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Abstract

Endogenous mark-ups have been a matter of interest in macroe-
conomics, especially from the middle 1990’s onwards. However, the
complexity of this class of models, does not allow general qualitative
conclusions in most cases, and there is plenty of room for investi-
gation, especially in the reasons driving the emergence of multiple
equilibria and non-saddle-point dynamics. In this article we extend a
simple dynamic general equilibrium model to include the possibility
of strategic interaction between producers in each industry, and entry
affects the level of macroeconomic efficiency through an endogenous
mark-up. We demonstrate multiple equilibria is a likely outcome even
in an exogenous labour-supply framework. A pair of equilibria ex-
ists (a stable and an unstable one) and they are connected through
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a heteroclinic orbit. When we allow labour supply to vary, a third
equilibrium may emerge if the government is present in the economy,
and local indeterminacy may exist.

Key words: Endogenous mark-ups; Multiple equilibria; Local dynam-
ics; Global dynamics.
JEL classification: C6; D4; D5; E3; L1.

1 Introduction

Endogenous mark-ups have been a matter of interest in macroeconomics,
especially from the middle 1990’s onwards. Despite the fact we can find
older references to endogenous mark-ups in macroeconomics, especially in
Dunlop (1938) critique to Keynes’ counter-cyclical real wage due to demand
shocks, the generalised interest was established with the seminal works of
Rotemberg and Woodford (1991) and Rotemberg and Woodford (1995).

More recently, Goodfriend and King (1997) and Clarida et al. (1999)
brought a special type of endogenous mark-up - due to nominal rigidity - to
the centre of the policy analysis in what is now called the New Neoclassi-
cal/Keynesian Sinthesis.

However, sticky prices are not the only source of endogenous mark-ups,
and they may not be the most important one. Furthermore, the interaction
between sources of mark-up variation and with other real rigidities may play
an important role in explaining the business-cycle phenomena. For a survey
of the literature refer to Rotemberg and Woodford (1999).

The dynamic features of several types of endogenous-mark-up models
have been studied in Gaĺı (1994a), Gaĺı (1994b) Gaĺı (1995) and Rotemberg
and Woodford (1995), amongst others. However, the complexity of this class
of models, does not allow general qualitative conclusions in most cases, and
there is plenty of room for investigation, especially in the reasons driving the
emergence of multiple equilibria and non-saddle-point dynamics. Global-
dynamics behaviour is also an open field for research.

One type of endogenous-mark-up model has produced several works,
but usually rely on a discrete-time overlapping-generations framework: the
variable-entry Cournotian class of models. Examples of this type of frame-
work can be found in Chatterjee et al. (1993), D’Aspremont et al. (1995), or
Kaas and Madden (2005).
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On the other hand, the empirical literature has shown there is strong
evidence of a mildly counter-cyclical mark-up - see, inter alia, Martins et al.
(1996). This pattern is consistent with a Cournotian model of the mark-up
with frequent demand shocks and relatively rare supply shocks. Additionally,
the business creation/destruction pattern observed in reality is also consistent
with this type of models.

Thus, applying this type of models to replicate the business-cycle features
of real economies seem promising, but it has produced very few works, e.g.
Portier (1995) for the French economy and Jaimovich (2004) for the U.S.
However, the technology used (log-linearisation, calibration, etc.) assumes
the equilibrium exists, it is unique, and it is saddle-point stable, as in the
Real Business Cycles literature.

In this article we extend a simple dynamic general equilibrium model
to include the possibility of strategic interaction between producers in each
industry, and entry affects the level of macroeconomic efficiency through an
endogenous mark-up. We demonstrate multiple equilibria is a likely outcome
even in an exogenous labour-supply framework. A pair of equilibria exists (a
stable and an unstable one) and they may be linked through a heteroclinic
trajectory. When we allow labour supply to vary, a third equilibrium may
emerge if the government is present in the economy, and local indeterminacy
may exist.

In section 2 we extend the Ramsey model to allow for an endogenous
mark-up. The existence of equilibria, and their local and global stability
features are studied. In section 3 we allow for an elastic labour supply.
Section 4 concludes.

2 A Ramsey model with endogenous mark-

ups

2.1 Households

We assume there is a single infinitely living household, total population is
constant and has been normalised to unity. Thus, quantity variables mays
be interpreted as per capita values. Exogenous population growth does not
change the main message of the model.

3



The household is assumed to maximise an intertemporal utility function
in the absence of uncertainty:

max
C(t)

U =

∫ ∞

0

e−ρ.t.u [C (t)] .dt (1)

where ρ > 0 represents the rate of time preference and C stands for con-
sumption. For sake of simplicity the felicity function is logarithmic:

u [C (t)] = ln [C (t)] (2)

Notice we assume a unit elasticity of intertemporal substitution in consump-
tion, however using a different constant-elasticity function does not change
the main results.

