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ABSTRACT 
 
Most of the stylized features of volatility dynamics of equity returns are drawn from the 
aggregate indices of international stock markets.  The inference is often based on the 
class of univariate generalized autoregressive conditional heteroscedasticity (GARCH) 
models. Owing to computational complexities, only a few studies utilize the multivariate 
framework, which exploits the possible correlations of volatility across different markets. 
In this paper, we investigate the applicability of the well-established facts of volatility 
behaviour of aggregate indices to the sectoral indices.  Two competing multivariate 
(tetravariate) GARCH-type models with time-varying correlations are used to analyze the 
sectors of the Japanese stock market.  The proposed models can parsimoniously 
capture the stylized features of long-memory, asymmetric conditional volatility, and time-
varying correlations associated with stock market returns.  In contrast to what is widely 
documented in the literature, we find that asymmetric effects are not invariably present in 
the sectoral indices. In addition, the conditional correlations are frequently highly positive 
and significantly time-varying. We also detect strong evidence of volatility persistence 
and long memory, and the fractionally integrated models generally outperform those 
models without long-memory structures in the conditional variance. Our findings not only 
cast doubts on the “leverage effect” of equity returns, but also have bearing on the 
strategy of portfolio diversification among various sectors.    
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1. Introduction 

 

In the past two decades, much research interest has focused on modeling the 

temporal variation in the volatility of asset returns. Particularly instrumental in capturing 

the time-varying asset returns volatility is the generalized autoregressive conditional 

heteroscedasticity (GARCH) model proposed by Bollerslev (1986) and its extensions. 

Franses and van Dijk (2000) provide an in-depth review of this subject and demonstrate 

the importance of estimating conditional variance using GARCH-type models in the 

research of empirical finance. Indeed, based on the class of univariate GARCH-type 

models, several significant stylized facts pertaining to stock market volatility are well-

established in the literature. First, Black (1976) notes the tendency for negative shocks 

to generate greater volatility in future periods compared with positive shocks of the same 

magnitude, a phenomenon that he refers to as the “leverage effect”. Such asymmetric 

volatility shocks are mainly detected from the returns of the aggregate stock market 

indices. For instance, Engle and Ng (1993) employ various model specifications to test 

for volatility asymmetry in the TOPIX of the Tokyo Stock Exchange; Nelson (1991) 

applies the exponential GARCH (EGARCH) model to the value-weighted CRSP daily 

market returns; while Ding, Granger, and Engle (1993) focus on New York’s S&P 500 

Index to examine the presence of asymmetry. More recent articles on asymmetric 

conditional volatility of equity returns include Harvey and Shephard (1996), Loudon, 

Watt, and Yadav (2000), Giot and Laurent (2003), and Asai and McAleer (2003). Despite 

using different aggregate stock market indices, these studies uniformly conclude that 

asymmetric effects are detected in the conditional volatility of stock market returns.  

 

Another empirical regularity is that stock market volatility displays very long 

temporal dependencies and strong persistence. For details, see Baillie (1996), Ding and 
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Granger (1996), Bollerslev and Mikkelsen (1996), Tse and Tsui (1997), Bollerslev and 

Jubinski (1999), Andersen, Bollerslev, and Cai (2000), and Beran and Ocker (2001). In 

particular, Andersen, Bollerslev, and Cai (2000) suggest that high-frequency returns 

reveal the existence of important long-memory interdaily volatility dependencies. Again, 

this empirical regularity is mainly established based on international aggregate stock 

market indices, such as New York’s S&P 500 Index, Japan’s Nikkei 225, Hong Kong’s 

Hang Seng Index, Singapore’s Straits Times Index, and Australia’s All Ordinaries Index. 

The third stylized fact is the rejection of constant conditional correlations of asset 

returns. Many studies, such as Longin and Solnik (1995), Tsui and Yu (1999), Tse 

(2000), Bera and Kim (2002), and Engle (2002), and Ledoit, Santa-Clara, and Wolf 

(2003) use major international stock market indices and find evidence of time-varying 

correlations of returns.  

 

These stylized facts, however, are based on the aggregate indices of the major 

international stock markets.  Little work has been conducted on the sectoral/component 

indices of these stock markets.  This over-emphasis on aggregate market indices is lop-

sided, as the volatility dynamics of the sectoral indices may evolve differently from the 

aggregate indices.  Hence, the stylized facts based on aggregate indices need not be 

invariably applicable to the individual sectors. In addition, most studies on the conditional 

volatility dynamics of asset returns either concentrate on the univariate GARCH-type 

models, which fail to capture correlations of asset returns, or simply assume, for the 

sake of tractability, that the conditional correlations are time-invariant. This could be 

partially due to the difficulties associated with the modeling and estimation of the 

conditional volatility of asset returns in a unified multivariate framework involving time-

varying correlations, long-range dependence, and asymmetries. One major challenge is 

to ensure that the conditional variance-covariance matrix of the multivariate GARCH 
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(MGARCH) model is positive definite. Several researchers have proposed some 

multivariate models that require certain parameter restrictions so as to guarantee 

positive-definiteness of the variance-covariance matrix. For instance, Engle, Granger, 

and Kraft (1984) have presented the necessary conditions for the matrix of the bivariate 

ARCH model to be positive definite, but extending this model to higher dimensions is 

rather intractable. As an alternative, Bollerslev, Engle, and Wooldridge (1988) have 

proposed the vech-representation, which is the extension of the univariate GARCH 

representation to the vectorized conditional variance-covariance matrix. However, 

conditions that guarantee the positive-definiteness of the variance-covariance matrix are 

not easy to monitor and impose continuously during optimization.   

