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Abstract

In this paper we consider the optimal control problem of models
with Markov regime shifts and forward looking agents. These models
are general and flexible tools for modelling model uncertainty. An
algorithm is devised to compute the solution of a rational expectations
model with random parameters or regime shifts. A second algorithm
computes the time consistent policy and the resulting Nash Stackelberg
equilibrium. The latter algorithm can also handle the case in which
the policymaker and the private sector hold different beliefs. We apply
these methods to compute the optimal (nonlinear) monetary policy in
a small open economy subject to random structural breaks.

1 Introduction

Uncertainty is one of the considerable problems faced by economic policy-
makers. It surrounds observed data, unobserved expectations and potential
equilibria as well as both the structure and parameters of the economy. Even
if models are subject to quantifiable risk, this can have a substantial impact
on the formulation of optimal economic policies. A considerable amount of
recent research has been directed at countering these and various sources of
uncertainty.1

In this paper we focus on one such quantifiable risk, one in which the
economy is subject to regime shifts with the particular regime followed be-
ing determined by a Markov process. This set up can be thought of as

∗Earlier versions of this paper was presented at the Selected Economists’ Workshop,
Centre for Central Bank Studies, Bank of England, September 2004 and the Society for
Computational Economics Conference, Washington, D.C., May 2005. We are grateful to
conference participants and two referees for many useful comments.

1See, in a completely arbitrary but recent list, Kozicki (2004); Swanson (2004); Planas
and Rossi (2004).
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encompassing a number of possible representations of the world. It can be
viewed as a model with stochastic parameters or perhaps a model in which
agents learning is characterised as a jump process. This latter set up can
be particularly useful for models where bubble-like behaviour is observed.
A collapsed bubble is one where sufficient agents feel it is unsustainable.

The economic policy problem is pervasive in such a world. For any
model, particularly a stochastic one, we need to decide what form of policy
rule we should implement and together with rational, forward-looking agents
we need to consider the appropriate treatment of expectations in the optimal
policy problem. In this paper we adopt a game-theoretic framework for the
design of optimal policy. In particular we seek policies which are both time
consistent and subgame perfect, following Fershtman (1989): Policies need
to both be consistent and take into account the stochastic nature of the
problem. The time consistency restriction rules out policymakers adopting
policies which are ex ante likely to become sub optimal simply because time
passes, and are therefore unsustainable as a description of credible a policy.
Both considerations require us to consider solutions derived by dynamic
programming rather than Lagrange multipliers: We need a ‘rule’ for agents’
expectations, not a time path for future actions (Başar and Olsder, 1999).

This is particularly appropriate in our case. We adopt a recursive ap-
proach to optimal policy formulation with Markov-switching parameters.
Such an approach necessarily imposes time consistency via the principle of
optimality. If the model itself is subject to change, why should policymak-
ers actions be immune? We therefore rule out potentially time inconsistent
behaviour through our recursive formulation.

To do this we develop algorithms both for the solution of rational ex-
pectations models with probabalistically-driven regime changes and for the
optimal time-consistent subgame-perfect control of such models. The control
solution adopted in Zampolli (2005) is adapted to provide the best policy.2

We also show how these algorithms can be modified to allow the policy-
makers and private agents to hold different beliefs over the probability of
a regime shift. These methods are applied to a small open economy model
developed by e.g. Batini and Nelson (2000) and Leitemo and Söderström
(2004) to investigate structural changes in agent behaviour. These can both
be characterised as a form of learning. In Appendix A we develop the same
methods in a form consistent with Oudiz and Sachs (1985) rather than the
semi-structural form used in the main part of the paper (see Dennis and
Söderström (2002)).

Whilst our focus is on time consistency, it should be noted that the
rational expectations solution we develop could be used for any arbitrary

2In the engineering literature, Aoki (1967) studied the control of regime-shifting models.
These models are currently referred to in this literature as Markov Jump Linear Systems
(MJLS). For recent contributions, see Costa et al. (2005).
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policy rules, such as a Taylor rule, and the optimal time inconsistent policy
could be obtained using very similar methods. There are difficulties with
time inconsistent policy in this context however, as any change in policy must
be in response only to news about changes in regime rather than potential
welfare improvements from reneging. This means that the implications of
any inherited part of policy for a new regime could be extremely bad, and
policymakers would never want to carry them out even if the consequences
of a loss of reputation were severe. We focus on time consistency to remove
this possibility.

The paper is organised as follows. Section 2 provides the undermined
coefficient model solution to a rational expectation model with regime shifts.
This solution forms the basis for solving the optimal control problem which is
dealt with in Section 3. Section 4 describes the small open economy model
used in the application and the experiments being carried out. Section 5
describes how to simulate the model both under symmetric and asymmetric
beliefs. Section 6 presents the results of the application. Section 7 concludes.

2 Undetermined coefficient model solution with
regime shifts

We consider a linear rational expectations model in semi-structural form:

xt = A(st)xt−1 +B(st)E [xt+1|It] +C(st)εt (1)

where x is a vector of variables that can depend on lags and leads, A(st),
B(st) and C(st) are stochastic matrices which will depend on regime st ∈
{1, 2, ...N} and E [εt+1|It] = 0 is a vector of stochastic shocks with It the
information set at time t. The dominant regime will be determined by a
Markov process. This model is described as semi-structural as it distin-
guishes between leads and lags for each potential equation, although for
longer leads and lags the model would need to be augmented. By contrast
the state space form (Appendix A) requires classification of the variables by
type (jump or predetermined).

The model can be solved depending on agent’s expectations of future
policy regimes. Let the assumed reduced-form law of motion be:

xt = D(st)xt−1 + F (st)εt (2)

where D(·) and F (·) are matrices of undetermined coefficients and we have
solved out for expectations. For simplicity we assume that there are only
two states. The formulae are easily generalised to the N-state case (see
Appendix A, for example).
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To find the unknown coefficients, first solve for the expectation:

E [xt+1|It] = E [D(st+1)xt + F (st+1)εt+1|It]
= E [D(st+1)|It]xt +E [F (st+1)|It]E [εt+1|It]
= E [D(st+1)|It]xt
= (pi1D1 + pi2D2)xt

≡ D̄ixt

= D̄i (Dixt−1 + Fiεt)

= D̄iDixt−1 + D̄iFiεt

where i denotes the regime at time t, i.e. st = i. Now plugging the above
expression back into the model gives:

xt = Aixt−1 +Bi

¡
D̄iDixt−1 + D̄iFiεt

¢
+Ciεt

=
¡
Ai +BiD̄iDi

¢
xt−1 +

¡
BiD̄iFi +Ci

¢
εt. (3)

Given the assumed law of motion, xt = Dixt−1 + Fiεt, the undetermined
coefficients must satisfy the following conditions:

Di = Ai +BiD̄iDi (4)

Fi = BiD̄iFi +Ci (5)

for i = 1, ...N . The first set of equations are to be solved for the feedback
part of the solution, Di:

Di = Ai +BiD̄iDi

= Ai +Bi (pi1D1 + pi2D2)Di.