The household sells human and physical capital services (L) to firms
obtaining labour and non-labour income in exchange. The final good can be
used either for consumption or for capital accumulation. The price of the
final good P is normalised to unity, i.e. the final good is used as numéraire.
Therefore, the instantaneous budget constraint is given by

K̇ (t) = w (t) .L (t) + R (t) .K (t) + Π (t)− C (t)− T (t)− δ.K (t) (3)

where K represents the capital stock, w is the wage rate, R stands for the
rental price of capital, Π represents real pure profits, T is a lump-sum tax
levied on households, and 0 < δ < 1 stands for a constant depreciation rate.

Optimal consumption and labour supply paths can be obtained max-
imising a current-value Hamiltonian, and the first-order conditions can be
expressed by the following behavoural equations:

Ċ (t)

C (t)
= r (t)− ρ (4)

L (t) = L (5)

lim
t→∞

e−ρ.t.
K (t)

C (t)
= 0 (6)

where the real interest rate as r = R − δ. Notice that the labour supply is
always equal to the maximum amount of labour available to the household,
as it does not generate disutility.
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2.2 Government

We assume government can choose its level of real consumption. Since Ri-
cardian equivalence holds here, we can ignore government borrowing without
lost of generality. Therefore, government follows a balanced-budget rule over
time:

T (t) = G (t) (7)

2.3 The final-good sector

The final good, Y , is produced in a competitive retail sector using a CES
technology that transforms a continuum of intermediate goods, with mass
equal to unity, into a final homogeneous good. The technology exhibits
constant returns to specialisation:

Y (t) =

[∫ 1

0

yj (t)
σ−1

σ .dj

] σ
σ−1

(8)

where σ > 0 represents the elasticity of substitution between inputs and yj

stands for intermediate consumption of variety j ∈ [0, 1].
The maximisation problem can be solved in two steps: (i) determining

demand functions for each input that minimises total cost for a given level
of final output; (ii) determining the optimal level of output for the repre-
sentative firm. The first step gives us the following intratemporal demand
function for each input:

yj (t) =

[
pj (t)

P (t)

]−σ

.Y (t) (9)

where pj stands for the price of good j and P is the appropriate cost-of-
producing index form this firm given by

P (t) =

[∫ 1

0

pj (t)1−σ .dj

] 1
1−σ

(10)

The cost function can be written as P (t) .Y (t). Therefore, the second
step in the maximisation program equals the price of the final good to its
marginal cost:
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1 = P (t) . (11)

2.4 The intermediate goods sector

Industry j (J) is composed of mj ≥ 1 producers1, each facing the following
technology:

yi (t) = max {F [Ki (t) , A (t) .Li (t)]− 1.Φ, 0} (12)

where yi represents the output of firm i, A (t) > 0 stands for labour efficiency,
Ki and Li represent its capital and labour inputs, F (.) is homogeneous of
degree one (HoDO), and Φ > 0 induces increasing returns to scale.

Using the terminology in D’Aspremont et al. (1997), we assume Cournotian
Monopolistic Competition (CMC), i.e. firms compete over quantities within
the same industry, and they compete over prices across industries. Therefore,
each firm faces the following demand for its variety:

yi (t) +
∑

k 6=i∈J

yk (t) =

[
pj (t)

P (t)

]−σ

.D (t) (13)

where D = C + I + G represents total demand for the final good in the
economy, and I stands for gross investment defined as

I (t) = K̇ (t) + δ.K (t) (14)

The representative firm maximises its real profits given by

max
Li(t),Ki(t)

Πi (t) =
pj (t)

P (t)
.yi (t)−

w (t)

P (t)
.Li (t)−

R (t)

P (t)
.Ki (t) (15)

pj (t) =

[
yj (t)

D (t)

]−σ

.P (t)

yi (t) + Φ = F [Ki (t) , A (t) .Li (t)]

yj (t) = yi (t) +
∑

k 6=i∈J

yk (t)

1Of course this number is an integer. However, we will treat it as a real number, for
simplicity. We can think about it as the average number of firms in each industry.
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Notice this is a static problem, as the firm does not accumulate capital.
The first-order conditions are given by

[1− µi (t)] .FL,i (t) =
w (t)

pj (t)
(16)

[1− µi (t)] .FK,i (t) =
R (t)

pj (t)
(17)

where µi = (pj −MCi)/pj ∈ (0, 1) is the Lerner index for firm i, MCi =
w/FL,i = R/FK,i represents the marginal cost of production, and

FL,i (t) =
∂F

∂Li

[Ki (t) , Li (t) , A (t)]

FK,i (t) =
∂F

∂Ki

[Ki (t) , A (t) .Li (t)]

stand for marginal products.