 

Despite the computational complexities, the multivariate GARCH approach 

remains important for at least two reasons.  First, as many assets are subject to similar 

information or events, it is expected that their volatilities may be correlated conditional on 

the given information set.  Such conditional correlations can be utilized to design 

dynamic optimal portfolios comprising different assets.  Second, there may be a gain of 

efficiency by jointly estimating the conditional volatilities of returns of several assets 

(see, for example, Bera and Higgins (1993)).  

  

To circumvent the obstacles associated with multivariate GARCH models, Engle 

and Kroner (1995) introduce the Baba-Engle-Kraft-Kroner (BEKK) model, which 

automatically ensures the positive-definiteness of the variance-covariance matrix once 

parameter estimates are obtained. Another approach examines the conditional 

volatilities of different assets as a factor model; see Diebold and Nerlove (1989), Engel 

and Rodrigues (1989) and Engle, Ng, and Rothschild (1990) for details. However, the 

main drawback of the BEKK and factor models is that the parameters cannot be easily 
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interpreted, and their net effects on the future variances and covariances are not readily 

observed. Moreover, since the estimation of the BEKK and factor-GARCH models 

involves a large number of parameters, especially when the number of assets increases, 

this lacks parsimony and exacerbates the difficulties of achieving convergence. For 

example, Bera, Garcia, and Roh (1997) report that the BEKK model does not perform 

well in the estimation of the optimal hedge ratios, and Lien, Tse, and Tsui (2002) report 

difficulties in obtaining meaningful estimates for the BEKK model during optimization. 

  

A more manageable alternative is Bollerslev’s (1990) constant (conditional) 

correlations-GARCH approach, which automatically guarantees the positive-definiteness 

of the variance-covariance matrix once the parameter estimates are obtained. Under the 

constant-correlation assumption, the maximum likelihood estimate of the correlation 

matrix is equal to the sample correlation matrix. As the sample correlation matrix is 

always positive definite, the optimization will not fail as long as the conditional variances 

are positive. In addition, the parameter estimates are relatively easy to interpret, as the 

univariate GARCH equations are still retained. Nonetheless, the highly restrictive 

assumption of constant correlations can adversely affect the reliability of statistical 

inference if it were violated.  Indeed, many studies have highlighted the untenability of 

this assumption. For details, see Longin and Solnik (1995), Tsui and Yu (1999), Tse 

(2000), Bera and Kim (2002), and Ledoit, Santa-Clara, and Wolf (2003), respectively. 

 

In this paper, we investigate the applicability of the well-documented facts on 

volatility behaviour of aggregate indices to the sectoral indices. To ensure consistency in 

comparison, our study is confined to the multivariate GARCH approach.  Specifically, we 

propose two competing tetravariate GARCH-type models to analyze the volatility 

dynamics of the sectoral indices.  They are the varying-correlations-fractionally 
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integrated asymmetric power ARCH (VC-FIAPARCH) and the VC-FI asymmetric 

GARCH (VC-FIAGARCH) models. The main reason for considering these models is that 

they parsimoniously capture the stylized features of volatility asymmetry, long-range 

persistence in volatility, and time-varying correlations. In addition, these two competing 

models do not nest each other. Another advantage is that the parameters are relatively 

easy to interpret, as the univariate GARCH equation is retained for each asset return 

series. Moreover, once convergence is achieved, the conditional variance-covariance 

matrix automatically satisfies the positive-definite condition. 

 

The proposed models are applied to four sectoral indices of the TOPIX (Tokyo 

Stock Price Index) of the Tokyo Stock Exchange (TSE).  We detect significant evidence 

that the asymmetric conditional volatility is not uniformly present in all sectoral indices, 

even though Engle and Ng (1993) have previously observed the presence of the 

leverage effect in TOPIX.  Apparently our findings cast doubts on the well-established 

fact that stock market returns exhibit the leverage effect, a phenomenon partially 

explained by the existence of operating leverage of firms (see Black (1976)). The 

absence of volatility asymmetry in some sectors may have important bearing on option 

pricing and on the construction of diversified domestic asset portfolios based on different 

sectors. In addition, we detect evidence of long-range persistence in volatility for all the 

sectors, regardless of which GARCH-type model is used.  Some sectors apparently 

share similar degrees of fractional integration. In general, the fractionally integrated 

models outperform those models without long-memory structures in the conditional 

variance.  Additionally, we also observe that conditional correlations are frequently highly 

positive and significantly time-varying.  Our findings imply that the dynamic nature of 

sectoral correlations could be further exploited in constructing diversified portfolios over 

time.  
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 The rest of the paper is organized as follows. Section 2 discusses the 

methodology adopted in this study.  Section 3 describes the nature of the data sets and 

the estimation results.  Section 4 then concludes by highlighting some implications of our 

findings.  

 

2. Methodology 
 

In this section, we first briefly describe the basic features of the multivariate 

GARCH(1,1) model with time-varying conditional correlations proposed by Tse and Tsui 

(2002). We then incorporate the features of asymmetric volatility and long memory into 

the conditional variance equations by synthesizing Tse and Tsui’s (2002) methodology 

with other models. Two main classes of multivariate GARCH-type models are developed 

based on this synthesis.    

