt = Cm
0
t�+ x

0
t
 +X

0
t� + ut; (3)

where Yt =
Pt

j=1 yj and Xt =
Pt

j=1 xj are I(2) variables, and Cmt =
�Pt

j=1 c
0
j;m

0
t

�0
is

the new m0-deterministic component associated to multicointegration relation (3), with

m0 = s0 + s1 and � = (�0; �
0)0. The speci�cation given by (3) can be written using the

Phillips�triangular representation:

Yt = Cm0
t�0 + Y

0
t ; �2Y 0t = vt (4)

xt = Cm0
t�1 + x

0
t ; �x0t = "1t (5)

Xt = Cm0
t�2 +X

0
t ; �2X0

t = "2t; (6)

where x0t , X
0
t are m1 and m2-dimensional I(1) and I(2) processes, respectively, and where

the wt = (vt; "01t; "
0
2t)

0 stochastic processes involved in the de�nition of the data-generating

process (DGP) are assumed to be a strong-mixing sequence satisfying the multivariate

invariance principle in Phillips and Durlauf (1986). We partition 
 conformably with wt,

so that


 =

266664
!00 !01 !02

!10 
11 
12

!20 
21 
22

377775 = �+ �+ �0; (7)

where � = E(w1w01) and � =
P1

k=2E(w1w
0
k). For subsequent use we also de�ne

� = �+ �; (8)
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which can be conveniently partitioned as 
. In (7) the diagonal submatrices 
11 and


22 are assumed to be positive de�nite such that x0t and X
0
t are not permitted to be

individually cointegrated.

The component Cmt in (3) to (6) denotes the deterministic part of the model. Haldrup

(1994) and Engsted, Gonzalo and Haldrup (1997) de�ne the standard multicointegration

case without structural breaks through three di¤erent speci�cations: (i) Cmt = 1 �

hereafter, Model 1 � for the constant case, (ii) Cmt = (1; t)0 � denoted as Model 2

� for the time trend case, and (iii) Cmt = (1; t; t2)
0 �henceforth, Model 3 � for the

quadratic time trend case. The de�nition of this deterministic component constitutes

the �rst way in which we can introduce the presence of the structural break in the

model. Thus, the most general situation that is considered in this paper de�nes the

vector of deterministic regressors as Cmt = (1; t; t
2; DUt; DT

�
t )
0 where DUt = 1 (t > Tb)

and DT �t = (t� Tb) 1 (t > Tb), with 1 (t > Tb) the indicator function, Tb = [�n] denoting

the break point, � the break fraction parameter, � 2 �, with � a closed subset of (0; 1),

and [�] being the integer part. Note that the inclusion of theDUt dummy variable captures

the presence of a level shift, while DT �t aims to capture the slope shift.

The second way in which the structural break can enter in the model is through the

stochastic part. Thus, the Y 0t in (4) is one-dimensional I(2) stochastic process linked to

x0t and X
0
t through

Y 0t � x00t 
1 � x00t 
21 (t > Tb)�X00
t �1 �X00

t �21 (t > Tb) = ut; (9)

where the processes x0t ; X
0
t ; Y

0
t are initialized at t = 1; 0; 0, respectively, without loss

of generality. Note that we can only allow the cointegrating vector at the �rst level to

change setting �2 6= 0 and 
2 = 0. Similarly, we can allow the multicointegrating vector

to change, but not the �rst level cointegrating vector, through the speci�cation of 
2 6= 0

and �2 = 0. Finally, the vectors of the two levels of cointegration are allowed to change

if 
2 6= 0 and �2 6= 0.
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Table 1: Model speci�cation
Deterministic part Stochastic part

Model 1 Cmt = 1 
2 = �2 = 0
Model 2 Cmt = (1; t)

0 
2 = �2 = 0

Model 3 Cmt = (1; t; t
2)
0


2 = �2 = 0
Model 4 Cmt = (1; t; DUt; DT

�
t )
0 
2 = �2 = 0

Model 5 Cmt = (1; t; t
2; DUt; DT

�
t )
0

2 = �2 = 0

Model 6 Cmt = (1; t; DUt; DT
�
t )
0 
2 = 0 and �2 6= 0

Model 7 Cmt = (1; t; DUt; DT
�
t )
0 
2 6= 0 and �2 = 0

Model 8 Cmt = (1; t; t
2; DUt; DT

�
t )
0

2 6= �2 6= 0

Taken together, we can de�ne the general conditional model:

Yt = Cm0
t�+ x

0
t
1 + x

0
t
21 (t > Tb) +X

0
t�1 +X

0
t�21 (t > Tb) + ut (10)

= Xm
t (�)

0 � + ut (11)

�dut = vt; (12)

which allows the speci�cation of several models depending on the e¤ect of the structural

break. Table 1 summarizes the speci�cations for the standard multicointegration frame-

work of analysis without structural breaks, as well as those considered in this paper that

account for one structural break. As mentioned above, the speci�cations given by Mod-

els 1 to 3 are those proposed in Engsted, Gonzalo and Haldrup (1997). Models 4 and 5

introduce the presence of the structural break only through the deterministic component,

so that the cointegration vectors of the two levels remain unchanged. Model 6 deals with

changes both in the deterministic component and in the cointegrating vector of the �rst

level, but not in the cointegrating vector of the second level. Model 7 controls for those

breaks a¤ecting both the deterministic component and the cointegrating vector of the

second level, but not the one of the �rst level of cointegration. Finally, Model 8 is the

most general speci�cation, which allows for e¤ects on all the parameters of the model.