2.5 From micro to macro

Let us now assume an intra-industrial symmetric exists for all industries. In
this case, we have µi = µj = 1/ (σ.mj). Notice that for an equilibrium to exist
we must have σ.mj > 1. Considering F (·) is HoDO, its partial derivatives
are homogeneous of degree zero. Thus, we can rewrite equations (16) and
(17) to represent the entire industry2:

(1− µj) .FL (Kj, Lj, A) =
w

pj

(18)

(1− µj) .FK (Kj, A.Lj) =
R

pj

(19)

where Lj =
∑

i∈J Li = mj.Li and Kj =
∑

i∈J Ki = mj.Ki represent
labour and capital demand in industry j. Furthermore, we can use Euler ’s
theorem and the above-mentioned equations to obtain total profits in the
industry:

Πj =
pj

P
. [µj.F (Kj, A.Lj)−mj.Φ] (20)

2For simplicity with drop the time indices from this point onwards.
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If all industries are identical, i.e. if there is an inter-industrial symmetric
equilibrium, we have mj = m (consequently µj = µ), and pj = P .

If the final output market is in equilibrium we have Y (t) = D (t). Fur-
thermore, market demand for inputs can be written as

(1− µ) .FL (K, L, A) =
w

P
(21)

(1− µ) .FK (K, A.L) =
R

P
(22)

where L =
∫ 1

0
Lj.dj = Lj and K =

∫ 1

0
Kj.dj = Kj represent total labour

and capital demand. the market-clearing condition for the labour market is
given by L = L. Therefore, using the properties of F (·) we can derive an
aggregate production function for final output given by

Y = F
(
K,A.L

)
−m.Φ (23)

2.6 Entry

Profit income is obtained by aggregating industries’ profits, i.e. Π =
∫ 1

0
Πj.dj =

Πj = Y −w.L−R.K. Considering the equilibrium factor prices and the ag-
gregate production function, total profits can be expressed as

Π = {F (K, A.L)− [FK (K, A.L) .K + FA.L (K,A.L) .A.L]}+

+µ. [FK (K, A.L) .K + FA.L (K, A.L) .A.L]−m.Φ

where FA.L = FL/A. Since F (·) is HoDO, we can use Euler ’s theorem
to simplify the previous expression. The theorem implies that F = FK .K +
FA.L. (A.L). Thus, total profits are given by

Π = µ.F (K, A.L)−m.Φ (24)

Assuming instantaneous free entry, the number of firms in each industry
adjusts in order to keep pure profits equal to zero. Taking into account that
m = 1/ (σ.µ), we obtain the rule governing the endogenous mark-up:

µ =

√
Φ

σ.F
(
K,A.L

) (25)
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Since µ cannot be larger than 1, there is a minimal level of capital K
such that F (K, A.L) = Φ

σ
. Therefore, we have the feasibility condition given

by K > K.
If we substitute this result in the aggregate production function, we obtain

a reduced-form aggregate production function that depends on inputs and
an efficiency index that is decreasing with the mark-up

Y = (1− µ) .F
(
K, A.L

)
. (26)

Had we considered the number of firms per industry was fixed (e.g.
m (t) = 1 as is the monopolistic competition case) and the mass of indus-
tries was given by n (t), free entry would mean that n = F

(
K, A.L

)
/ (σ.Φ).

Thus, equation (26) would be given by Y = (1− 1/σ) .F
(
K, A.L

)
. It is easy

to see, that free-entry monopolistic competition model without externalities
is formally equivalent to a Walrasian Ramsey model with a less efficient pro-
duction function. In that case, all the main properties of the Ramsey model
are kept: unique equilibrium, saddle-point stability, and the two fundamental
theorems of welfare economics would hold.

From now on, we assume that F (.) is a Cobb-Douglas production function
given by

Y = Ki (t)
α . [A (t) .Li (t)]

1−α

with 0 < α < 1. One can easily notice the results in the previous subsec-
tions do not depend on the Cobb-Douglas technology, but hold for all linear
homogeneous production functions.

2.7 General equilibrium

Let us now study the existence and uniqueness of general equilibrium in this
economy.

Definition 1 General equilibrium: it is a flow of consumption, capital stock,
and mark-up such that: (i) households and firms optimise; (ii) all markets
clear.

Using the equations previously derived, we can represent the general equi-
librium using a system on [C (t) , K (t)] such that

Ċ =
[
(1− µ) .FK

(
K, A.L

)
− (ρ + δ)

]
.C, t ∈ R+ (27)
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K̇ = (1− µ) .F
(
K, A.L

)
− C −G− δ.K, t ∈ R+ (28)

lim
t→∞

e−ρ.t.
K

C
= 0 (29)

K (0) = K0, given (30)

The steady state is thus defined by the values (C∗, K∗, µ∗) ∈ R2
+× (0, 1),

which may be determined by equations (27) to (30) when Ċ = K̇ = 0.