 

Let yt = (y1t, y2t, y3t…ykt)’ be the k-variate vector of variables with time-varying 

variance-covariance matrix Ht, and let µit(ξi) be the arbitrary conditional mean functions 

which depend on ξi, a column vector of parameters.   A typical k-variate GARCH(1,1) 

model may be specified as follows: 

kiy itiitit ,...,2,1,)( =+= εξµ        (1) 

where ),(~Φ|)',...,,,( 1321 ttktttt HO−εεεε       (2) 

Note that Φt is the σ-algebra generated by all the available information up to time t. The 

random disturbance terms εit (which are obtained from equation (1)) and the conditional 

variance equations hiit are modelled as follows: 

,itiitit eh=ε  where )1,0(~ Neit        (3) 
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1
2

1 −− ++= iitiitiiiit hh βεαη         (4) 

where (4) is the popular Bollerslev’s (1986) GARCH(1,1) model.  

Denoting the ij-th element (i, j = 1, 2,…,k) in Ht by hijt, the conditional correlation 

coefficients are given by 
jjtiit

ijt
ijt hh

h
=ρ .  Tse and Tsui (2002) assume that the time-

varying conditional correlation matrix { }ijtt ρ=Γ is generated by the following recursion 

121121 )1( −− ++−−= ttt ΨΓΓΓ ππππ       (5) 

where  { }ijρ=Γ  is a time-invariant k x k positive-definite correlation matrix, π1 and π2 

are assumed to be nonnegative and sum up to less than 1, and Ψt is a function of the 

standardised residuals ite .  

Denoting { }ijtψ=tΨ , the elements of Ψt-1 are specified as 

kji
ee

ee
M

a

M

a atjati

M

a atjati
tij ≤<≤=

∑ ∑
∑

= = −−

= −−
− 1,

))((
1 1

2
,

2
,

1 ,,
1,ψ      (6) 

where M is set equal to k. For further details of the model, see Tse and Tsui (2002). 

Assuming conditional normality, the log-likelihood function (ignoring the constant term) of 

the vector of parameters in equations (1), (4), and (5) 

( )21112121 ,,,,...,,,...,,,...,,,,...,, ππρββααηηηξξξθ ijkkkk=  is specified as 

)',...,,,,(),...,,,(
2
1||log

2
1)( 321

1
321 ktttttktttttt HHl εεεεεεεεθ −−−=    (7) 

where εit are the random disturbance terms obtained from equation (1). The conditional 

variance-covariance matrix Ht can be further defined as 

{ } ttijtt DDhH tΓ≡= , { }iitt hdiagD = , and { }ijtt ρ=Γ  

It can be easily shown that the log-likelihood function can be rewritten as 
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)',...,,,(Γ),...,,,(
2
1|Γ|log

2
1)( 321

111
321 ktttttttktttttttt DDDDl εεεεεεεεθ −−−−−=   (8) 

where Γt is defined by the recursion in (5). Note that by this 

formulation, 1
321 ),...,,,( −

tktttt Dεεεε  represents the standardized residuals )...,( 21 kttt eee . 

 

          Equations (1)-(8) summarize the gist of the varying-correlations GARCH (VC-

GARCH) model of Tse and Tsui (2002).  In particular, when k = 2, the bivariate VC-

GARCH(1,1) model is obtained and equations (5)-(7) can be simplified as follows: 

1,1221,121122112 )1( −− ++−−= ttt ψπρπρππρ       (5’) 

∑ ∑
∑

= = −−

= −−
− =

2

1

2

1
2
,2

2
,1

2

1 ,2,1
1,12

))((
a a atat

a atat
t

ee

ee
ψ        (6’) 

)1(2
2

)1log(
2
1log

2
1)( 2

12

2112
2
2

2
12

12
2

1
t

ttttt
ti iitt

eeee
hl

ρ
ρρθ

−
−+

−−−−= ∑ =
   (7’) 

Note that the VC-GARCH model nests Bollerslev’s (1990) constant-correlations GARCH 

(CC-GARCH) model when π1 = π2 = 0. As such, the likelihood ratio test can be readily 

applied to compare the performance of both models. 

 

In order to incorporate asymmetric volatility and long memory dynamics into the 

VC-GARCH model, we have to modify the symmetric conditional variance equation in 

(4).  Among the GARCH-type models with asymmetric volatility, we choose two well-

established structures: the asymmetric GARCH(1,1) (AGARCH(1,1)) model proposed by 

Engle (1990) and the asymmetric power ARCH(1,1) (APARCH (1,1)) model of Ding, 

Granger, and Engle (1993), respectively.  Their main features are summarized below. 

[a] Engle’s (1990) asymmetric GARCH(1,1) (AGARCH(1,1)) model: 

1
2

1 )( −− +−+= iitiiitiiiit hh βγεαη        (9) 



9 

where γi is the asymmetric coefficient.  When γi  = 0, (9) becomes the GARCH(1,1) model 

and when βi = 0, it becomes the prototype ARCH(1) model.     

[b] Ding, Granger, and Engle’s (1993) asymmetric power ARCH(1,1) (APARCH (1,1)) 

model. 