So, for i = 1:

D1 = A1 +B1 (p11D1 + p12D2)D1

= A1 +B1p11D
2
1 +B1p12D2D1

0 = B1p11D
2
1 + (B1p12D2 − I)D1 +A1

Likewise for i = 2. This yields a pair of coupled equations that need to be
solved simultaneously:

0 = B1p11D
2
1 + (B1p12D2 − I)D1 +A1 (6)

0 = B2p22D
2
2 + (B2p21D1 − I)D2 +A2. (7)

These equations can be solved iteratively, if a solution exists3 using an ap-
propriate solution method. Given a procedure for solving matrix quadratic
equations, we can solve the linked equations sequentially. The following is
a possible solution algorithm for the two-state case. It generalises easily for
the multi-state model.4

3There are few proofs about the existence of solutions to such problems. We consider
this to be a useful avenue for future research, as, in our experience, solution methods can
fail for interesting and plausible economic models.

4As with the control solutions below we have implemented the solutions in Matlabtm.
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Algorithm 1 Rational solution with Markov switching (two-state case).
For the model (1) assume a solution of the form (2).

1. Select initial values for D0 =
¡
D0
1, D

0
2

¢
.

2. Solve quadratic equations for given values of Dr, obtaining a new set
Dr+1:

Dr+1
1 = g(B1p11, B1p12D

r
2 − I, A1)

Dr+1
2 = g(B2p22, B2p21D

r
1 − I, A2)

where g(·) is a quadratic equation solver for (6) and (7). Similarly
solve F .

3. Check convergence: if
¯̄
Dr+1

¯̄
< ε or too many iterations stop; else

repeat 2.

There are some issues to consider. First, in the standard case the roots
of the single quadratic equation can be checked and it can be established
if there are determinate, indeterminate or no solutions. In our linked case
this is no longer possible. If a solution exists and can be found by this
procedure, we can check whether the solution is stable conditional on the
other Riccati solution(s). As mentioned above, issues of existence have not
been established in this class of model and time consistent policy problem.

Second, if the model incorporates the optimal policy rule, is this solution
stabilising and unique? In the linear-quadratic optimal control problem, it
is. What about in this non-standard case? Again, results do not currently
exist, but we have so far been able to find solutions using our suggested
algorithms.

Third, we can easily adapt this as a method for solving for an optimal
fixed parameter policy rule. Given that we have a rational expectations
solution we could simply impose a fixed parameter policy rule and optimise
over the coefficients to find the best Taylor-type rule, for example. Such
a policy would likely vary depending on the initial regime. A min-max
approach could yield a rule that was best given any initial regime.

In the next section we turn to the optimal control problem, which relies
on the reduced form solutions obtained here.

3 Optimal control

The rational solution algorithm presented above can be used as a basis for
solving the optimal control problem with regime shifts and forward looking
expectations. There are different equilibrium concepts one can use to come
up with a solution. Here the primary concern is to find a time-consistent
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solution. We proceed with a closed-loop (feedback) time-consistent approach
similar to Oudiz and Sachs (1985). In Appendix A we follow their state-space
approach. Here we develop solutions using the so-called semi-structural
form, following Dennis (2001).

Write the model (which represents the constraint of the optimal control
problem) as:

xt = A(st)xt−1 +B(st)ut−1 +D(st)Et [xt+1|st] +C(st)εt (8)

where A(st), B(st), C(st) and D(st) are random matrices depending on
the same Markov chain st, Et [xt+1|st] is the expectation conditional on the
information set available at time t which also include st. st is observable.

It is convenient to begin with the assumption that a control law exists:

ut = −F (st)xt
which is conveniently re-formulated as a function of the states and shocks.
To make sure the system parameters are always a function of the same
regime st (rather than e.g. (st, st−1)), and to get rid of the control (that is
why we are assuming that a control rule exists), it is convenient to use the
augmented model:·

I 0
F (st) I

¸·
xt
ut

¸
=

·
A(st) B(st)
0 0

¸·
xt−1
ut−1

¸
+

·
D(st) 0
0 0

¸
Et

··
xt+1
ut+1

¸
|st
¸

+

·
C(st)
0

¸
εt

or (after pre-multiplying with the inverse of the left hand matrix):

zt = A+(st)zt−1 +D+(st)Et [zt+1|st] +C+(st)εt

where the definitions are obvious. Now that the system is one without con-
trol variables (which are incorporated into z), we can then use the solution
method developed in the previous section to solve for the equilibrium law of
motion for z, and hence for the expectations. Assume an equilibrium law of
motion for z:

zt = Gizt−1 +Hiεt (9)

where Gi and Hi are undetermined, and st = i in an obvious notation.
Following the steps above, one can find Gi and Hi by solving the following
systems of inter-twined equations:

Gi = A+i +D+
i ḠiGi (10)

Hi = D+
i ḠiHi +C+i (11)

where i = 1, 2, ..., N and Ḡi =
PN

j=1 pijGj =
PN

j=1 p[st+1 = j|st = i]Gj.
(10) is a system ofN coupled quadratic equations inG = (G1, ...,GN). After

6



solving for the feedback part, the feedforward part can be easily solved as:
Hi = (I −D+

i Ḡi)
−1C+i .

What have we established? Subject to some feedback rule F , we have
computed the law of motion of the economy (9) which is now a backward
looking regime-switching VAR (where the regime is observable). Recalling
the definition of z, we can rewrite the law of motion of the economy in such
a way that the control actions are explicit:

xt = Gxx(st)xt−1 +Gxu(st)ut−1 +Hx(st)εt (12)

where Gxx, Gxu and Hx are matrices partitioned conformably. (12) can be
used as an input into the optimal control problem with regime shifts, for
which we have a solution algorithm. This takes Gxx, Gxu and the transition
probability matrix P as input and returns an updated feedback rule ut =
−F (st)xt. This is used to update the matrices A+, D+ and C+ and start a
new iteration of the algorithm.

So far we have characterised but not solved the control problem. This is
established in the next subsection, following Zampolli (2005).

3.1 The optimal control problem with regime shifts

The policymaker’s problem is to choose a decision rule for the control ut to
minimise the inter-temporal loss function:

∞X
t=0

βtr(xt, ut) (13)

where β ∈ (0, 1] is the discount factor and r is a quadratic form:

r(xt, ut) = x0tRxt + u0tQut (14)

with R a n × n positive definite matrix, Q a m ×m positive semi-definite
matrix. The optimisation is subject to x0, s0 and the model of the reduced-
form economy:

xt+1 = A(st+1)xt +B(st+1)ut + εt+1 t ≥ 0 (15)

x is the n-vector of state variables, u is them-vector of control variables and
ε is the n-vector of mean-zero shocks with variance-covariance matrix Σε.
The matrices A and B are stochastic and take on different values depending
on the regime or state of the world st ∈ {1, ...,N}. The regime st, which is
observable at t,5 is assumed to be a Markov chain with probability transition

5This means that the uncertainty faced by the policymaker is about where the system
will be at t+ 1, t+ 2, and so forth. Other assumptions about timing could be made, and
we discuss them further in Appendix A.
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matrix6

P = [pij ] i, j = 1, ..,N (16)

in which pij = prob {st+1 = j|st = i} is the probability of moving from state
i to state j at t + 1; and

PN
j=1 pij = 1, i = 1, ..., N . These probabilities

are assumed to be time-invariant and exogenous. The formulation (15) is
general enough to capture different types of jumps or extreme changes in
the economic system.