Assumption 2 Assume that 0 ≤ G ≤ G0(K) with

G0(K) ≤ (1− µ) .F
(
K, A.L

)
− δ.K (31)

This assumption means government consumption cannot be so high that it
takes the net output. Equivalently, household consumption should always be
non-negative.

Proposition 3 Let assumption 2 hold. Then there is at least one steady
state if and only if the following condition holds

η ≤ η0 = A.L.B (β) .%−
2
β (32)

where

η ≡ Φ

σ
> 0, % ≡ ρ + δ > 0, β ≡ 2.

1− α

α
> 0

B (β) ≡

[
2

(2 + β) . (1 + β)1+β

] 2
β

.β2 > 0

Proof. It is straightforward to see that aggregate consumption is ob-
tained by the aggregate budget constraint, i.e. C∗ = C (µ, K, .) is deter-
mined uniquely by equation (28) with K̇ = 0. Thus, the first condition
is easily identified as the necessary condition for C∗ ≥ 0, i.e. government
consumption cannot be larger than net output given by the solutions to the
system.
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Now, if we substitute the FK (.) function in (27) (with Ċ = 0) and use
(25) to obtain the capital stock as a decreasing function of the mark-up, we
obtain a steady-state equilibrium function stating that r∗ = %, for C∗ > 0:

f1 (µ) ≡ Q1. (1− µ) .µβ − 1 = 0 (33)

where

Q1 =
α

%
.

(
A.L

η

)β
2

> 0

This function has no closed-form solution, but it can easily be studied, as
we know that f1 (0) = f1 (1) = −1 and there is a unique stationarity point
given by

f ′1 (µ) = 0 ⇔ µ =
2. (1− α)

2. (1− α) + α
∈ (0, 1)

Notice this value to the steady-state mark-up level corresponds to a maxi-
mum of f1 (.), as f1 (µ) > −1. However, we cannot guarantee that f1 (µ) > 0,
therefore equilibria may not exist for specific values of the parameters. The
position of f1 (.) is governed by the value of Q1 that depends negatively on
η, % and

(
A.L

)
.3 Furthermore, µ depends negatively on α and it goes to zero

(one) when the capital share in income tends to one (zero). Using figure 1
and varying the value of η, we notice an equilibrium exists if there is at least
one solution for equation (33):

Thus, if the value of Q1, is not large enough a solution exists. Further-
more, we know that if f1 (µ) = 0 there is only one equilibrium in this model
(a bifurcation). Thus the combination of values that guarantee the existence
of at least one equilibrium is given by

α

%
.

(
A.L

η

)β
2

(1− µ) .µβ − 1 ≥ 0

and solving it in order to η the condition obtained is η ≤ η0.
One interpretation for the existence condition η ≤ η0 is that the level of

”standardised” barriers to entry (the fixed cost divided by the elasticity of
substitution) cannot be too large or else, there would not be an incentive for
any firm to stay in these industries.

3The sign of the derivative with respect to α cannot be determined unambiguously.
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Figure 1: Equilibrium in the model with exogenous labour supply

Proposition 4 Multiple equilibria: a single equilibrium exists for η = η0

and exactly a pair of equilibria exists for η < η0.

Proof. The equilibrium function f1 (.) (continuous and twice-differentiable)
is strictly increasing in the range µ ∈ (0, µ) and it is strictly decreasing in
the range µ ∈ (µ, 1) as it can be expressed in the following form

f ′1 (µ) = Q1.µ
1+β. (1 + β) . (µ− µ)

The existence of the single solution for η = η0 was demonstrated in the
previous proposition. With a single-peaked function, for η < η0 there is
a maximum of two fixed points for function f1 (.), one to the left of µ -
µ∗(1) ∈ (0, µ) - and one to its right µ∗(2) ∈ (µ, 1).

The choice of η as an important parameter was not a matter of chance.
Notice it is closely linked to the degree of imperfect competition as it increases
with the fixed cost and it decreases with the elasticity of demand directed to
each variety. Now, if we fix the values of α, A and L, standard parameters
in the Walrasian Ramsey model, η = η0 gives us a separation curve in the
(η, %) space, represented in figure 2:
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Figure 2: Existence and multiplicity of equilibria in the Cournotian Ramsey
model

Along the schedule depicted there a unique equilibrium in the model. In
the NE area no equilibrium exists in the model, and in the SW area two
equilibria exist, provided the government consumption condition holds.

Proposition 5 The difference µ∗(2) − µ∗(1) ≥ 0 decreases with the value of η,

for η < η(0).