2
111

2 )|(| iii
iitiitiitiiiit hh δδδ βεγεαη −−− +−+=                  (10) 

where γi is the asymmetric coefficient. When δi = 2, (10) becomes the leveraged GARCH 

(LGARCH(1,1)) model, which nests the GJR model of Glosten, Jaganathan and Runkle 

(1993).  When δi = 1, it becomes the threshold GARCH(1,1) (TGARCH(1,1)) model, 

which includes an asymmetric version of the Taylor/Schwert (1986/1989) model and 

Zakoian’s (1994) threshold ARCH (TARCH) model. Ding, Granger, and Engle (1993) 

show that when δi approaches 0, the logarithmic GARCH(1,1) (LOGGARCH(1,1)) model 

is obtained, which incorporates an asymmetric version of the Geweke/Pantula (1986) 

model.  Although the APARCH structure nests 7 models in total (see Ding, Granger, and 

Engle (1993) for details), it does not nest the AGARCH model. 

 

As regards the structure of long-memory dynamics in volatility, we may 

generalise the conditional variance equations in (4), (9), and (10), such that they are 

fractionally integrated.  We adopt the approach of Baillie, Bollerslev, and Mikkelsen 

(BBM) (1996), which is demonstrated below:   

 

First, consider a GARCH(p,q) model, which is an extension of equation (4): 

iitiitiiiit hLLh )()( 2 βεαη ++=        (11) 

where )(Liα and )(Liβ are lag polynomials of order q and p, respectively.  Equation (11) 

may be rewritten in terms of an ARMA(m,p) process in 2
itε : 
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itiiitii LLL υβηεαβ )](1[)]()(1[ 2 −+=−−       (12) 

where m = max(q,p) and iititit h−= 2ευ is the innovation to the variance process. The 

GARCH(p,q) model is covariance-stationary if all the roots of )()(1 LL ii αβ −−  lie 

outside the unit circle. If a unit root exists, (11) becomes the integrated GARCH 

(IGARCH) model with a polynomial (L)iφ  such that )()1()()(1 LLLL iii φαβ −=−− , 

where the characteristic equation 0 (L) =iφ has all the roots outside the unit circle. This 

model represents an extreme case of persistence in the conditional variance. The BBM’s 

approach replaces the first difference operator in the factorisation with a fractional 

difference operator to obtain the FIGARCH(p,d,q) model as below: 

itiiiti
d LLL i υβηεφ )](1[)()1( 2 −+=−         (13) 

where 10 ≤≤ id , and )()1()()(1 LLLL i
d

ii
i φαβ −=−−  

Conceivably, the FIGARCH(p,d,q) model has a more general structure which nests the 

usual GARCH and the IGARCH models. Alternatively, (12) may be expressed as the 

following infinite ARCH process: 

21 ])1)(())(1(1[
)1(1 it

d
ii

i

i
iit

iLLLh εφβ
β
η −−−+

−
= −      (14) 

When both )( - 1 Liβ and )(Liφ  are reduced to polynomials of degree 1, we obtain the 

FIGARCH(1,d,1) model: 

2)(
1 iti

i

i
iit Lh ελ

β
η +
−

=          (15) 

where id
iia

a
iai LLLLL )1)(1()1(1)( 1

1
−−−−== −∞

=∑ φβλλ .  

However, the FIGARCH(1,d,1) model does not include the feature of asymmetric 

volatility, whereby negative shocks have a different impact on future volatilities 

compared with positive shocks of the same magnitude. To remedy the shortcoming of 
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(15), we may apply the fractionally integrated process to the conditional variance 

equations specified in (9) and (10). 

 

In what follows we derive the fractionally integrated asymmetric GARCH 

(FIAGARCH) model using the BBM’s approach.  Consider the AGARCH(p,q) model: 

iitiiitiiiit hLLh )())(( 2 βγεαη +−+=       (16) 

By redefining 2)()( iititg γεε −≡ , and iititit hg −≡ )(ετ , the fractionally integrated 

process can be straightforwardly applied to the AGARCH model by rewriting equation 

(16) as follows: 

itiiitii LgLL τβηεαβ ))(1()()]()(1[ −+=−−       (17) 

After factorizing the lag polynomial )()1()()(1 LLLL i
d

ii
i φαβ −=−− , and rewriting (17) 

as an infinite ARCH operation applied to )( itg ε , we obtain  

)(])1)(())(1(1[
)1(1

1
it

d
ii

i

i
iit gLLLh i εφβ

β
η −−−+

−
= −      (18) 

For a particular case of FIAGARCH(1,d,1), we have 

2))((
1 iiti

i

i
iit Lh γελ

β
η

−+
−

=        (19) 

where id
iia

a
iai LLLLL )1)(1()1(1)( 1

1
−−−−== −∞

=∑ φβλλ .  

Note that (19) is similar to the FIGARCH(1,d,1) model in (15), except that it allows past 

return shocks to have asymmetric effects on the conditional volatility. 