There are in this I(2) system several cointegration possibilities depending on the order

of integration of ut in (10), i.e. �dut = vt with d = 0; 1; 2. When d = 2 neither cointegra-

tion nor multicointegration exist since there are not any common stochastic trends �i.e.

ut process is integrated of order two. When d = 1 there is cointegration only at the �rst
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level. Finally, when d = 0 we conclude that the variables yt and xt are multicointegrated

in such a way that all stochastic trends are cancelled in the multicointegration relation-

ship. The next section proposes the statistic to test the presence of multicointegration

accounting for the presence of one structural break. As mentioned above, the proposal

generalizes the analysis of Haldrup (1994) and Engsted, Gonzalo and Haldrup (1997) to

test for either polynomial cointegration or cointegration among I(2) variables where the

long-run elements are permitted to change during the sample period.

3 Testing for multicointegration with structural break

We can test the null hypothesis of non-multicointegration against the alternative hy-

pothesis of multicointegration with structural breaks using a residual-based augmented

Dickey-Fuller (ADF) class of test statistics. It is worth noticing that, as in Gregory and

Hansen (1996), our set-up permits the presence of one structural break only under the

alternative hypothesis. As pointed out in Haldrup (1994), in many situations it is likely

that cointegration to at least I(1) level will occur, which leads us to test the null hypoth-

esis of cointegration at the �rst level, i.e. ut � I(1), against the alternative hypothesis of

multicointegration with structural breaks, ut � I(0). In order to assess the integration

order for ût, we estimate the ADF-type regression,

�ût = �ût�1 +
pP
j=1

'j�ût�j + �t (13)

and consider the t-ratio ADF statistic t� (�) for testing the null hypothesis that � = 0

computed from the OLS estimation of (13). Theorem 1 presents the limiting distribution

of the ADF statistic for the known break case.

Theorem 1 Let Yt be generated according to (10) and (12) with d = 1. Then for n!1,

Tb !1 in a way that � = Tb=n remains constant, and with p = Op(n1=3), the t� (�) test

statistic computed from the estimated regression (13) converges to

t� (�))
�Z 1

0

W �2(r; �)

��1=2�Z 1

0

W � (�; r) dW �(r; �)

�
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where) denotes weak convergence of the associated probability measure on the unit inter-

val [0,1], andW � (�; r) =W0 (r)�W (�; r)0
�R 1

0
W (�; r)0W (�; r) dr

��1 �R 1
0
W (�; r)0W0 (r) dr

�
,

with W0(r) a standard Brownian motion and W (�; r) a vector of the limit of the elements

that de�ne the deterministic component, Brownian motions and integrated Brownian mo-

tions de�ned in the Appendix.

See the Appendix for the outline of the proof. As can be seen from Theorem 1

the limiting distribution of the ADF statistic depends on the deterministic component,

on the number of I(1) and I(2) stochastic regressors involved in the model �m1 and

m2 respectively �and on the break fraction (�) nuisance parameter. Asymptotic and

�nite sample critical values for di¤erent combinations of m1, m2 and � values have been

computed, although they are not reported to save space �they are available upon request.

From an empirical point of view, it would be more interesting to consider the situation

in which the structural break is unknown. In order to deal with this case we follow Gregory

and Hansen�s (1996) methodology. In brief, the approach proceeds in two stages. First,

the multicointegration ADF test is computed for each possible break point, � 2 �, which

de�nes a sequence of statistics. Second, the in�mum of the sequence of ADF statistics is

taken, which de�nes the statistic:

t�� (�) = inf
�2�

t� (�) ;

where T̂b = argmin�2� t�� (�). The following Theorem provides the limiting distribution

of the t�� (�) statistic.

Theorem 2 Let Yt be generated according to (10) and (12) with d = 1. Under the null

hypothesis of non-multicointegration, the t�� (�) statistic converges to

t�� (�)) inf
�2�

"�Z 1

0

W �2(r; �)

��1=2�Z 1

0

W � (�; r) dW �(r; �)

�#
:

The proof is given in the Appendix. As above, the distribution depends upon the

deterministic component, m1 and m2, but not on the break fraction parameter. Tables
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2 to 4 report critical values for Models 4 to 8 when m1 = f1; 2; 3; 4g and m2 = f1; 2g,

for four sample sizes n = f50; 100; 250; 500g. To be speci�c, we have followed Haldrup

(1994) and Engsted, Gonzalo and Haldrup (1997) and de�ne (m2 + 1) I(2) stochastic

processes �one for the endogenous variable and m2 for the regressors �using partial sum

of partial sum of iid N (0; 1), whereas for the m1 I(1) stochastic processes we have used

using partial sum of iid N (0; 1). The order (p) of the parametric correction in (13) is

selected using the t-sig criterion in Ng and Perron (1995) with pmax = 6 as the maximum

number of lags. The simulations were based upon 5,000 replications and, following Zivot

and Andrews (1992), and Gregory and Hansen (1996), we de�ne � = [[0:15n]; [0:85n]].

4 Finite sample performance

This section o¤ers the Monte Carlo results concerning the performance of the statistic

proposed in this paper. The results are organized in two subsections. First of all, we an-

alyze the empirical size and power for the standard multicointegration case that does not

consider the presence of structural breaks. The study of the standard multicointegration

framework is interesting since, to the best of our knowledge, it has not been previously

investigated in the literature. Furthermore, it constitutes the benchmark for the following

analysis. Second, we focus on the statistic that has been designed to accommodate the

presence of one unknown structural break. After the empirical size and power have been

analyzed, we essay the use of the Akaike�s information criterion (AIC) and the Bayesian

information criterion (BIC) as instruments to select the type of structural break, i.e. the

model speci�cation that better captures the e¤ects of the structural break.