Proof. The effect of η on an equilibrium value for the mark-up can be
assessed using the parametric derivative ∂µ∗/∂η. Let us now divide function
f1 (.) into two monotonic branches with the same functional form:

f1 (µ, η) =

{
f1(1)

(µ, η) ⇐ µ∗ ∈ (0, µ)

f1(2)
(µ, η) ⇐ µ∗ ∈ [µ, 1)

we can unambiguously express each of the two equilibria using f1(s)

(
µ∗(s), η

)
=

0, for s = 1, 2. Thus, the above-mentioned derivative can be obtained using
the implicit-function theorem:

∂µ∗(s)
∂η

= −
∂f1(s)

∂η

∂f1(s)

∂µ∗
(s)

(
µ∗(s), η

)
= −1

2
.
µ.
(
1− µ∗(s)

)
.µ∗(s)

η.
(
µ∗(s) − µ

)
13



Since we knowµ∗(1) < µ and µ∗(2) > µ, we know that ∂µ∗(1)/∂η > 0 and

∂µ∗(2)/∂η < 0. Therefore, ∂
[
µ∗(2) − µ∗(1)

]
/∂η < 0 as long as η < η0.

It is clearly depicted in figure 1, as the f1 (.) function moves up when we
decrease the value of η, i.e. when the fixed cost decreases or the elasticity of
demand increases. When η approaches zero, we end up with µ∗(1) very close to
zero, the Walrasian case, and µ∗(2) very close to one, a degenerate monopoly
in each industry. The latter cannot be ruled out for a very large elasticity
of demand, σ → ∞, as long as Φ > 0 (even if it is very small), because a
Walrasian equilibrium cannot subsist with increasing returns to scale.

2.8 Local dynamics

To study the dynamics of the system, we log-linearise it about a steady-state
equilibrium. The log-linearised system can express it as ·

Ĉ
·

K̂

 = J1.

(
Ĉ

K̂

)
(34)

where Ĥ = dH/H∗ represents the proportional deviation of variable H from

its steady-state value and
·

Ĥ =
·

H/H∗. The Jacobian matrix evaluated at a
steady-state equilibrium, J1, is given by

J1 =

(
0 %.(2−α)

2.(1−µ∗)
. (µ∗ − µ)

−%.s∗C
α

ρ + %.µ∗

2.(1−µ∗)

)

where s∗C = C∗/Y ∗ is the steady-state consumption share in domestic
expenditure.

Proposition 6 Stability and bifurcations: (a) if the equilibrium is unique it
is a fold bifurcation. (b) If there is a pair of equilibria, then µ∗(1) is saddle-

point stable and µ∗(2) is totally unstable (a source).

Proof. It is easy to see the trace is always positive and given by

Tr (J1) = ρ +
%.µ∗

2. (1− µ∗)
> ρ > 0
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and the determinant

det (J1) =
%2.s∗C . (1 + β)

2. (1− µ∗)
. (µ∗ − µ) < Tr (J1)

Thus, the determinant is positive for µ∗ > µ, and it is negative otherwise.
Therefore, for the real part of the eigenvalues evaluated at the steady-state
equilibria we have two positive values for the equilibrium with a high mark-
up level (µ∗(2) > µ), and one positive and one negative value for smaller

equilibrium value of the mark-up (µ∗(1) < µ).
Thus, we may have 1 or 2 equilibria, if the existence condition holds, one

of these is saddle-point stable (we will call it a ’saddle’) and the other one
is totally unstable (we will call it a ’source’). Consequently, for µ∗ = µ we
have a fold bifurcation.

Proposition 7 Real eigenvalues: both eigenvalues are real, irrespective to
the steady state they are associated with.

Proof. The discriminant of the characteristic polynomial given by det (J1 − λ.I) =
0 is given by [Tr (J1) /2]2 − det (J1). It is always positive for the ’saddle,’
as the determinant is negative in that case. Thus, no complex eigenvalues
appear for the low mark-up equilibrium.

For the source equilibrium let us consider the alternative expression for
the trace and the determinant:

det (J1) = s∗C .
%

α
.x (µ∗) , where x (µ∗) =

dR

dµ
(µ∗) .K (µ∗) =

%. (2− α)

2. (1− µ∗)
. (µ∗ − µ) ;

Tr (J1) =
x (µ∗)

α
+
( %

α
− δ
)

, where
%

α
− δ =

C∗ + G∗

K∗ > 0.

It is easy to notice this is a second-degree polynomial in x. Since x (.) is
continuous and differentiable in µ∗ ∈ (0, 1), and we know the discriminant
shows at least one positive value (for the low-mark-up equilibrium), we need
to analyse if there is any value of x that turns the discriminant equal to zero.
The solution for the quadratic equation is given by

x0 = α.

{
−C∗ + G∗

K∗ + 2.α.
C∗

K∗ ± 2.

√
−α.