3.1.1 Solution

Solving the problemmeans finding a state-contingent decision rule, i.e. a rule
which tells how to set the control ut as a function of the current vector of
reduced-form state variables, xt, and the current regime st. Associated with
each current state of the world is a Bellman equation. Therefore, solving the
model requires jointly solving the following set of N inter-twined Bellman
equations:

v (xt, i) = max
ut

r (xt, ut) + β
NX
j=1

pijE
ε
t [v (xt+1, j)]

 i = 1, ..., N (17)

where v(xt, i) is the continuation value of the optimal dynamic programming
problem at t written as a function of the state variables xt as well as the
state of the world at t, st = i, Eε

t is the expectation operator with respect
to the martingale ε, conditioned on information available at t, such that
Eε
t [εt+1] = 0.
The policymaker has to find a sequence {ut}∞t=0 which maximises her

current payoff r(·) as well as the discounted sum of all future payoffs. The
latter is the expected continuation value of the dynamic programming prob-
lem and is obtained as the average of all possible continuation values at time
t+1 weighted by the transition probabilities (16). Given the infinite horizon
of the problem, the continuation values (conditioned on a particular regime)
have the same functional forms.

Given the linear-quadratic nature of the problem, let us further assume
that:

v(xt, i) = x0tVixt + di i = 1, ..,N (18)

where Vi is a n×n symmetric positive-semidefinite matrix, and di is a scalar.
Both are undetermined. To find them, we substitute (18) into the Bellman

6For an introduction to Markov chain and regime switching vector autoregressive mod-
els see e.g. Hamilton (1994).
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equations (17) (after using (14)) and compute the first-order conditions,
which give the following set of decision rules:

u(xt, i) = −Fixt i = 1, .., N (19)

where the set of Fi depend on the unknown matrices Vi, i = 1, .., N . By
substituting these decision rules back into the Bellman equations (17), and
equating the terms in the quadratic forms, we find a set of inter-related
Riccati equations, which can be solved for Vi, i = 1, ..,N by iterating jointly
on them, that is:

[V1 . . . VN ] = T ([V1 . . . VN ]) . (20)

This set of Riccati equations defines a contraction over V1, . . . , VN , the fixed
point of which, T (·), is the solution. After lengthy matrix algebra, the
resulting system of Riccati equations can be written in compact form as:

Vi = R+ βG
£
A0V A|s=i

¤
−β2G £A0V B|s=i¤ ¡Q+ βG

£
B0V B|s=i

¤¢−1
G
£
B0V A|s=i

¤
(21)

where i = 1, ..,N , and G(·) is a conditional operator defined as follows:

G
£
X0V Y |s=i

¤
=

NX
j=1

X 0
j (pijVj)Yj

where X ≡ A,B; Y ≡ A,B. Written in this form the Riccati equations
contain ‘averages’ of different ‘matrix composites’ conditional on a given
state i.

Having found the set of Vi which solves (21), the matrices Fi in the
closed-loop decision rules (19) are given by:

Fi = (Q+ βG
£
B0V B|s=i

¤
)−1βG

£
B0V A|s=i

¤
i = 1, ..,N (22)

Solving for the constant terms in the Bellman equations (17) after substitu-
tion of (19) gives (IN − βP )d = βPΓ. The vector of scalars d = [d]i=1,...,N
in the value functions (18) is given by:

d = (IN − βP )−1 βPΓ (23)

where Γ = [tr (ViΣε)]i=1,...,N .
7

7The transition law (15) can be generalised to make the variance of the noise statistics
vary across states of the world, i.e.

xt+1 = A (st+1)xt +B (st+1)ut + C(st+1)εt+1

Assuming Eε (εtε
0
t) = I, then the covariance matrix of the white-noise additive shocks

would be Σ (st) = C (st)C (st)
0 or, to simplify notation, Σi = CiC

0
i (i = 1, .., N). As we

note elsewher, the introduction of a state-contingent variance for the noise process does
not affect the decision rules but does affect the value function.
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The decision rules (19) depend on the uncertainty about which state of
the world will prevail in the future, as reflected in the transition probabilities
(16). Yet, the response coefficients (i.e. the entries in Fi) do not depend on
the variance-covariance matrix Σε of the zero-mean shock ε in (15). Thus,
with respect to ε, certainty equivalence holds in that the policy rules (19)
are identical to the ones obtained by assuming that within each regime the
system behaves in a completely deterministic fashion. The noise statistics,
as is clear from (23), affect the objective function.

It is interesting to note that the above solutions incorporate the standard
linear regulator solutions as two special cases. First, by setting the transition
matrix P = IN (i.e.N-dimensional identity matrix), one obtains the solution
of N separate linear regulator problems, each corresponding to a different
regime on the assumption that each regime will last forever (and no switching
to other regimes occurs). This case could be useful as a benchmark to
see how the uncertainty about moving from one regime to another impacts
on the state-contingent rule. In other words, by setting P = IN , we are
computing a set of rules which will differ from ones computed with P 6= IN ,
in that the latter will be affected by the chance of switching to another
regime. Second, by choosing identical matrices (i.e. Ai = A, Bi = B),
the solution obtained is trivially that of a standard linear regulator problem
with a time-invariant law of transition.8

3.2 Complete solution

For greater clarity, the algorithm is given in steps below. It consists of two
main blocks: one solve the REH model with regime shifts given a feedback
rule, thereby putting it into backward looking form; the other solves the op-
timal control problem given the backward looking form. By iterating back
and forth on these two distinct blocks the algorithm converges to a solution
if one exists, perhaps with the use of some damping. The gist of the algo-
rithm is thus to make expectation formation and optimisation consistent,
through repeated iteration. It can be compared with the solutions given in
Appendix A.

8In this case (22) reduces to:

F =
¡
Q+ βB0V B

¢−1
βB0V A

where V is the solution to the single Riccati equation:

V = R+ βA0V A− β2A0V B
¡
Q+ βB0V B

¢−1
B0V A

and (23) is the constant:

d =
β

1− β
tr (V Σε) .

See e.g. Ljungqvist and Sargent (2000, pp. 56-58).
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Algorithm 2 We want to compute the optimal control of the following
economy:

xt = A (st)xt−1 +B (st)ut−1 +D (st)E [xt+1|It] +C (st) εt.

The algorithm is implemented in Matlabtm and uses intrinsic functions
(called RSSOLVE and ISRE). The algorithm consists of the following steps:

1. Assume an initial control law:

ut = −F (st)xt.

2. Form the augmented system (the goal here is to get rid of the control
and make sure that the stochastic matrices depend only on st, not on
(st, st−1)):·

Inx 0nx,nu
F (st) Inu

¸·
xt
ut

¸
=

·
A (st) B (st)
0 0

¸·
xt−1
ut−1

¸
+

·
D (st) 0
0 0

¸
E

·
xt+1
ut+1

|It
¸
+

·
C (st)
0

¸
εt.