4.1 Standard multicointegration without structural break

The design of the experiments bases on previous contributions in the literature. Thus,

following Kremers, Ericsson and Dolado (1992), we use the common factor representation

for multicointegrated processes to obtain the empirical size and power properties of the

statistics designed in Granger and Lee (1989), and Engsted, Gonzalo and Haldrup (1997).
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Suppose that xt, yt are I(1) cointegrated processes so that zt = xt � Ayt � I(0). The

standard common factor representation for cointegrated processes is given by:

xt = AWt + �1t yt = Wt + �2t; (14)

where Wt is an I(1) process, and �1t, �2t are both I(0) processes. Using this kind of

representation for multicointegrated processes we have

xt = AWt + �1�Wt + �1t yt = Wt + �2�Wt + �2t; (15)

where �1t, �2t are both I(-1), with A being a constant. Note that we can go from the null

hypothesis of non-multicointegration to the alternative hypothesis of multicointegration

depending on the values of �1 and �2, and/or the de�nition of the �1t and �2t processes.

Thus, note that we are under the null hypothesis of non-multicointegration when �1 =

�2 = 0, while the alternative hypothesis of multicointegration is obtained when �1 6=

�2 6= 0. Furthermore, if we de�ne

�1t = �vt = �(�1vt�1 + "1t); �2t = �wt = �(�2wt�1 + "2t);

where "1t, "2t are both I(0), then, we are under the null hypothesis of non-multicointegration

when �1 = �2 = 1 �so that �1t � I(0) and �2t � I(0) �while the alternative hypothesis

of multicointegration is achieved when �1; �2 < 1 �so that �1t � I(�1) and �2t � I(�1).

Let us �rst focus on the two-step procedure proposed by Granger and Lee (1989)

using the following model:

xt = DSt + ut; (16)

which does not include any deterministic component and where D denotes a constant.

Table 5 reports rejection frequencies for n = f50; 100g using the critical values corre-

sponding to the 5% level of signi�cance drawn from MacKinnon (1991). Throughout

the paper, the number of replications is set at 10,000. As can be seen from Table 5,

the empirical size, i.e. �1 = �2 = 0 and �1 = �2 = 1, is close to the nominal one. As
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expected, the empirical power of the statistic increases with the sample size regardless

of the combination of the values of �i and �i, i = 1; 2. Furthermore, note that when �i

remains �xed, the empirical power of the statistic increases with �i, i = 1; 2. Finally, for

�xed �i the power increases when the �i parameters move away from the null hypothesis,

i = 1; 2.

Table 5 also reports the results corresponding to the one-step procedure in Engsted,

Gonzalo and Haldrup (1997) using the following model:

Pt
j=1 xj = Cm

0
t�+ A

Pt
j=1 yj +Dyt + ut; (17)

with two deterministic component speci�cations, i.e. Cmt = (1; t)
0 and Cmt = (1; t; t

2)0,

where xt and yt are generated according to (15) using the same set of parameters as above.

As can be seen, the empirical size of the statistic is close to the nominal one, regardless

of the deterministic speci�cation that is used. Compared to the two step-procedure of

Granger and Lee (1989), the empirical power of the one-step based statistic in Engsted,

Gonzalo and Haldrup (1997) for �xed �i is invariant to �i, i = 1; 2, due to the implicit

common factor restriction that is imposed by the ADF test. In order to understand the

reason for this di¤erent behaviour we can think of the common factor representation for

multicointegrated processes.

Note that Granger and Lee (1989) impose the condition (�1 � A �2) 6= 0 to ensure

the presence of multicointegration. However, when �i = 0, i = 1; 2, Xt

�
=
Pt

j=1 xj

�
and Yt

�
=
Pt

j=1 yj

�
polynomially cointegrate by construction, although xt and yt do not

multicointegrate. That is the reason why the one-step procedure shows higher power

than the two-step procedure for any value of �i, i = 1; 2. In fact, when �i = 0, i = 1; 2,

the common factor restriction is satis�ed by (16), but not by (17). To see this, we can

plug the common factor representation in (16) and (17) when �i = 0, i = 1; 2,

(AWt + �1t) = D
tX
j=1

�1j �DA
tX
j=1

�2j + ut; (18)
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tX
j=1

AWj +
tX
j=1

�1j = A
tX
j=1

Wj +
tX
j=1

�2j +D (Wt + �2t) + ut: (19)

Since the estimator of D is super-consistent and converges to zero �note that there is

not multicointegration in this case �the common factor restriction holds in (18), but not

in (19). Note that we always run the risk of �nding evidence in favour of multicointe-

gration when in fact there might be polynomial cointegration by construction, but not

multicointegration. In order to detect this kind of spurious multicointegration associated

with the one-step procedure we suggest practitioners to test the signi�cance of D in (17).