C∗

K∗ .
(1− α) .C∗ + G∗

K∗

}
.
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Since the expression within the square root is always negative, there is
no real value of x that turns the discriminant equal to zero. Therefore, the
discriminant is always positive, i.e. no complex eigenvalues can exist in this
model.

2.9 Global dynamics

Though the local dynamics give only information on the local manifolds
associated to the two equilibrium fixed points, it can be proved that the
stable manifold associated to X∗

B ≡ (K∗
B, C∗

B) (W s(X∗
B)) and the unstable

manifold associated with X∗
A ≡ (K∗

A, C∗
A) (W u(X∗

A)) coincide, for values of
the capital stock such that K∗

A ≤ K ≤ K∗
B and for values of consumption such

that C∗
A ≤ C ≤ C∗

B. That is, we have a heteroclinic orbit, joining the two
equilibria ΓAB(X) (see Figure 3). Though the trajectories for consumption
and the stock of capital belonging to the heteroclinic orbit, are non-stationary
equilibria, heteroclinic orbits are robust for changes in the parameters of the
economy which do not cross bifurcation values. Mathematically, heteroclinic
orbits belong to the non-wandering set, but are structurally unstable (see
Guckenheimer and Holmes (1990)). This means that the though they do
not have the nature of a local bifurcation because they still occur for large
variations of the parameters, for large increases in ρ + δ or decreases in η
both the two equilibria and the heteroclinic orbit which connects them will
disappear because of the presence of a fold bifurcation.

We can give a simple geometric proof for the existence of an heteroclinic
orbit. Consider a square triangle whose vertices are A B and D and with
sides given by K = K∗

A and C ∈ [C∗
A, C∗

B], C = C∗
B and K ∈ [K∗

A, K∗
B] and

the third joins the two equilibria along the line C = K
α

(ρ + (1− α)δ) − G.
As, except for the vertices, the combinations of (C, K) belonging to the sides
of the triangle are not equilibrium points of the two differential equations
(27)-(28), the solution is changing locally. If we consider the local slopes of
the vector field defined by the two differential equations, it is easy to see
that it points outward in all the three sides of the triangle. In addition, the
local stable manifolds, whose slopes are given by the eigenvectors associated
to the eigenvalues with smaller magnitudes (λs), evaluated locally at the two
equilibrium points, bisect the two vertices of the triangle associated to the
two equilibrium points. Therefore, there should be a separatrix connecting
the two equilibrium points and passing through the interior of the triangle.

Heteroclinic orbits are a rare event in economics. Therefore we need to
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Figure 3: The phase diagram for the Cournotian Ramsey model

add some explanation. The basic reason for their occurrence is related to
the fact that the stable manifold associated with equilibrium point K∗

B needs
to be bounded at the left, because the capital stock has to have a minimal
dimension from the feasibility conditions associated to the existence of an
equilibrium. The only way for this to hold is if the left bound is a stationary
equilibrium, K∗

Ain our case. This stationary equilibrium is both a minimal
equilibrium dimension for the economy, similar to a sunk cost, but is also a
kind of a poverty trap. If a parameter of the economy changes so the the
equilibrium moves left then the economy will move along the heteroclinic
towards the higher equilibrium point. This can be produced by reductions
of ρ + δ or by increases in η. Along the (global) transition consumption the
ratio C

K
increases first and decreases afterwards and the mark-up decreases.

Notice equilibrium B corresponds to the small mark-up and equilibrium
A to the large one, since we observe a decreasing relationship between the
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Figure 4: Real interest rate and the equilibrium in the exogenous labour
model

mark-up and the capital stock in the long run given by

K∗ =

[
α. (1− µ∗) .

(
A.L

)1−α

η

] 1
1−α

Figure 4 , which uses a graphical analysis as in Gaĺı (1994b), depicts the
equilibrium using the steady-state condition (1− µ∗) .F ∗

k .

For large values of the capital stock the mark-up is low and decreasing
marginal returns force (1− µ∗) .F ∗

k down. However, for small values of K∗

the Inada condition is not enough to offset the effect of a very large mark-up.
Therefore, we observe an increasing branch for (1− µ∗) .F ∗

k at the left end of
the spectrum.
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3 The endogenous labour case

In this section we extend the Cournotian Ramsey model in order to allow
for a labour supply with non-zero wage-elasticity. Here, this deterministic
continuous-time framework makes an important step towards greater com-
parability with the Real Business Cycle (RBC) class of (Walrasian) models.