 

Similarly, we derive the FIAPARCH(p,d,q) model using the BBM’s procedure 

based on an APARCH(p,q) model in (20). Specifically, we now define 

itiititg εγεε −≡ ||)( and 2)( ii
iititit hg δδετ −≡ , and (20) can be rewritten as (21):  
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22 )()|)(|( iii
iitiitiitiiiit hLLh δδδ βεγεαη +−+=      (20) 

itiiitii LgLL i τβηεαβ δ ))(1()()]()(1[ −+=−−      (21) 

By factorizing )()(1 LL ii αβ −− , (21) can be further rewritten as an infinite ARCH 

operation applied to )( itg ε .  Finally, the FIAPARCH(p,d,q) takes the following form: 

iii
it

d
ii

i

i
iit gLLLh δδ εφβ

β
η )(])1)(())(1(1[

)1(1
12 −−−+

−
= −     (22) 

In particular, the FIAPARCH(1,d,1) model is specified as: 

ii
itiiti

i

i
iit Lh δδ εγελ

β
η )|)(|(

1
2 −+

−
=        (23) 

where )(Liλ is defined as in (19).  Similar to the FIAGARCH(1,d,1) model in (19), (23) 

allows past shocks to have asymmetric effects on the conditional volatility.  

 

The parameters of the different multivariate fractionally integrated GARCH-type 

models can be estimated using Bollerslev and Wooldridge’s (1992) quasi-maximum 

likelihood estimation (QMLE) approach.  To facilitate convergence in the estimation, we 

have to make appropriate assumptions for the start-up conditions, including the 

computation of )(Liλ , the number of lags, and the initial values.  In particular, to compute 

the response coefficients, id
iia

a
iai LLLLL )1)(1()1(1)( 1

1
−−−−== −∞

=∑ φβλλ , we adopt 

the following infinite recursions given in Bollerslev and Mikkelsen (1996): 

∞=−−−+=

+−=

−− ,...,2,]/)1[(

,

11

1

bbdb

d

ibiiibiib

iiii

ζφλβλ

βφλ
    (24) 

where bdb iibib /)1(1 −−= −ζζ , with ii d=1ζ  

(The derivation is given in Appendix I).  
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It can be observed from (24) that since b goes to infinity, an appropriate finite truncation 

is required during estimation.  In our calibration, we have used 1000 and 2000 lags, 

respectively.  We find that the parameter estimates obtained by truncating at 1000 lags 

are reasonably close to those based on 2000 lags. To save the computational time, we 

truncate )(Liλ  after the first 1000 lags. 

 

As regards the choice of initial values, we set the presample observations 2
itε  to 

the unconditional sample variance for the FIGARCH(1,d,1) model.  However, this 

assumption is inappropriate for the other models, as the infinite ARCH representation 

affects )( itg ε .  For the multivariate FIAGARCH(1,d,1) model, we equate the presample 

observations of 2)()( iititg γεε −= to the sample mean of 2)ˆˆ( iit γε − , where iγ̂ is the 

estimate of iγ  based on the univariate FIAGARCH(1,d,1) model.  As for the multivariate 

FIAPARCH(1,d,1) model, the presample observations of ii
itiititg δδ εγεε )|(|)( −= are 

equated to the sample mean of i
itiit

δεγε ˆ)ˆˆ|ˆ(| − , where iγ̂ and iδ̂ are the estimates of iγ  

and iδ based on the univariate FIAPARCH(1,d,1) model. 

 

3. Data and Estimation Results 

 

The Tokyo Stock Exchange (TSE) was established in 15 May 1878, but its 

present form was founded in 1 April 1949. The TSE domestic stock market is divided 

into two sections - the First and Second Sections. In simple terms, the First Section is 

the market place for stocks of larger companies, and the Second Section is for those of 

smaller and newly listed companies. Relative to global stock exchanges, TSE has a 

market value of 232 trillion yen as of end March 2003, and an average daily trading 



14 

value of 739 billion yen in the fiscal year 2002.  This makes it one of the leading stock 

exchanges in the world in terms of both size and liquidity. Indeed, the TSE is a major 

international capital market with trading by non-Japanese investors accounting for nearly 

one-third of the value of its trading turnover during 2002.  

 

On 1 July 1969, the TSE introduced TOPIX (Tokyo Stock Price Index), a 

composite index of all the common stocks listed on the First Section of TSE, to provide a 

comprehensive measure of the market trend for investors who are interested in general 

market price movements. This composite index is supplemented by subindices for each 

of the 33 industry groups, which are categorized according to the industrial sectors 

defined by the Securities Identification Code Conference. These 33 subindices can be 

classed based on the following broad groups: Fishery, Agriculture, and Forestry; Mining; 

Construction; Manufacturing; Electric Power and Gas; Transport and Communications; 

Commerce; Finance and Insurance; Real Estate; and, Services.  

 

The sectors analyzed in this paper are tabulated as follows: 

TOPIX Sectoral Index Category 
Air Transportation (ATRN) Transport and Communication 
Electric Power and Gas (EPOW) Electric Power and Gas 
Precision Instruments (PREI) Manufacturing 
Other Products (OPRD) Manufacturing 
 

As the manufacturing category occupies approximately half the number of 

sectors in the TOPIX, we select two sectors from this category: precision instruments 

(PREI) and other products (OPRD). The next largest category is transportation and 

communication, from which we pick one sector, air transportation (ATRN).  The fourth 

sector is chosen from electric power and gas (EPOW).  Our data sets cover the sample 
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period from 4 January 1983 to 21 February 2003, thereby providing 5254 daily 

observations. These series are obtained from DataStream International.1 

 

[Insert Figures 1-2 and Table 1 here] 

 

Figure 1 presents the plots of the four sectoral series. The OPRD and the PREI 

series apparently move quite closely together, whereas the ATRN series exhibits a 

significant amount of fluctuation, with peaks occurring in the period from 1987-1990. In 

contrast, the EPOW series is relatively less volatile, and remains sluggish after 1990.  