Premultiply by
·

Inx 0nx,nu
−F (st) Inu

¸
(the inverse of the left hand matrix

above) to get:

zt = A+ (st) zt−1 +D+ (st)E [zt+1|It] +C+ (st) εt

where zt = [xt ut]
0.

3. The augmented system can be solved by RRSOLVE, yielding the equi-
librium law of motion:

zt = G (st) zt−1 +H (st) εt

or: ·
xt
ut

¸
=

·
Gxx (st) Gxu (st)
Gux (st) Guu (st)

¸·
xt−1
ut−1

¸
+

·
Hx (st)
Hu (st)

¸
εt

The bottom part gives the policy rule as a function of the past states
and controls.

4. The upper part is used as an input into the optimal control toolbox:

xt = Gxx (st)xt−1 +Gxu (st)ut−1 +Hx (st) εt
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5. The optimal control obtained from ISRE is:

ut = −F (st)xt
6. Having obtained this, the next step is to check for convergence:°°°F (st)− F (st)

(0)
°°° < ε

If there is convergence (or too many iterations) terminate, otherwise
go to the next step.

7. Select the control law to use in the subsequent iteration:

F (st)
(1) = γF (st) + (1− γ)F (st)

(0)

where γ ∈ (0, 1] is appropriately chosen. A combination is necessary
to prevent the law of motion to move too further away from the stable
one, which ensures convergence.

We conclude this section with a number of remarks. First, this algorithm
has unknown numerical properties, as with the Oudiz and Sachs (1985)
method. This is a fixed point algorithm, modified to allow for a relaxation
parameter γ. This substantially improves convergence properties in some
cases.

Second, it is possible that the algorithm could be made both faster and
more stable by iterating on the first order conditions rather than solving
the optimal control problem as in Oudiz and Sachs (1985). We outline this
in Appendix A. Our approach has the considerable expositional advantage
that the two ‘blocks’ of the solution procedure are distinct. We have also
found that sufficient damping has so far proved a reliable method for finding
the fixed point. Indeed, it is not known if the Oudiz and Sachs (1985)
procedure is at all reliable (and it can certainly be very slow) even without
the modifications we propose. In practice both methods might be usefully
implemented in case one fails.

Third, the algorithm solves for the time-consistent Nash-Stackelberg
equilibrium. See Appendix A for a different Nash approach and Dennis
(2001) for a similar one. The intrinsic difference is that the algorithm allows
the policymaker to take into account the contemporaneous actions of agents
in determining the optimal policy. In Appendix A, where we make a dis-
tinction between jump and predetermined variables, this can be modelled
explicitly as part of the first order conditions. Here, as all variables are
modelled the same, the reactions of agents are treated no differently to any
predetermined behaviour.

Finally, an interesting extension to the algorithm of Section 1 is to intro-
duce stochastic re-optimisation by the policymaker (as in Roberds (1987)):
for example, if one can reformulate the problem in such a way that the
Lagrange multiplier is reset to zero stochastically, then one could solve the
problem using such algorithm.
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4 Application

In our application we look at how optimal policy is affected if the structure of
the economy might change in some specific way, and investigate probabilities
that key parameters change. We outline our model here, and then the control
and simulation experiments later.9

4.1 A small open-economy model

We apply the methods discussed above to an open economy model. Ours
model embeds those of Batini and Nelson (2000) and Leitemo and Söder-
ström (2004) and enables us to discuss stochastic changes in parameters.
The model is in the tradition of New Keynesian policy models. It consists
of the following equations:

1. IS curve The now-standard intertemporal IS curve is used:

yt = φ [(1− θ)Etyt+1 + θyt−1]− σ (Rt −Etπt+1) + δqt−1 + vt

2. Phillips Curve A forward-looking Phillips curve with inertia:

πt = απt−1 + (1− α)Etπt+1 + φyyt−1 + φqqt−1 − φqqt−2 + ut

3. Uncovered interest parity Nominal exchange rate equation:

s̄t = Êtst+1 −Rt − kt − zt

4. Definition of q Real exchange rate definition:

qt − qt−1 = st − st−1 − πt

5. Expectations of s

Êts̄t+1 = ψEts̄t+1 + (1− ψ) sat+1,t

where the operator E indicates rational expectations.

9The algorithms above are developed with the intent to provide new insights in the
area of optimal monetary policy. As suggested by some authors, monetary policy may
optimally react differently if the model changes, say in a pre-bubble and a post bubble
regime. It would also be affected by the uncertainty that a bubble is not a rational bubble
but reflects expectation of a higher earnings or productivity regime, and so on. One
immediate application would be to compute the optimal policy which would be regime
contingent in the model, perhaps to study how monetary policy should react to asset
prices. Another potential interesting application is the study of how asymmetric risk
about future earnings affects households’ debt and saving decisions.
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6. Adaptive expectations

sat+1,t = ξsat,t−1 + (1− ξ) st

7. IS shock

vt = ρvvt−1 + evt

8. Phillips curve shock

ut = ρuut−1 + eut

9. Risk premium/non-UIP factors

kt = ρkkt−1 + ekt

In addition there are a number of definitional equations we need for our
model form, which are the definition of q̄ as well as qt−1 and qt−2. We add
two new variables Rt−1 and Rt−2, necessary to add a smoothing target to
the cost function, i.e. (Rt −Rt−1)2. We give further details in Appendix B.

4.2 Experiments

In this paper we conduct the following experiments. We assume that there
is a structural break in some key parameters, e.g. α. We assume there is
some probability P of a permanent shift up or down. We then plot selected
response coefficients as a function of P .

In the graphs we plot a mixture of experiments. Firstly, we assume in a
two-state model that there is a probability p that there will be a change in
the coefficient, and a probability q that once it has changed regime it will
switch back. The Markov matrix is given by:

P =

·
1− p p
q 1− q

¸
.

In the first set of experiments we assume that q = 0, that is once a switch has
occurred there is no switch back. On the same graphs we plot a three-state
problem using the Markov matrix:

P =

 1− p 1
2p

1
2p

q 1− q 0
q 0 1− q


where there is equal likelihood of two changes–which we choose to be up
or down by the same amount–so we can get a handle on the certainty
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Figure 1: Effect of changes in α

equivalence of the results. This is the red (usually central) line on the
graphs.

We begin by assuming that all changes are expected to be permanent
(q = 0). In Figure 1 we show the effect of a change in α from the central
case of 0.8. An anticipated fall requires a more aggressive response to the
output gap for example, but only past some critical point. In Figure 2 we
show the same effect on σ. A similar pattern emerges, but with no marked
switching effect on the real exchange rate and output coefficients. Figure 3
illustrates an almost perfect certainty equivalence result for changes to the
exchange rate pass through coefficient, as the red line is near horizontal.

However if we consider changes to φy a different picture emerges (Figure
4). Here complicated tradeoffs between coefficients occur. This seems par-
ticularly true of the coefficients on the real exchange rate and the inflation
rate. In Figure 5 changes to ϕ have small and predictable effects.