3.1 The leisure-consumption decision

Let us modify the household problem in order to include disutility of labour.
Instead of equation (2), we will use the following additively separable isoe-
lastic felicity function in this section:

u [C (t) , L (t)] = ln [C (t)]− ξ

1 + τ
. [L (t)]1+τ (35)

where ξ > 0 and τ ≥ 0. In this case, the elasticity of intertemporal
substitution in labour supply is given by 1/τ . Thus, the labour supply does
not correspond to (5) any longer, bur is given by the following equation
instead:

L =

(
w

ξ.C

) 1
τ

(36)

3.2 Equilibrium in the labour market

Using the new labour supply in (5) and the labour demand in (21) we can
express the equilibrium employment as

L =

[
(1− µ) . (1− α) .A1−α.Kα

ξ.C

] 1
τ+α

Thus, the general equilibrium given bu definition 1 is changed to include
the previous static equation.

3.3 General equilibrium

Definition 8 General equilibrium: it is a flow of consumption, capital stock,
employment, and mark-up such that: (i) households and firms optimise; (ii)
all markets clear.
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Using the equations previously derived, we can represent the general equi-
librium using a system on [C (t) , K (t)] such that

Ċ = [(1− µ) .FK (K, A.L)− %] .C, t ∈ R+ (37)

K̇ = (1− µ) .F (K, A.L)− C −G− δ.K, t ∈ R+ (38)

L =

[
(1− µ) . (1− α) .A1−α.Kα

ξ.C

] 1
τ+α

, t ∈ R+ (39)

lim
t→∞

e−ρ.t.
K

C
= 0 (40)

K (0) = K0, given (41)

The steady state is thus defined by the values (C∗, K∗, L∗, µ∗) ∈ R2
+ ×(

0, L
]
× (0, 1), which may be determined by equations (37) to (41) when

Ċ = K̇ = 0.
Using the same strategy to generate a representation of the general equi-

librium, we obtain the following equilibrium function:

f2 (µ) ≡ q (µ)− S0.z (µ) = 0 (42)

q (µ) ≡ S1. (1− µ)−G.µ2

z (µ) ≡ (1− µ)1+γ .µβ.γ

where

γ = 2.
1 + τ

β
> 0

S0 =

(
α

%

)γ

.
(1− α) .A1+τ

ξ.ητ
> 0

S1 =

(
1− δ.

α

%

)
.η > 0

Notice δ.α/% < 1 as we know that the steady-state capital-output ratio
equals α/%. Thus, if an equilibrium exists, C∗+G > 0, which implies S1 > 0.
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Proposition 9 Equilibrium without government: if there is no government
in this economy, i.e. if G = 0, the model exhibits the same features as the
fixed-labour-supply model studied in the previous section.

Proof. With G = 0 the quadratic term in q (.) disappears. There fore,
the equilibrium function becomes

f2|G=0 (µ) ≡ S1. (1− µ) .
{

1−
[
Q2. (1− µ) .µϑ

] 1
1+γ

}
= 0

where Q2 = (S0/S1)
1/(1+γ) > 0 and ϑ = β.γ/ (1 + γ) > 0. Since µ = 1

is not an equilibrium, the expression in square brackets defines the steady-
state mark-up. We can easily notice this expression is very similar to f1 (·),
and the conclusions obtained for the case with exogenous labour supply can
easily be transferred to this special case, where ϑ has a similar role to β and
Q2 has a similar role to Q1.

Notice, in this case, the value of the mark-up that maximises this function
depends on both α and τ , and the (unique) existence condition stating a range
for η depends on all the parameter values.

However, in general we have G > 0, so the function f2 (.) has to be studied
in order to evaluate the number of equilibria and the dynamics of the system.

Proposition 10 Existence of equilibrium with government: if the govern-
ment acts in this economy, i.e. if G > 0, the model exhibits at least one
equilibrium, provided G is less than net output.

Proof. First of all, the values of this function for the extreme values of
the mark-up level are given by

f2 (0) = S1 > 0

f2 (1) = −G < 0

Considering the equilibrium function is continuous and its first derivative
of the function can be written as

f ′2 (µ) = −S1 − 2.G.µ− S0.z
′ (µ)

z′ (µ) = z (µ) .
β.γ. (1− µ)− (1 + γ) .µ

(1− µ) .µ
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the monotonicity of the function in the vicinity of these extreme values
is given by:

f ′2 (0) = −S1 < 0

f ′2 (1) = −S1 − 2.G < 0

i.e. the equilibrium function is decreasing on the right-hand side of µ = 0
and it is also decreasing on the left-hand side of µ = 1.

Thus, by continuity, there is at least one fixed point for f2 (.), considering
0 < G ≤ (1− µ∗) F (K∗, A.L∗)− δ.K∗.

However, this result does not rule out the possibility of multiple equilibria
to exist. To do that, we need to study the monotonicity of functions q (.)
and z (.) when µ ∈ (0, 1).

Proposition 11 Multiple equilibria with government: if the government acts
in this economy, i.e. if G > 0, the model exhibits a maximum number of three
equilibria, provided G is less than net output.