4.2 Multicointegration with structural break

The DGP that is used is given by:

Yt = X
m
t (�)

0 � + ut;

where Xm
t (�) = (1; t; t

2; DUt; DT
�
t ; x

0
t; x

0
t1 (t > Tb) ; X

0
t; X

0
t1 (t > Tb))

0, with xt and yt gen-

erated according to (15). As above, the empirical size is investigated using (�i; �i) = (0; 1),

i = 1; 2. As for the empirical power analysis, we only report results for (�i; �i) = (0:5; 0:9),

i = 1; 2, since conclusions do not change for the other con�gurations that have been es-

sayed. To analyze the e¤ect of the magnitude of the structural break on the power of

the test we have considered two sets of parameters. The �rst set of parameters accounts

for small e¤ects of the structural break, i.e. � = �1 = (1; 0:02; 0:01; 3; 0:06; 1:5; 1; 2;

0:1)0, while the second one is for large e¤ects of the structural breaks, i.e. � = �2 = (1;

0:02; 0:01; 9; 0:18; 1:5; 3; 2; 0:3)0. Note that this speci�cation of the DGP corresponds to

the most general model considered in the paper �Model 8 �so that the other speci�ca-

tions can be obtained as particular cases. Finally, the design of the experiment considers

� = f0:25; 0:50; 0:75g to investigate the e¤ect of the break point position on the empirical

power.

As can be seen from Table 6, the t�� (�) statistic has the correct size in all cases, since

the empirical size is close to the nominal one. Concerning the empirical power of the

13



t�� (�) statistic, we can see that the power increases with sample size, the magnitude of

the structural break, the break point position, and the type of the break. The increase

of the power when the magnitude of the break point increases is to be expected, since in

this case it is easier to detect. The fact that the empirical power increases as the break

point moves away from the beginning of the time period has also been pointed out in

earlier literature �see Gregory and Hansen (1996). For n = 50 the statistic shows low

power, specially for those cases where the magnitude of the break is small and the break

point is located at the beginning of the period. Nevertheless, these values are similar to

others obtained in the literature �see, Engle and Granger (1987), among others. Results

not reported here, indicate that when �i moves away from one the power of the statistic

increases �for instance, for (�i; �i) = (0:5; 0), i = 1; 2, the power is around 0.95.

To sum up, simulation experiments indicate that the test statistics proposed in this

paper show good properties in terms of empirical size and power, with values that resemble

those for the standard multicointegration framework.

4.2.1 Model selection

Throughout the paper we have proposed several models to capture the di¤erent way in

which the structural break can a¤ect the components of the model under the alternative

hypothesis of multicointegration. Unless there are strong analyst�s priors, practitioners

may doubt about which of these models or types of break to use. Consequently and

from an empirical point of view, it is interesting to think of the way to determine the

most appropriate speci�cation of the type of break. To this end, and following Calvo,

Montañés and Olloqui (2005) for the unit root tests with structural breaks, we analyze

in this section the performance of the AIC and BIC information criteria when used as

instruments to select from the di¤erent speci�cations that have been proposed. For each

of the �ve DGP�s that we have considered in the paper, we have estimated the �ve

models and recorded the relative frequencies of the selected model. The design of the

Monte Carlo experiment is the same as the one described above for the power analysis

with one structural break.
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The results of the experiment are presented in Tables 7 and 8 for both the small

(�1) and large (�2) break cases respectively. The column labelled as DGP indicates

the true speci�cation, while the columns labelled as Models 4 to 8 indicate the model

speci�cation that is estimated. As expected, the larger the magnitude of the structural

break, the better the classi�cation that is obtained using the AIC and BIC information

criteria. Furthermore, when the magnitude of the structural break is given by �2 we only

�nd one error in the classi�cation of the models using the AIC information criterion, and

four using the BIC information criterion �the errors are remarked in bold in Table 8.

When both the magnitude of the break and the sample size are small, the number of

incorrect classi�cations increases regardless of the information criteria that is used �see

bold numbers in Table 7. However, we can see that in these cases the BIC information

criterion always tends to select more parsimonious models than the true ones, whereas the

AIC information criterion under-speci�es the true model in six out of the ten situations

of incorrect classi�cations.

All in all, these results show that AIC and BIC can be used to select from the models

that have been proposed in this paper, since they provide good guidance, specially in

those cases where both the sample size and the magnitude of the structural break are

large. However, in small samples the AIC information criterion has been shown to be

more conservative than the BIC one, since the misspeci�cation errors, when they exist,

do not necessarily point to parsimonious speci�cations.

5 The unstable nature of the sustainability of exter-

nal de�cit in the US

In this section we analyze the existence of changes in the determination of intertemporal

budgeting of the external sector and sustainability of external de�cit using the proce-

dures developed above. From a theoretical point of view, intertemporal external budget

constraints have been introduced in models with open economies. Macroeconomic ac-

counting identities establish that the current account (CA) is equal to exports (E) less
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imports (M) plus net remittances (rmf � rm)

Mt � Et + (rmt � rmf
t ) = CAt: (20)

It is also equal to negative one times the capital account (KA) due to the balance of

payments identity. Thus,

�CAt = KAt; (21)

that is,

Mt � Et + (rmt � rmf
t ) = KAt: (22)

Following Leachman and Francis (2000), assuming that the net �ow of labor income is

zero, equation (22) can be written as

Mt � Et + iBnt�1 = Bt �B
f
t = �B

n
t ; (23)

where i is the real rate of interest on foreign debt, Bn net borrowing from foreigners

or net capital in�ows, and B and Bf represent domestic borrowing form foreign agents

and foreign borrowing from domestic agents, respectively. Previous equations are charac-

terizations of the period-by-period balance of payments and equate the current account

de�cit (surplus) to capital in�ow (out�ow) or net borrowing (lending) from (to) abroad.