Table 1 displays the descriptive statistics of the return series of all the sectors 

(calculated on a continuously compounding basis).2 For a standard normal distribution, 

the skewness and kurtosis take the values of 0 and 3, respectively. As can be observed 

from Table 1, all the return series have kurtosis higher than 3.  In addition, some of the 

data series exhibit significant serial correlations, as indicated by the Ljung-Box Q-

statistics (Ljung and Box (1978)). Also, the BDS test statistics (Brock, Dechert, and 

Scheinkman (1996)), which are calculated based on the correlation integral, indicate that 

the series are not independently and identically distributed. Furthermore, the highly 

significant ARCH (Engle (1982)) and QARCH (Sentana (1995)) Lagrange Multiplier (LM) 

test statistics consistently suggest the presence of conditional heteroscedasticity; as 

such, GARCH-type modeling might be required.   

 

                                                
1 We have also used our models on the rest of the sectoral indices, but the main findings that we 
highlight in this paper remain largely unchanged. In particular, we have evidence that asymmetric 
conditional volatility is either weak or absent in sectors such as Land Transportation, Insurance, 
Mining, Pulp & Paper, Real Estate, and Wholesale. Time-varying (pair-wise) correlations are also 
detected, and several sectors apparently share a common degree of fractional integration in 
volatility. The complete results are obtainable from the authors upon request. 
2 All the return series are stationary as indicated by the augmented Dickey-Fuller and Phillips-
Perron test statistics (which are not reported here due to space constraints). 
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To estimate the conditional mean, variance and correlation components of the 

proposed multivariate GARCH-type models simultaneously, we adopt Bollerslev and 

Wooldridge’s (1992) quasi maximum-likelihood estimation (QMLE) procedure, with all 

the programmes coded using Gauss Version 5.0.  The QMLE approach provides 

consistent estimators even when the disturbance term follows a thick-tailed distribution. 

For the mean equation, we find that the parsimonious AR(2) model is a reasonably 

adequate autoregressive filter, taking into account of the significance of individual 

parameters, the log-likelihood values and the residual diagnostics. To save space, we 

shall only report the estimates of the conditional variance and correlation equations from 

the following models: the VC-GARCH, the VC-AGARCH, the VC-APARCH, the VC-

FIGARCH, the VC-FIAGARCH, and the VC-FIAPARCH.  In addition, other than the 

correlation coefficients and the log-likelihood values, most of the parameter estimates 

from the constant-correlation models are omitted. The complete set of estimation results 

is available upon request.  

 

[Insert Tables 2-7 here] 

 

Tables 2 and 3 summarize the QMLE of the parameters of the tetravariate VC-

GARCH, VC-AGARCH, VC-APARCH, VC-FIGARCH, VC-FIAGARCH and VC-

FIAPARCH models for all the sectoral returns, respectively. Quite clearly, the estimated 

values of the coefficient of asymmetry (γ) vary considerably across the sectors, ranging 

from -0.0062 to 0.2924.  In particular, for the ATRN and EPOW indices, we do not find 

evidence of asymmetric volatility, and this is robust across different specifications, such 

as the VC-AGARCH, VC-APARCH, VC-FIAGARCH, and VC-FIAPARCH models.  For 

the OPRD index, there is some evidence of asymmetric volatility, especially based on 

the AGARCH specification.  As for the PREI index, we find significant evidence of 
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asymmetric effects across different models.  More specifically, as summarized in the 

second main column of Table 4, for the VC-APARCH (VC-FIAPARCH) and the VC-

AGARCH (VC-FIAGARCH) models, the estimated absolute values of the coefficient of 

asymmetry γ for PREI are 0.1666 (0.1554)  and 0.2924 (0.2528) respectively, and they 

are significant at the 5% level. In contrast, those estimated values for ATRN (EPOW) 

are: -0.1871 (-0.0516), -0.0586 (0.0062), -0.2295 (-0.1106), and -0.0620 (-0.0111) for 

the VC-AGARCH, VC-APARCH, VC-FIAGARCH, and VC-FIAPARCH models, 

respectively, and they are insignificant even at the 10% level.  Apparently the absence of 

leverage effects in some of the sectors indicates that the widely accepted leverage 

effects in the aggregate indices of the highly developed stock markets (such as TOPIX 

(Engle and Ng (1993)), S&P 500 (Ding, Granger, and Engle (1993)) and several other 

Asia-Pacific counterparts (see, for example, Tse and Tsui (1997)) are not invariably 

applicable to the sectors. We shall discuss in greater detail some implications of this 

finding in the conclusion. 

 

 The estimated values of the fractional differencing parameter d are reported in 

the first main column of Table 4.  As can be observed, all the estimates are statistically 

different from zero and one at the 5% significance level, regardless of the sectors and 

the models.  This implies that the impact of shocks on the conditional volatility of the 

sectoral returns consistently exhibits a hyperbolic rate of decay.  In addition, most of the 

estimates of d are quite similar in magnitude across different models for the same 

sector; and the sectors ATRN, OPRD, and EPOW seem to share a common degree of 

fractional integration in the conditional volatility process.  For example, the estimated 

values of d for sectors ATRN, OPRD, and EPOW are 0.3457 (0.3470), 0.3423 (0.3431), 

and 0.3224 (0.3021) in the FIGARCH (FIAGARCH) models, respectively.  Moreover, the 

likelihood ratio test statistics reported in Table 7 are all significant at the 5% level, 
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thereby indicating that the fractionally integrated models outperform those without the 

long memory structures.  