As φy seems an important parameter we plot this for different assump-
tions about q. Figure 6 refers to the case q =0.5, and Figure 7 refers to
q =0.25. The pattern of trade-offs in coefficients seems to be preserved.
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Figure 2: Effect of changes in σ
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Figure 3: Effect of changes in φq
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Figure 4: Effect of a change in φy
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Figure 5: Effect of changes in ϕ
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Figure 6: Effect of changes in φy, q = 0.5
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5 Simulating the model under symmetric and asym-
metric beliefs

The above indicates how we calculate optimal policies. It has built into it
assumptions about agent and policymaker perceptions about each other’s
behaviour. Consider the following. Our control algorithm solves a fixed
point problem, which can be succinctly represented as follows:

1. The policy maker (cb) computes policy u as a function of the proba-
bility P and the private sector’s (ps) expectations Eps, that is:

ucb = u(P, Eps).

2. In turn, the private sector forms expectations Eps as a function of the
probability P and the policy rule ucb, that is:

Eps = E (P, ucb) .

3. Hence, ucb = u (P,Eps) = u (P,E (P, ucb)). The algorithm solves for
the fixed point ucb. It is assumed that P is the true probability gov-
erning the transition across regimes.

These expectations are determined by the various agent’s perceived val-
ues for P . All, some or none of these beliefs may be accurate. We can
simulate the model under a variety of assumptions about perceived values
for P .

5.1 A number of cases

Policy and expectations can be set under different assumptions than above.
Assumptions regarding what each agent believes or knows about the world,
the transition probabilities and the other agent’s decision problem. There
are a number of cases that we consider, which are not exhaustive.

The first case we consider is one in which all agents share the same beliefs
about the probability matrix P (as well as everything else) but such beliefs
may be wrong. Let us indicate these beliefs with P̂ . The problem can now
be characterised by the pair of decision rules:

ucb = u(P̂ , Eps)

Eps = E(P̂ , ucb)

The problem is solved as before: ucb = u(P̂ , Eps) = u
³
P̂ , E (P, ucb)

´
with

the difference being the different probability matrix P̂ . Once ucb and Eps

have been found, they can be substituted out from the true model, obtain-
ing a reduced form. This reduced form is the same as obtained under P̂ .
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However, it needs to be simulated under the true (but unknown to agents)
value of P . One can compare responses under P̂ and P to gauge the possi-
ble errors involved in selecting P̂ 6= P . If P is genuinely unknown, one can
compute the losses corresponding to the probability pairing

³
P̂ , P

´
, where

P̂ are the probabilities chosen by agents and P is the realisation of the
true probability. The losses can inform the selection of as ‘optimal’ P̂ that
minimises risk. For example, it can be selected using a min-max criterion
or some other criterion. Operationally this requires that the policymaker
is believed by all other agents in their assessment of the probability, so the
policymaker can influence expectations through this channel. In this circum-
stance the policymaker seeks to modify expectations to its advantage, that
of increased robustness. This can be seen as a way of manipulating agents
that is akin to time inconsistency, but in effect as long as beliefs about the
true probability never change then agents are never fooled and there is no
incentive to renege.

The second case is one in which the private sector correctly perceives
P and perfectly knows the policy rule adopted by the policymaker. The
policymaker, on the other hand, has beliefs P̂ , which in general differ from
the true P , and also believes that the public shares those beliefs and hence
forms expectations according to E

³
P̂ , ucb

´
, i.e.:

ucb = u
³
P̂ , E

³
P̂ , ucb

´´
.

As the public correctly perceives P and the beliefs of the policymaker:

Eps = E (P, ucb) = E
³
P, u

³
P̂ , E

³
P̂ , ucb

´´´
.

To find the equilibrium solution, one needs to find the fixed point in ucb =

u
³
P̂ , E

³
P̂ , ucb

´´
, which is done using the standard algorithm. Then ucb

is substituted out from the true model. The solution algorithm for forward
looking models with regime shifts will contextually compute the expectations
Eps = E(P, ucb) based on the true P as well as the policy ucb computed in
the previous step.

A third case is one in which the policymaker and the private sector do
not share the same beliefs but perfectly understand each other’s beliefs and
decisions. Namely:

ucb = u(P̂ , Eps)

Eps = E(P̄ , ucb)

where in general P̂ 6= P̄ . Both P̂ and P̄ may also be different from the true
P . The standard algorithm needs to be modified to allow computation of this
case. If an equilibrium exists, we can designate it the ‘known disagreement’
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equilibrium. A special case of this is a variation of case two illustrated above:
the policymaker chooses policy ucb = u

³
P̂ , Eps

´
knowing that the public

has knowledge of the true probability matrix P , i.e. Eps = E (P, ucb).
A fourth case is one in which a disagreement is unknown to both players:

ucb = u
³
P̂ , E

³
P̂ , ucb

´´
Eps = E

¡
P̄ , u

¡
P̄ , Eps

¢¢
.

The standard algorithm can be run twice to solve for ucb and for Eps sepa-
rately. Then, ucb and Eps need to be substituted out from the true model
to find the reduced form associated with this case.

There are, of course, many other cases which can be considered. Each
agent may form beliefs not only about the true model but also about the
other agent’s beliefs about the true model, beliefs about his own beliefs,
beliefs about his own beliefs over the other beliefs, and so on ad infinitum.
This problem of infinite regress is not dealt with here. It is also clear that
there could be considerable value to private information, as in Morris and
Shin (2002). We do not further consider the strategic advantages that may
accrue here.

5.2 Learning

When simulating the model under the previous cases we implicitly assume
that agents do not learn through time. This is clearly not realistic but
there are two ways of defending the approach. First, the simulations help us
inform about the choice of P , and therefore we are actually learning from
them. Second, we could extend the algorithm to allow for passive learning.
In other words, agents updates their probabilities using (for example) a
Bayesian scheme in every period, but they make decision assuming that
these probabilities will not change in the future. This is in some ways
realistic: not all agents are so rational as to anticipate the way they will
learn in the future, i.e. know the law of motion of the probabilities. In
this case of passive learning, Bayesian techniques can be used to update
the probabilities period by period, and the above algorithm can be used to
compute the policymaker’s instrument choice as well as the private sector’s
expectations of future variables. A more sophisticated algorithm may record
the evolution of the probabilities and estimate a law of motion for them.
Thus the policymaker will need to solve a more sophisticated control problem
in which he has to allow for future variation in the probabilities.

6 Simulation results

We plot a variety of responses in the following graphs.
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Figure 8: α goes from 0.8 to 0.6 with p = 0.5

• Case 1: both agents incorporate uncertainty as well as each other
reactions.

• Case 2: only the central bank factors in uncertainty while the private
sector does not and assumes regime 1 persists forever.

• Case 3: the central bank has a certainty equivalent rule, which is
understood by the public, but the public factors in the probability of
a regime shift

In each of the graphs the blue line is the ‘certainty equivalent’ policy, so
that p = 0.