Forward substitution of Equation (23) gives

(1 + it�1)B
n
t�1 + (Mt � Et)+ (24)

lim
T!1

TX

=1

"

Y
s=1

[1=(1 + rt+s)(Mt+s � Et+s)]
#
=

lim
T!1

"
TY
s

[1=(1 + rt+s)B
n
t+s

#
;

where r is a time varying discount rate. Equation (24) is the intertemporal external

budget constraint, which equilibrates the present discounted value of current account

de�cits plus the beginning period foreign debt to the present discounted value of foreign
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borrowing or capital in�ow. Sustainable policies with regards to the external sector must

satisfy the intertemporal budget constraint given in (24) along with the transversality

condition that requires a zero limit on future external debt discounted at a rate r �see

Leachman and Francis (2002).

From an empirical point of view, several methodologies have been applied to study

sustaintability of foreign US debt. We concentrate on Leachman and Francis (2000) since

they use multicointegration techniques to analyze intertemporal external budget balance

in the US economy. If exports and imports are to be multicointegrated, these variables

have to be bound together by two equilibrating forces. The �rst cointegrating relationship

within a multicointegrated system re�ects the �ow equilibrium force, while the second

relationship re�ects the deeper stock-�ow relation. These two equilibrating forces should

re�ect then the sources of the sustainability of foreign debt via intertemporal external

budget balance.

Leachman and Francis (2000) split the sample period that is analyzed in two subsam-

ples: 1947-1973 and 1974-1994. Based on standard multicointegration techniques that

do not allow for the presence of structural breaks, they �nd evidence about the presence

of multicointegration in the current account system in the �rst subperiod. Such a re-

lationship ensured that the external sector intertemporally moved towards balance even

in �bad�states of nature. However, this kind of long-run relationship was not found in

the second subsample. Hence, they conclude that in the second subperiod the US may

no longer adhere to its intertemporal budget constraint and may be engaged in a Ponzi

gamble that could lead to diminished welfare � see Leachman and Francis (2000) for

further details.

Implicitly, the analysis of Leachman and Francis (2000) assumed the presence of

instability since they decided to split the period of analysis in two. Similarly, Leachman

and Francis (2002) test the Twin De�cits Hypothesis for the US economy splitting their

period sample (1948-1992) in 1973. The more recent literature on the external sector

has emphasized the importance of structural breaks in the determination of the current

account. Edwards (2001) discusses several events, including the oil price shocks in the
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1970s and the debt crisis in 1982. Hatemi and Shukur (2002) �nd a structural break at the

beginning of the 1990s, which they attribute to the New Economy, globalization and the

integration of the former socialist economies into the world economy. Although all these

proposals evidence the existence of structural breaks in the current account behavior,

none of them have tested the sustainability of the foreign debt in a multicointegration

framework that considers the presence of structural breaks. Furthermore, note that

splitting the sample size in two di¤erent subperiods as in Leachman and Francis (2000,

2002) implies reducing the number of observations that is used when testing for the

presence of multicointegration relationships, which in turn causes loss of power of the

test statistic. Instead, it is possible to apply the methodology that has been proposed in

this paper, which allows us to consider the whole sample period taking into account the

presence of one unknown structural break. Following Leachman and Francis (2000), the

data set on exports and imports for the US economy has been taken from the Federal

Reserve Bank of St. Louis. They are quarterly observation in billions of real 2000 dollars

from 1947:Q1 through 2005:Q4.

We �rst proceed to investigate the stochastic properties of the univariate series de-

scribing foreign de�cit. Since structural breaks might be a¤ecting the time series, we

�rst compute the Exp � WFS break test of Perron and Yabu (2005) to test whether

there is a structural break a¤ecting the time series regardless of the order of integration.

The speci�cation that is chosen is given by Model III in Perron and Yabu (2005), which

considers that the structural break may a¤ect both the level and the slope of the time

trend. Results in Table (9) show that the null hypothesis of absence of structural breaks

is rejected at the 5% level of statistical signi�cance. Consequently, the analysis of the or-

der of integration has to consider the presence of structural breaks. To this end, we have

computed the M-class tests proposed in Carrion-i-Silvestre, Kim and Perron (2006) that

accommodates the presence of one structural break. As can be seen, the null hypothesis

of unit root with a structural break that a¤ects the level and the slope of the time series

cannot be rejected at the 5% level of signi�cance by any of the M-class tests that have

been computed �the break point for the exports is estimated at 1985:Q3, while the one
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for the imports is 1990:Q3.

This situation indicates that structural breaks should be taken into account when

testing for the presence of cointegration and multicointegration relationships among the

US imports and exports � following Leachman and Francis (2000), we specify imports

as the dependent variable and exports as the explanatory one. Table 10 presents the

results that are obtained when we compute the ADF statistic proposed in Gregory and

Hansen (1996) as well as the cointegration test in Carrion-i-Silvestre and Sansó (2006).

As mentioned above, the test in Gregory and Hansen (1996) speci�es the null hypothesis

of no cointegration, while the one in Carrion-i-Silvestre and Sansó (2006) is cointegration

with one structural break. Concerning the test of Gregory and Hansen (1996), we can see

that the null hypothesis of no cointegration between imports and exports is only rejected

at the 5% level for the speci�cation given by Model C/S �Model C accounts for a change

in the level with no time trend and no change in the cointegrating vector, model C/T for

a model including a time trend with a change in the level, but no change either in the

slope of the time trend or in the cointegrating vector, and, �nally, Model C/S considers

a change in the level with no time trend and change in the cointegrating vector. The

evidence is more striking when using the cointegration test in Carrion-i-Silvestre and

Sansó (2006), since the null hypothesis of cointegration with structural break between

imports and exports cannot be rejected at the 5% level of signi�cance for any of the six

di¤erent speci�cations that they propose. Therefore, we have found evidence of a long-

run relationship between imports and exports that have been a¤ected by the presence of

one structural break.