 

[Insert Figures 3-4 here] 

 

Figures 3-4 present the plots of the time path of conditional standard deviation for 

each sector based on the VC-FIAPARCH, VC-APARCH, VC-FIAGARCH, and the VC-

AGARCH models, respectively.  As can be observed from these plots, the non-FI 

models seem to under-estimate the magnitude of volatility, and this is more conspicuous 

during periods in which the conditional standard deviation is relatively high (such as in 

1987).  At the risk of oversimplification, the under-estimation of the risk premium of 

assets could be more acute in the non-FI models than the FI models. 

 

We now discuss the conditional correlation dynamics of the four sectors.  Under 

the null hypothesis that both π1 and π2 are zero, the likelihood ratio test statistic is 

asymptotically distributed as a chi-squared with 2 degrees of freedom.  As can be 

gleaned from Tables 2, 3, and 6, all the test statistics indicate that the null hypothesis of 

no time-varying conditional correlations is rejected. In addition, all the estimates of π1 

and π2 are individually significant at the 1% level, which further suggest that the 

conditional correlations are time-varying. Such findings are robust across different model 

specifications.  

 

Table 5 displays estimates of the (pair-wise) time-invariant component of the 

conditional-correlation equation from different VC-models. Quite obviously, these pair-

wise correlations are all positive and remarkably close, with those obtained from the VC-
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FIAPARCH model being slightly higher.  Additionally, the estimates of the time-invariant 

correlation between OPRD and PREI sectors are the highest (regardless of the VC 

models), probably because these sectors belong to the same industrial category and are 

therefore influenced by similar factors. In contrast, the pair-wise correlations of these two 

sectors with EPOW are relatively lower compared with other pair-wise correlations, but 

they are nonetheless positive.  The positive pair-wise correlations we have obtained for 

all the return series may imply that limited benefits are possible from diversification 

among the sectors. However, effective diversification among different sectors may still 

be feasible by changing the optimal portfolio weights in tandem with changes in the 

correlations over time.  

 

[Insert Figures 5-6 here] 

 

The VC-models allow us to keep track of the evolution of the pair-wise 

conditional correlations over time.  Figures 5-6 plot the time paths of the pair-wise 

correlations for two selected models: VC-FIAPARCH and VC-FIAGARCH. It can be seen 

that their patterns are largely similar. Specifically, during the period from 1989-1995, 

most of the conditional correlations experienced a gradual upward shift. After this, it is 

particularly evident that there is a drop in the level for the following pairs: ATRN-EPOW, 

EPOW-OPRD, and EPOW-PREI, respectively.  For the other pairs like ATRN-OPRD, 

ATRN-PREI, and OPRD-PREI, the magnitude of their correlations rebounded after 1999.  

In addition, there are episodes in which the pair-wise correlations of EPOW-PREI, 

ATRN-OPRD, and ATRN-PREI are quite low (and occasionally negative); these might 

be exploited when designing the optimal weights of a diversified portfolio over time. 

[Insert Table 8 here] 
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Finally, we perform some residual diagnostic tests to evaluate the adequacy of 

the proposed models. Due to space constraints, only the test statistics for the VC-

APARCH, VC-FIAPARCH, VC-AGARCH, and VC-FIAGARCH models are reported in 

Table 8.  As can be observed from the summary statistics in Panel A, the kurtosis 

coefficients of all standardized residuals across sectors and across models are lower 

than those reported in Table 1.  In addition, the Q-statistics, as shown in Panel B of 

Table 8, indicate no strong evidence of serial correlation in the standardized residuals.  

Moreover, the McLeod-Li test statistics suggest that the fractionally integrated (FI) 

models are more adequate compared with the non-FI models. This could be because 

the FI models are more capable of capturing long-range temporal dependencies in 

volatility.  The adequacy of the FI models is further corroborated by the BDS and the 

runs test statistics. In particular, most of the BDS test statistics tabulated in Panel E for 

the VC-FIAPARCH and VC-FIAGARCH models are insignificant at the 5% level.  In 

contrast, the BDS tests for the VC-AGARCH and the VC-APARCH models are still 

significant at the 5% level.3  

 
 
4. Conclusion 
 

 We have investigated the applicability of the stylized facts of volatility behaviour 

of aggregate indices to the sectoral indices. Two main classes of multivariate GARCH-

type models with time-varying correlations are proposed to analyze four sectors of the 

Japanese stock market.  These models can concurrently capture the stylized features of 

long-memory, asymmetric conditional volatility, and time-varying correlations commonly 

                                                
3 Strictly speaking, portmanteau test statistics, such as the Box-Pierce test, the Ljung-Box Q-
statistics, and the McLeod-Li test statistics, are not asymptotically distributed as chi-squared 
variables under the null hypothesis of no misspecification (see Ling and Li (1997)). Nonetheless, 
it has been suggested that the chi-squared distribution may still be used as an approximation 
(see, for instance, Bollerslev (1990) and Tse and Tsui (1999)). 
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associated with equity returns. Besides the possible gains in efficiency through the joint 

estimation of parameters, such a multivariate approach also has the advantage of 

providing us with the time-history of the conditional correlations between any two 

sectoral return series.  