We concentrate on a break in α, as before possibly falling from 0.8 to
0.6. In Figure 8 we show a supply shock of unity and the assumption that
p = 0.5. Here the responses of the output gap, inflation, the real exchange
rate and interest rates are shown for each of the scenarios above. In Figure
9 we show the interest rate responses for this and other shocks. In Figure
10 we repeat the analysis for p = 0.25. It is clear that the perceptions of
the various players can matter a great deal.

Now consider Figure 11. This simulation assumes break in α jumping
down to 0.6 from 0.8. There is an initial negative inflationary shock and then
the break in α occurs in period 3 (with probability 50% we would expect
the breaks to concentrate mostly in period 2 and 3). You can see that not
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Figure 10: α goes from 0.8 to 0.6 with q = 0.25
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Figure 11: Negative inflation shock, break to α in period 3, p = 0.5

taking into account uncertainty produces a somewhat ‘bumpier’ economy.
Note that when the break occurs, in all cases the policymaker can observe the
break and switches to the same policy rule. However, because the system is
at that point in a different state following the different policies, the responses
follow different paths from that point onwards, though all converging in the
long run towards equilibrium. In Figure 12 we reduce the probability to
0.25. What does this imply? Policy should be loosened less in response to
a negative shock but should then return more gradually to neutral stance.

7 Conclusions

In this paper we have investigated optimal time-consistent monetary policy
when the model is subject to regime shifts driven by Markov processes. We
have barely scratched the surface of the control and simulation experiments
that can be carried out. We in general find that policies are more cautious
with this form of uncertainty. Recall that we are considering time consistent
policies. If the monetary authorities are unable to affect expectations at all
it may be that they would do almost nothing.

We have tried out a number of possible simulation scenarios. As the
main source of uncertainty here is the Markov process and not the model
(we know all the alternative models or parameterisations) and indeed how
likely we are to switch between them. It is an interesting problem to extend
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Figure 12: Negative inflation shock, break to α in period 3, p = 0.25

this model to where we are uncertain about the Markov process and model
the learning over that rather than behavioural parameters directly.
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A State space solutions

In this Appendix we detail an alternative method for the calculation of ex-
plicitly time consistent policies. In the next section we consider the rational
expectations solution, perhaps conditional on a given policy rule. We then
consider the dynamic programming solution as a generalisation of the Oudiz
and Sachs (1985) procedure. As the problem is certainty equivalent we only
discuss the deterministic case.

A.1 A generalised rational expectations solution

Define a rational expectations model in state space as:·
zt+1

E [xt+1|It]
¸
=

·
Ai
11 Ai

12

Ai
21 Ai

22

¸·
zt
xt

¸
. (24)

We seek a solution of the form:

xt = −N izt (25)

where we recognise that there may be a change in regime of some sort. For
two possible regimes this means thatE [xt+1|It] = −(pi1N1+pi2N2)E [zt+1|It]
for a model in ‘state i’ or, more generally, for l possible regimes:

E [xt+1|It] = −
 lX

j=1

pijN
j

E [zt+1|It] (26)

for the ith regime. Using this in the model (24) gives:

−
 lX

j=1

pijN
j

 ¡Ai
11zt +Ai

12xt
¢
= Ai

21zt +Ai
22xt (27)

implying:

−
 lX

j=1

pijN
j

Ai
12 +Ai

22

xt

=

 lX
j=1

pijN
j

Ai
11 +Ai

21

 zt (28)

or:

xt = −
³
Ñ iAi

12 +Ai
22

´−1 ³
Ñ iAi

11 +Ai
21

´
zt

= −N izt.
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where Ñ i =
Pl

j=1 pijN
j . We can develop an iteration based on this as:

Ñ1
k+1 =

lX
i=1

p1iN
i
k+1

N1
k =

³
Ñ1
k+1A

1
12 +A122

´−1 ³
Ñ1
k+1A

1
11 +A121

´
Ñ2
k+1 =

lX
i=1

p2iN
i
k+1

N2
k =

³
Ñ2
k+1A

2
12 +A222

´−1 ³
Ñ2
k+1A

2
11 +A221

´
...

Ñ l
k+1 =

lX
i=1

pliN
i
k+1

N l
k =

³
Ñ l
k+1A

l
12 +Al

22

´−1 ³
Ñ l
k+1A

l
11 +Al

21

´
which continues until convergence. Thus in equilibrium for the ith regime
we get:

−
 lX

j=1

pijN
j

 ¡Ai
11 −Ai

12N
i
¢
=
¡
Ai
21 −Ai

22N
i
¢

(29)

as the solution to the ith linked Riccati-type equation.10

A number of remarks should be made. First, in common with Oudiz
and Sachs (1985) we assume that

³
Ñ i
k+1A

i
12 +Ai

22

´
is non-singular. This is

almost always the case in our experience. Secondly, if the model is instead:·
Ei
11 Ei

12

Ei
21 Ei

22

¸·
zt+1

E [xt+1|It]
¸
=

·
Ai
11 Ai

12

Ai
21 Ai

22

¸·
zt
xt

¸
(30)

we can develop an equivalent iteration assuming that Ei
11 and Ai

22 are non-
singular. Indeed, the semi-structural form model can be written:·

I 0
0 Bi

¸·
xt

E [xt+1|It]
¸
=

·
0 I
−Ai I

¸·
xt−1
xt

¸
(31)

which conforms to those restrictions. Finally, if the regimes are all the same
then the solution reduces down to:

−N (A11 −A12N) = (A21 −A22N) (32)

which could be solved using the method of Blanchard and Kahn (1980) or
iteratively as above.
10See Blake (2004) for a discussion of the types of Riccati equations used in rational

expectations solutions.
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A.2 Control

Let the control model in state space be:·
zt+1

E [xt+1|It]
¸
=

·
Ai
11 Ai

12

Ai
21 Ai

22

¸·
zt
xt

¸
+

·
Bi
1

Bi
2

¸
ut. (33)

We can apply the solutions of the previous section to yield:

xt = −
³
Ñ iAi

12 +Ai
22

´−1 ³
Ñ iAi

11 +Ai
21

´
zt

−
³
Ñ iAi

12 +Ai
22

´−1 ³
Ñ iBi

1 +Bi
2

´
ut

= −J izt −Kiut. (34)

For a given feedback rule, say ut = −F izt, then:

xt = −(J i −KiF i)zt

= −N izt. (35)

Now consider the discounted quadratic objective function:

Ct =
1

2

∞X
t=0

βt
¡
z0tQzt + u0tRut

¢
. (36)

More generally we would consider a cost function of the form:

Ct = s0tQ̃st + 2u
0
tŨst + u0tR̃ut (37)

where st =
·
zt
xt

¸
and we assign costs to the jump variables and covariances.

We use (36) to reduce the amount of algebra without changing the essential
message. Algebra for the complete cost case is available on request. (36)
is minimised subject to (33) and a time consistency restriction. We next
sketch a solution in the standard case and then for the Markov switching
case.