This fact allows us to investigate in a multivariate framework the long-run relation-

ships between exports and imports by using the multicointegration procedure. Results

reported in Table (11) indicate that the null hypothesis of non-multicointegration is re-

jected at the 5% level of signi�cance when the speci�cation is given by Models 6 and

8, where the break point is estimated at 1992:Q4 and 1992:Q2 respectively. Note that

Model 6 is preferred to Model 8 according to the BIC information criterion. It has to be

stressed that, regardless of the speci�cation that is selected, the estimated break point
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is located at the beginning of the 1990s, which is in accordance with the discussion in

Hatemi and Shukur (2002) that attribute this change to the New Economy, globalization

and the integration of the former socialist economies into the world economy. Therefore,

our results support the intertemporal external budget balance for the complete period

1947-2005 in the US economy, with a changing way of balancing. Note that the break

has been found in the �rst level of cointegration, that is the �ow relation between exports

and imports is changing along time but, according to the BIC information criterion, not

the stock-�ow relationship among debt, exports and imports.

6 Conclusions

In this paper we generalize the concept of multicointegration considering the presence

of one structural break, which can a¤ect either the deterministic component and/or the

cointegrating vectors of the two levels of cointegration. The contribution in this paper

goes beyond the multicointegration framework since our approach has wider application

when the interest is testing for polynomial cointegration and, in general, cointegration

among I(2) variables in a single-equation framework accounting for one structural break.

The paper has devised a residual based ADF statistic to test the null hypothesis of

non-multicointegration against the alternative hypothesis of multicointegration with one

structural break. Simulation experiments show that the �nite sample performance of the

statistic shows good properties in terms of empirical size and power. Moreover, the use of

the AIC and BIC information criteria has been investigated when these statistics are used

to select among the di¤erent speci�cations that have been devised. Based on simulation

evidence we conclude that these information criteria can be used to select from di¤erent

types of break, specially when both the magnitude of the structural break and the sample

size are large.

We illustrate the use of the statistic to analyze the sustainability of the external de�cit

for the US. Previous evidence in the literature indicates that some doubt can be cast on

the sustainability of US external de�cit, specially in the last quarter of the twentieth
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century. We have shown that this conclusion was obtained because previous analyses

did not consider the presence of structural breaks, which causes misleading conclusions.

Thus, the study that has been conducted reveals that imports and exports can be con-

sidered as I(1) processes with one structural break, which implies that cointegration and

multicointegration analyses have to account for this feature. Thus, when the presence

of one structural break is considered, the evidence points to the sustainability of the US

external de�cit with a structural break that has been estimated at the beginning of the

1990s.
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A Mathematical appendix

The following Lemma is used throughout the paper to derive the statements in the The-

orems.

Lemma 1 Let zt (�) = (Cm0
t; x

00
t ; x

00
t 1 (t > Tb) ; X

00
t ; X

00
t 1 (t > Tb))

0 be the vector that con-

tains the deterministic terms, I(1) and I(2) stochastic trends of the model de�ned in (10).

Thus, as n!1; the following moments converge jointly to

(a) n�1Dnz
0 (�) z (�)Dn )

R 1
0
B (�; r)0B (�; r) dr

(b) n�1=2Dnz
0 (�) v )

R 1
0
B (�; r)0 dB0 (r)

+(0;�10; (1� �)�10; 0; 0)
0

(c) n�3=2Dnz
0 (�)��1v )

R 1
0
B (�; r)0B0(r)dr

(d) n�5=2Dnz
0 (�)��2v )

R 1
0
B (�; r)0B0(r)dr;

where Dn denotes the scaling matrix.

Proof. Let us focus on the speci�cation given by Model 8, which is the most gen-

eral one considered in this paper. This model uses the deterministic component given

by Cmt = (1; t; t2; DUt; DT
�
t )
0, for which we can de�ne the associated scaling matrix

D0 = diagf1; n�1=2; n�1; 1; n�1=2g. Thus, note that D0Cm[nr] ! f (�; r), with f (r; �) =

(1; r; r2; du (�; r) ; dt� (�; r))
0, r = t=n, du (�; r) = 1 (r > �), dt� (�; r) = (r � �) 1 (r > �),

the limiting functions of the deterministic components. For the I(1) stochastic regres-

sors we have n�1=2x0t ) B1(r) by the Donsker�s Theorem, where B1(r) denotes a vector

of m1 Brownian processes de�ned on [0; 1]. For the I(2) stochastic regressors we can

establish weak convergence towards n�3=2X0
t )

rR
0

B2(s)ds � B2(r) by the Continuous

Mapping Theorem (CMT) � see Billingsley (1968) �with B2(s) being a vector of m2

Brownian processes de�ned on [0; 1]. Similarly, n�1=2x0t1 (t > Tb) ) B1(r)1 (r > �) and

n�3=2X0
t 1 (t > Tb)) B2(r)1 (r > �). Using all these elements it is straightforward to see
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that

n�1=2Dnzt (�) )
�
f (�; r)0 ; B01(r); B

0
1(r)1 (r > �) ; B

0
2(r); B

0
2(r)1 (r > �)

�0
� B (�; r) ;

whereDn = diagfD0; D1; D2g, withD1 = diagfn�1=2; :::; n�1=2g andD2 = diagfn�3=2; :::n�3=2g

the scaling matrices involving the I(1) and I(2) stochastic regressors. Therefore, state-

ments (a) to (c) easily follow from the application of the CMT.