 

In contrast to what is widely documented in the literature, we find strong evidence 

that asymmetric effects are not invariably present in the sectoral indices. Our result is 

robust across different models that incorporate asymmetric structures in the conditional 

volatility. This finding not only casts doubts on the well-established fact that equity 

returns exhibit the leverage effect, but also affects the strategies for option pricing and 

portfolio diversification.  More specifically, options based on sectoral indices may be 

wrongly priced if asymmetric effects are falsely assumed for those sectors without such 

features. Furthermore, in order to make optimal hedging decisions, market practitioners 

probably have to take into account the existence (or absence thereof) of asymmetric 

effects in the conditional volatility of different sectors. In addition, although constructing 

theoretical explanations as to why volatility is not entirely asymmetric across different 

sectors of the same market is beyond the scope of this paper, this does present a 

challenging topic for future research.   

  

We also find corroborating evidence that the conditional correlations between 

sectors are frequently highly positive and significantly time-varying.  Highly positive 

correlations may imply limited advantages from domestic diversification among sectors; 

however, effective diversification exploiting the time-varying nature of conditional 

correlations may still be possible by altering the portfolio weights of different sectors over 

time. 
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Lastly, we also detect strong evidence of volatility persistence and long memory 

in all the sectoral indices for different models.  Some sectors apparently have a common 

degree of fractional integration. We conjecture that this may provide some support of 

fractional co-integration in volatility, an issue which has not been widely studied in the 

literature to date (see Brunetti and Gilbert (2000) for an exception).  This topic is left for 

future research. 
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Appendix I 
 
In this appendix we obtain the response coefficients of the FIGARCH(1,d,1) model.  
Consider the fractional differencing operator dL)1( − , where L is the lag (backshift) 
operator, and ]1,0[∈d  is the fractional differencing parameter. The Maclaurin series 
expansion is applied to the fractional differencing operator as follows: 
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As noted in the text, the FIGARCH(1,d,1) model of Baillie, Bollerslev, and Mikkelsen 
(1996) can be expressed as an ARCH(∞) representation: 
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Substitute (A.1) into (A.3): 
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Redefine the fractional differencing operator in (A.1) as below: 
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The response coefficients )(Lλ in (A.4) can be calculated by the following recursions: 
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The response coefficients of the FIAPARCH(1,d,1) and FIAGARCH(1,d,1) models can 
be obtained in a similar fashion. 
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Table 1 Summary Statistics of the Returns of the TOPIX Sectoral Indices 
(4 January 1983 – 21 February 2003) 
Variable ATRN EPOW OPRD PREI 

Panel A: Moments, Maximum, Minimum  
 Mean 0.0004 0.0163 0.0105 0.0121 
 Median 0.0000 -0.0136 0.0000 0.0000 
 Maximum 12.3433 12.6845 8.4182 10.8793 
 Minimum -15.5253 -15.8122 -13.3764 -16.9355 
 Std. Dev. 1.7932 1.4598 1.2694 1.5034 
 Skewness 0.1404 0.6701 -0.2453 -0.1016 
 Kurtosis 8.8508 14.0606 9.7354 8.8749 
 Observations 5254 5254 5254 5254 

Panel B: Ljung-Box Q-statistic 
5 lags 7.1332 10.1723 28.3657 22.2856 
10 lags 11.4545 24.8193 34.4645 31.4357 

Panel C: McLeod-Li Test  
5 lags 454.9580 867.3978 458.8415 458.6054 
10 lags 507.4569 1070.3095 577.5608 522.4805 

Panel D: ARCH LM Test 
5 lags 342.2827 586.3227 300.9401 338.9370 
10 lags 352.7244 634.3523 320.2767 352.1614 

Panel E: QARCH LM Test 
1 lag 265.3754 518.8192 192.0298 300.8171 
4 lags 410.0523 766.5183 429.8772 494.1323 

Panel F: BDS Test 
e=1,l=3 18.0955 24.7634 15.7275 13.6280 
e=1,l=4 20.3098 28.5376 18.5109 15.8524 
e=1,l=5 22.6325 31.7168 21.0787 17.8060 
e=1.5,l=3 17.5865 23.5251 17.2398 13.6560 
e=1.5,l=4 18.7314 26.0731 19.5668 15.2663 
e=1.5,l=5 20.0159 27.9693 21.2810 16.4700 

Panel G: Runs Test 

R1 1.7060 -2.4347 -4.3558 -5.4276 
R2 -7.9305 -12.4141 -6.9193 -5.7632 
R3 -11.1357 -14.7822 -7.8492 -6.8424 

Notes: 
1. ATRN = Air Transportation, EPOW = Electric Power and Gas, OPRD = Other Products, PREI = 
Precision Instruments 
2. QARCH LM test statistic is due to Sentana (1995) and it is distributed as chi-squared with q(q+3)/2 
degrees of  freedom, where q is the number of lags. 
3. For the BDS Test, e represents the embedding dimension whereas l represents the distance 
between pairs of consecutive observations, measured as a multiple of the standard deviation of the series. 
Under the null hypothesis of independence, the test statistic is asymptotically distributed as standard normal. 
4. For the Runs Test, Ri for i = 1, 2, 3 denote the runs tests of the series Rt, |Rt|, and Rt

2 respectively. 
Under the null hypothesis that successive observations in the series are independent, the test statistic is 
asymptotically standard normal. 
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