A.2.1 Standard time consistent policies

The ‘standard’ Oudiz and Sachs (1985) dynamic programming solution is
obtained from the following. Write the value function as:

Vt =
1

2
z0tStzt = minut

1

2

¡
z0tQzt + u0tRut

¢
+

β

2
z0t+1St+1zt+1. (38)

Note that the first line of the model is:

zt+1 = A11zt +A12xt +B1ut (39)
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which we substitute in as the constraint. We can obtain the following deriv-
atives:

∂Vt
∂ut

= R̃ut + βB01St+1zt+1 (40)

∂Vt
∂xt

= βA012St+1zt+1 (41)

∂xt
∂ut

= −K (42)

with the last obtained from (34), our time consistency restriction. This
reflects intra-period leadership with respect to private agents, so can be
seen as reflecting Stackelberg behaviour. Using (34) we can also write (39)
as:

zt+1 = (A11 −A12J)zt + (B1 −A12K)ut. (43)

We can use (40)—(42) and (43) to obtain the first order condition:

∂Vt
∂ut

+
∂Vt
∂xt

∂xt
∂ut

=
¡
R+ β(B01 −K0A012)St+1(B1 −A12K)

¢
ut

+β(B01 −K0A012)St+1(A11 −A12J)zt

= 0

⇒ ut = −β ¡R+ β(B01 −K0A012)St+1(B1 −A12K)
¢−1

× ¡(B01 −K0A012)St+1(A11 −A12J)
¢
zt

= −FSzt (44)

with the subscript emphasising the Stackelberg equilibrium. The value func-
tion can be written:

z0tStzt = z0t
¡
Q+ F 0SRFS + β(A011 − J 0A012 − F 0S(B

0
1 −K0A012))

×St+1(A11 −A12J − (B1 −A12K)FS)) zt

implying:

St = Q+F 0SRFS+β(A011−N 0A012−F 0SB01)St+1(A11−A12N−B1FS) (45)
where N = J −KFS.

Note we could assume that ∂xt/∂ut = 0, the Nash assumption, and
instead obtain:

∂Vt
∂ut

=
¡
R+ βB01St+1(B1 −A12K)

¢
ut

+βB01St+1(A11 −A12J)zt = 0

⇒ ut = −β ¡R+ βB01St+1(B1 −A12K)
¢−1

× ¡B01St+1(A11 −A12J)
¢
zt

= −FNzt (46)
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with associated Riccati equation:

St = Q+F 0NRFN +β(A011−N 0A012−F 0NB
0
1)St+1(A11−A12N −B1FN)

with N = J−KFN now. This gives us a second time consistent equilibrium
to investigate.

A.2.2 Markov switching models

We now turn to the case with random matrices. We modify the value func-
tion for the ith regime to:

V i
t = minut

1

2

¡
z0tQzt + u0tRut

¢
+ βEtV̂

i
t+1 (47)

where we need to make some assumption about V̂ i
t+1. In common with what

went before we will weight the forward value function by the probability
that it comes to pass. However, the information set assumed will determine
the exact form.

In either case the required modification is very simple, and it is easy
to see that one possibility is to replace the last term with the probability
weighted values of the alternative future value functions to give:

1

2
z0tS

i
tzt = minut

1

2

¡
z0tQzt + u0tRut

¢
+

β

2
zi0t+1S̃

i
t+1z

i
t+1. (48)

where:

zit+1 = (A
i
11 −Ai

12J
i)zt + (B

i
1 −Ai

12K
i)ut

and X̃i =
Pl

j=1 pijX
j for any X, the same as the weight scheme we had

before for the expectations generating mechanism. In so doing we are as-
suming that the policymaker identifies the regime that they currently face
but is uncertain about any future one. If uncertainty extended to the current
regime, then the optimisation problem would be:

1

2
z0tS

i
tzt = minut

1

2

¡
z0tQzt + u0tRut

¢
+

β

2
z̃0t+1S̃

i
t+1z̃t+1 (49)

where:

z̃t+1 = (Ã
i
11 − Ãi

12J̃)zt + (B̃
i
1 − Ãi

12K̃)ut

as policymakers would only know the previous policy regime, i, and the
transition probabilities from that regime and so must ‘average’ the models
to give the anticipated state.

What do all other agents expect? The equilibrium policy is one where
agents expectations of the future policy is consistent with the assumed prob-
abilities. Thus the value of (35) calculated to determine expectations is (in
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equilibrium) consistent with the policy actually followed, although we can
modify this by having differing perceived probabilities across the policy-
maker and other agents. In fact, it is only across probabilities that we allow
agents to differ in what they expect. Note that when this happens there
is no intrinsic time inconsistency, as we discuss above, but rather this may
lead to an inferior (or possibly superior) outcome. One of the advantages to
the semi-structural form of the main text is that this is much more easily
seen due to the fixed point nature of the solution.

Given expectations we need to determine that policy. For the first, Stack-
elberg, case, the first order condition then yields:

∂V i
t

∂ut
+

∂V i
t

∂xt

∂xt
∂ut

=
³
R+ β(Bi0

1 −Ki0Ai0
12)S̃

i
t+1(B

i
1 −Ai

12K
i)
´
ut

+β(Bi0
1 −Ki0Ai0

12)S̃
i
t+1(A

i
11 −Ai

12J
i)zt = 0

⇒ ut = −β
³
R+ β(Bi0

1 −Ki0Ai0
12)S̃

i
t+1(B

i
1 −Ai

12K
i)
´−1

×
³
(Bi0

1 −Ki0Ai0
12)S̃

i
t+1(A

i
11 −Ai

12J
i)
´
zt

= −F i
Szt.

Substituting into the value function we have the following Ricatti-type equa-
tion for regime i:

Si
t = Q+F i0

SRF
i
S +β(Ai0

11−N i0Ai0
12−F i0

SB
i0
1 )S̃

i
t+1(A

i
11−Ai

12N
i−Bi

1F
i
S)

where N i = J i −KiF i
S.

In the second case, we get the Stackelberg solution:

∂V i
t

∂ut
+

∂V i
t

∂xt

∂xt
∂ut

=
³
R+ β(B̃i0

1 −Ki0Ãi0
12)S̃

i
t+1(B̃

i
1 − Ãi

12K
i)
´
ut

+β(B̃i0
1 −Ki0Ãi0

12)S̃
i
t+1(Ã

i
11 − Ãi

12J
i)zt = 0

⇒ ut = −β
³
R+ β(B̃i0

1 −Ki0Ãi0
12)S̃

i
t+1(B̃

i
1 − Ãi

12K
i)
´−1

×
³
(B̃i0

1 −Ki0Ãi0
12)S̃

i
t+1(Ã

i
11 − Ãi

12J
i)
´
zt

= −F i
Szt

with:

Si
t = Q+F i0

SRF
i
S+β(Ai0

11−N i0Ai0
12−F i0

SB
i0
1 )S̃

i
t+1(A

i
11−Ai

12N
i−Bi

1F
i
S).

There is an open question as to which solution should be used. The
Stackelberg case is almost always used (our semi-structural form admits no
other). However, it implies a degree of leadership over the private sector,
which we could interpret as commitment. This may be appropriate for some
policymakers, but may be questionable for the monetary authority. It is an
empirical question as to wheter there is value to such commitments.
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A.3 Iterative schemes

Consider the Stackelberg equilibrium with current state information for
every participant. A possible solution scheme is shown in Table 1. We
can develop Nash solutions by deleting the relevant part of the policy rules.
The resulting modified algorithm in Table 2.