A.1 Proof of Theorem 1

Consider the OLS estimation of the speci�cation given in (11). By using the fact that

for the general case ut � I(d)

n1=2�dût = n
1=2�dut � n1=2�dXm

t (�)
0 (�̂ � �);

that is,

n1=2�dût = n1=2�dut � n1=2�dXm
t (�)

0 �Xm (�)0Xm (�)
��1

Xm (�)0 u

= n1=2�dut � n1=2�dzt (�)0Dn

�
Dnz (�)

0 z (�)Dn

��1
Dnz (�)

0 u

= n1=2�dut � zt (�)0Dn

�
n�1Dnz (�)

0 z (�)Dn

��1 �
n�1=2�dDnz (�)

0 u
�
:

Under the null hypothesis of non-multicointegration d = 1, so that using the statements

in Lemma 1 we have

n�1=2ût ) B0 (r)�B (�; r)0
�Z 1

0

B (�; r)0B (�; r) dr

��1�Z 1

0

B (�; r)0B0 (r) dr

�
� Q (�; r) : (25)
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Note that we can de�ne !00:1 = !00 � !01
�111 !10, so that

Q (r; �) = !
1=2
00:1

 
W0 (r)�W (�; r)0

�Z 1

0

W (�; r)0W (�; r) dr

��1�Z 1

0

W (�; r)0W0 (r) dr

�!
= !

1=2
00:1W

� (�; r)

can be written in terms of uncorrelated Brownian motionsW0 (r) andW (�; r). Note that

W � (�; r) denotes the projection of the W0 (r) Brownian motion onto the space spanned

by the columns of W (�; r).

The ADF statistic is computed from the estimation of (13) as the t-ratio t� (�) for

testing the null hypothesis that � = 0. Note that the ADF-type regression equation can

be expressed as

�ût = �ût�1 + �̂
0
t'+ �t;

with �̂t = (�ût�1; : : : ;�ût�p)
0. Following Chang and Park (2002), we can de�ne

An (�) =
nX
t=1

ût�1�t �
 

nX
t=1

ût�1�̂
0
t

! 
nX
t=1

�̂t�̂
0
t

!�1 nX
t=1

�̂t�t

!

Bn (�) =
nX
t=1

û2t�1 �
 

nX
t=1

ût�1�̂
0
t

! 
nX
t=1

�̂t�̂
0
t

!�1 nX
t=1

�̂tût�1

!

Cn (�) =
nX
t=1

�2t �
 

nX
t=1

�t�̂
0
t

! 
nX
t=1

�̂t�̂
0
t

!�1 nX
t=1

�̂t�t

!
;

so that �̂ = B�1n (�)An (�), with the variance of the error term given by �̂
2
n = n

�1(Cn (�)

�A2n (�)B�1n (�)) and the variance of the estimated � parameter given by s2n
�
�̂
�
= �̂2n (�)

B�1n (�). Using these elements, Chang and Park (2002) show that as n!1

n�1An (�) ) !00:1

Z 1

0

W � (�; r) dW �(r; �)

n�2Bn (�) ) !00:1

Z 1

0

W �2(r; �)

n�1Cn (�) ! p�2n;

where !pdenotes convergence in probability. Then, the t� (�) statistic is computed as
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t� (�) = �̂
�1
n (�)B

�1=2
n (�)An (�), which in the limit converges to

t� (�))
�Z 1

0

W �2(r; �)

��1=2�Z 1

0

W � (�; r) dW �(r; �)

�
;

for a given �. Theorem 1 is proved.

A.2 Proof of Theorem 2

The proof follows Zivot and Andrews (1992), Gregory and Hansen (1996), and Perron

(1997). As shown in the previous proof, the ADF statistic can be expressed as a composite

functional g:

inf
�2�

�
�̂�1n (�)B�1=2n (�)An (�)

�
= g

�
An (�) ; Bn (�) ; �̂

2
n (�)

�
;

where

g = h� [h [m1 (�) ;m2 (�) ;m3 (�)]] ;

with h� (m) = inf�2�m (�) for any real function m = m (�) on �. Furthermore, for any

real functions n1 (�), n2 (�) and n3 (�) on �, h [An (�) ; Bn (�) ; Cn (�)] = Bn (�)
�1=2An (�)

=C
1=2
n (�). The weak convergence joint result for An (�), and Bn (�) has been shown in

Lemma 1 above, while n�1Cn (�) !p �2n. Continuity of h on � is proved in Zivot and

Andrews (1992). Finally, Zivot and Andrews (1992) establish continuity of h� (m) for all

real functions m on �. Therefore, the continuity of g follows from the continuity of a

composition of continuous functions, so that the CMT can be used to obtain the result

of Theorem 2.
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Table 4: Critical values for Model 8
m2 = 1 m2 = 2

m1 n 0:01 0:025 0:05 0:10 0:01 0:025 0:05 0:10
0 50 -6.85 -6.48 -6.15 -5.79 -7.61 -7.18 -6.85 -6.47

100 -6.48 -6.13 -5.86 -5.52 -7.08 -6.70 -6.43 -6.09
250 -6.13 -5.87 -5.63 -5.36 -6.61 -6.36 -6.11 -5.86
500 -6.06 -5.82 -5.55 -5.32 -6.55 -6.25 -6.06 -5.81