The ‘no current information for the policymaker’ solutions involve prob-
ability averaging the matrices A11, A12 and B1 in the recursions for F and
S. The resulting algorithms are given in Tables 3 and 4. Note that this
involves different data sets for agents and policymakers, emphasised by the
lack of the tilde’s over the system matrices in the equations determining J
and K.

We need to note the termination rules that we should observe. In the
tables we merely terminate when the period count reaches 0. We would
normally terminate iteration before this if the matrices have converged to
a steady state. In general, without the stochastic matrices, we would stop
when abs(max(Nt+1−Nt)) < and abs(max(St+1−St)) < for some small
. This does not work for the stochastic matrix case, as the future values are
always probability weighted, so we need to store N and S between iterations
separately.
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Table 1: FBS

Si
T = S̄, N i

T = N̄ , for i = 1, ..., l.
for t = T − 1, 0
for i = 1, l

Ñ i
t+1 =

Pl
j=1pijN

j
t+1

S̃i
t+1 =

Pl
j=1pijS

j
t+1

J i =
³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1A

i
11 +Ai

21

´
Ki =

³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1B

i
1 +Bi

2

´
F i
S = β

³
R+ β(Bi0

1 −Ki0Ai0
12)S̃

i
t+1(B

i
1 −Ai

12K
i)
´−1

×
³
(Bi0

1 −Ki0Ai0
12)S̃

i
t+1(A

i
11 −Ai

12J
i)
´

N i
t = J i −KiF i

S

Si
t = Q+ F i0

SRF
i
S + β(Ai0

11 −N i0
t A

i0
12 − F i0

SB
i0
1 )

×S̃i
t+1(A

i
11 −Ai

12N
i
t −Bi

1F
i
S)

endfor
endfor
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Table 2: FBN

Si
T = S̄, N i

T = N̄ , for i = 1, ..., l.
for t = T − 1, 0
for i = 1, l

Ñ i
t+1 =

Pl
j=1pijN

j
t+1

S̃i
t+1 =

Pl
j=1pijS

j
t+1

J i =
³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1A

i
11 +Ai

21

´
Ki =

³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1B

i
1 +Bi

2

´
F i
N = β

³
R+ βBi0

1 S̃
i
t+1(B

i
1 −Ai

12K
i)
´−1

Bi0
1 S̃

i
t+1(A

i
11 −Ai

12J
i)

N i
t = J i −KiF i

N

Si
t = Q+ F i0

NRF
i
N + β(Ai0

11 −N i0
t A

i0
12 − F i0

NB
i0
1 )

×S̃i
t+1(A

i
11 −Ai

12N
i
t −Bi

1F
i
N)

endfor
endfor
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Table 3: FBS, policy information lag

Si
T = S̄, N i

T = N̄ , Ãi
11 =

Pl
j=1 pijA

j
11, Ã

i
12 =

Pl
j=1 pijA

j
12

and B̃i
1 =

Pl
j=1 pijB

j
1 for i = 1, ..., l.

for t = T − 1, 0
for i = 1, l

Ñ i
t+1 =

Pl
j=1pijN

j
t+1

S̃i
t+1 =

Pl
j=1pijS

j
t+1

J i =
³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1A

i
11 +Ai

21

´
Ki =

³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1B

i
1 +Bi

2

´
F i
S = β

³
R+ β(B̃i0

1 −Ki0Ãi0
12)S̃

i
t+1(B̃

i
1 − Ãi

12K
i)
´−1

×
³
(B̃i0

1 −Ki0Ãi0
12)S̃

i
t+1(Ã

i
11 − Ãi

12J
i)
´

N i
t = J i −KiF i

S

Si
t = Q+ F i0

SRF
i
S + β(Ãi0

11 −N i0
t Ã

i0
12 − F i0

S B̃
i0
1 )

×S̃i
t+1(Ã

i
11 − Ãi

12N
i
t − B̃i

1F
i
S)

endfor
endfor
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Table 4: FBN, policy information lag

Si
T = S̄, N i

T = N̄ , Ãi
11 =

Pl
j=1 pijA

j
11, Ã

i
12 =

Pl
j=1 pijA

j
12 and B̃i

1 =Pl
j=1 pijB

j
1 for i = 1, ..., l.

for t = T − 1, 0
for i = 1, l

Ñ i
t+1 =

Pl
j=1pijN

j
t+1

S̃i
t+1 =

Pl
j=1pijS

j
t+1

J i =
³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1A

i
11 +Ai

21

´
Ki =

³
Ñ i
t+1A

i
12 +Ai

22

´−1 ³
Ñ i
t+1B

i
1 +Bi

2

´
F i
S = β

³
R+ βB̃i0

1 S̃
i
t+1(B̃

i
1 − Ãi

12K
i)
´−1

B̃i0
1 S̃

i
t+1(Ã

i
11 − Ãi

12J
i)

N i
t = J i −KiF i

S

Si
t = Q+ F i0

SRF
i
S + β(Ãi0

11 −N i0
t Ã

i0
12 − F i0

S B̃
i0
1 )

×S̃i
t+1(Ã

i
11 − Ãi

12N
i
t − B̃i

1F
i
S)

endfor
endfor
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B Model in semi-structural form

The model can be written:

Hxt = Axt−1 +But−1 +DEt[xt+1|It] +Cεt

where the x, u and ε vectors are defined as:
xt

1 yt
2 πt
3 s̄t
4 qt
5 Êts̄t+1 or Êtst+1
6 sat+1,t
7 vt
8 ut
9 kt
10 q̄t
11 q̄t−1
12 qt−1
13 qt−2
14 Rt−1
15 Rt−2
16 c
17 zt
18 bt
19 st

ut

1 Rt

εt

1 evt
2 eut
3 ekt
4 ezt

The parameters, similar to Batini and Nelson (2000) and Leitemo and Söder-
ström (2004), were set as φ = 0.9, θ = 0.7, σ = 0.2, δ = 0.05, α = 0.8,
φy = 0.1, φq = 0.025, ψ = 1 (full rationality unless stated otherwise; in ex-
amining learning we set the updating parameter to ξ = 0.1), ρv = 0, ρu = 0
and ρk = 0.753 consistent with a small open economy. The shock variances
were set as σv = 1%, σu = 0.5%, and σk = 0.92%.

Finally, the policymaker’s preferences were set (in the main case) to be
β = 1, λy = 1, λπ = 2 and λ∆R = 0.1.

B.1 Loss function

Period function:

x0tRxt + u0tQut + 2x
0
tWut
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R =


λy 0 0 · · · 0
0 λπ 0 · · · 0
0 0 0 · · · 0
...

...
...
. . .

...
0 0 0 · · · 0

 ,
Q = [λ∆R] ,

W =


0
...
0

−λ∆R

0


This implies that 2x0tWut = 2 (−Rt−1λ∆R)Rt = −2λ∆RRtRt−1.
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