1 50 -7.52 -7.09 -6.77 -6.35 -8.24 -7.80 -7.41 -7.02
100 -6.97 -6.66 -6.38 -6.06 -7.53 -7.21 -6.90 -6.59
250 -6.67 -6.37 -6.14 -5.86 -7.14 -6.85 -6.56 -6.31
500 -6.52 -6.31 -6.06 -5.80 -6.97 -6.73 -6.51 -6.25

2 50 -8.21 -7.74 -7.34 -6.89 -8.97 -8.44 -7.98 -7.55
100 -7.50 -7.12 -6.84 -6.54 -8.01 -7.68 -7.40 -7.06
250 -7.15 -6.86 -6.60 -6.30 -7.60 -7.29 -7.04 -6.75
500 -6.94 -6.74 -6.49 -6.23 -7.43 -7.16 -6.92 -6.67

3 50 -8.74 -8.28 -7.88 -7.43 -9.51 -8.99 -8.54 -8.06
100 -8.01 -7.62 -7.32 -7.00 -8.49 -8.10 -7.84 -7.51
250 -7.55 -7.27 -7.02 -6.73 -8.03 -7.72 -7.44 -7.15
500 -7.41 -7.12 -6.89 -6.63 -7.84 -7.52 -7.30 -7.03

4 50 -9.31 -8.78 -8.41 -7.98 -10.01 -9.49 -9.10 -8.59
100 -8.47 -8.06 -7.78 -7.43 -8.98 -8.61 -8.25 -7.92
250 -7.95 -7.67 -7.40 -7.16 -8.41 -8.10 -7.82 -7.55
500 -7.87 -7.53 -7.31 -7.03 -8.18 -7.93 -7.67 -7.39

The indices m1 and m2 indicate the number of I(1) and I(2) variables,
respectively. n indicates the sample size. The simulations were based
upon 5,000 replications.

Table 5: Empirical size and power of standard multicointegration test
Granger and Lee Engsted, Gonzalo and Haldrup
Non-deterministics Linear trend Quadratic trend

�i �i n = 50 n = 100 n = 50 n = 100 n = 50 n = 100
0 1 0.047 0.036 0.056 0.058 0.058 0.059
0.01 0 0.189 0.356 0.998 0.999 0.994 0.999
0.5 0 0.634 0.952 0.999 0.999 0.995 0.999
1 0 0.891 0.996 0.999 0.999 0.995 0.999
0.5 0.9 0.069 0.284 0.088 0.214 0.065 0.179
0.5 0.7 0.181 0.826 0.319 0.881 0.214 0.787
0.5 0.5 0.294 0.908 0.729 0.999 0.560 0.997
0.5 0 0.636 0.959 0.997 0.999 0.998 0.999
The nominal size is set at the 5% level of signi�cance. The simula-
tions were based upon 10,000 replications.
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Table 6: Empirical size and power of t��(�) statistic with one unknown structural break
Empirical size Empirical power: (�i; �i) = (0:5; 0:9)
(�i; �i) = (0; 1) Small structural break (�1) Large structural break (�2)

n � = 0:25 � = 0:5 � = 0:75 � = 0:25 � = 0:5 � = 0:75
Model 4 50 0.037 0.057 0.053 0.064 0.070 0.086 0.080

100 0.053 0.127 0.145 0.133 0.150 0.159 0.157
Model 5 50 0.041 0.042 0.039 0.038 0.051 0.082 0.055

100 0.055 0.124 0.125 0.115 0.134 0.121 0.130
Model 6 50 0.032 0.078 0.100 0.162 0.118 0.363 0.465

100 0.047 0.146 0.443 0.594 0.402 0.739 0.874
Model 7 50 0.039 0.116 0.122 0.131 0.370 0.507 0.444

100 0.051 0.193 0.307 0.318 0.671 0.790 0.781
Model 8 50 0.031 0.097 0.256 0.277 0.428 0.629 0.683

100 0.047 0.291 0.615 0.677 0.789 0.926 0.999
�1 = (1; 0:02; 0:01; 3; 0:06; 1:5; 1; 2; 0:1)

0 and �2 = (1; 0:02; 0:01; 9; 0:18; 1:5; 3; 2; 0:3)0. The nomi-
nal size is set at the 5% level of signi�cance. The simulations were based upon 10,000 replica-
tions.
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Table 9: Structural change and univariate unit root tests for Exports and Imports
Imports Exports

Perron-Yabu test 17.483 7.006

ADF-GLS -1.705 -1.792
ZA -5.765 -6.305
MZA -5.657 -6.171
MSB 0.296 0.284
MZT -1.673 -1.754

The critical value at the 5% level of signi�cance for the
Perron-Yabu test is 3.12, for the ADF-GLS and MZT tests
is -3.36, for the ZA and MZA tests is -22.28, and for the
MSB test is 0.15.

Table 10: Engle-Granger and Gregory-Hansen cointegration test
Gregory and Hansen (1996)

ADF statistic
ADF T̂b

Model C -3.00 1984:Q3
Model C/T -3.11 1986:Q4
Model C/S -5.11� 1994:Q3

Carrion-i-Silvestre and Sansó (2006)
SC statistic
SC+ (�) T̂b

Model An 0.053 1999:Q3
Model A 0.037 1999:Q3
Model B 0.046 1995:Q4
Model C 0.042 1997:Q3
Model D 0.122 1996:Q3
Model E 0.054 1995:Q4

* denotes rejection of the corresponding null hypothesis at
5% level of signi�cance
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