Proof. Function z (µ) is very similar, in its structure, to f1 (µ). It is easy
to notice that z (0) = 0 and z (1) = 0. Also, there is a unique stationarity
point to this function given by

z′ (µ) = 0 ⇔ µ =
=
µ ≡ β.γ

1 + γ + β.γ
∈ (0, 1)

where we can see the value of
=
µ depends solely on the values of α and τ

∂
=
µ

∂α
= −2.

(1 + τ)2

(3 + 2.τ − 2.α− α.τ)2 < 0

∂
=
µ

∂τ
= 2.

(1− α)2

(3 + 2.τ − 2.α− α.τ)2 > 0

Since the value of z
(

=
µ
)

is positive, this point corresponds to a maximum.4

The second-degree polynomial q (µ) exhibits the following values for the
extreme values of µ: q (0) = S1 > 0 and q (1) = −G < 0. Furthermore, there

4Is is easy to show the second derivative of z
(

=
µ
)

is negative.
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is a unique solution to q (µ) = 0 given by µ = µ0 ≡
[√

(S1)
2 + 4.S1.G− S1

]
/ (2.G) ∈

(0, 1).

If
=
µ ≥ µ0, then function f2 (·) is decreasing at least up to µ = µ0, where

its value is given by f2 (µ0) = −S0.z (µ0) < 0. Thus, there is a solution for
f2 (µ) = 0 in the interval µ ∈ (0, µ0). In the range µ ∈ (µ0, 1) the function
starts to be increasing, but its maximum value would be f2 (1) = −G < 0,
thus there is no solution here.

If
=
µ < µ0, then function f2 (·) may exhibit more than one equilibrium.

In order to obtain a better picture of this case, we need to study the first
derivative of function f2 (·), and it is given by f ′2 (µ) = −S1−2.G.µ−S0.z

′ (µ).
The second derivative of z (·) is given by

z′′ (µ) = (1− µ)γ−1 .µβ.γ−2.γ.
(
az.µ

2 − bz.µ + cz

)
az = (1 + β) . [1 + γ. (1 + β)] > 0

bz = 2.β.γ. (1 + β) > 0

cz = β. (β.γ − 1) > 0

We know that z′′ (µ) = 0 for µ = 0, and also for µ =

[
bz ±

√
(bz)

2 − 4.az.cz

]
/ (2.az).

Considering that (bz)
2−4.az.cz = 4.β. (1 + β + γ + β.γ) > 0, that bz−2.az =

−2. (1 + β + γ + β.γ) < 0, and that (bz)
2 − 4.az.cz < 2.az − bz, we can con-

clude that µA =

[
bz −

√
(bz)

2 − 4.az.cz

]
/ (2.az) ∈ (0, 1) and additionally

µB =

[
bz +

√
(bz)

2 − 4.az.cz

]
/ (2.az) ∈ (0, 1). Therefore, there are two real

solutions for z′′ (µ) = 0 in the range µ ∈ (0, 1). Furthermore, the other
extreme value for the mark-up level gives rise to

z′′ (1) =


0 ⇐= γ > 1

az − bz + cz > 0 ⇐= γ = 1
+∞⇐= γ < 1
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Therefore, we can conclude the following for the function z′ (µ):

z′ (0) = 0

z′ (µ) > 0 ⇐= µ ∈ (0,
=
µ)

z′
(

=
µ
)

= 0

z′ (µ) < 0 ⇐= µ ∈ (
=
µ, 1)

z′ (1) = 0

Notice that
=
µ = bz/ (2.az). Thus, we can conclude this function has a

maximum for µ = µA and it exhibits a minimum for µ = µB.
Consequently, if

=
µ < µ0, we may find a maximum of two solutions for

q′ (µ) = S0.z
′ (µ) in the range µ ∈ (

=
µ, 1), where the decreasing q′ (µ) function

may intercept the U-shaped S0.z
′ (µ) function none, once or twice. If there

is no solution for f ′2 (µ) = 0, and this derivative is always negative, i.e. there
is only one equilibrium. If there is a unique solution for f ′2 (µ) = 0, it is a
minimum for f2 (·), and this derivative is always negative, i.e. there is also
only one equilibrium. If there is a pair of solutions for f ′2 (µ) = 0, the first
corresponds to a minimum and the second to a maximum for f2 (·), and this
derivative is positive in the interval between solutions, i.e. there may be one,
two or three equilibria. The steady-state equilibrium function f2 (µ) may
exhibit the following graphical representation: see figure 5.

A simple economic intuition for the existence of these three equilibria can
be put forward by using figure 6 which represents (1− µ∗) .F ∗

K as a function
of the capital stock. For very small or very high values of the capital stock
(very high or very low mark-up levels), the Inada conditions dominate the
model and the marginal productivity of capital shows very high (close to
infinity) or very low (close to zero) values. Therefore, one could always
find an equilibrium where the function is equal to %, as it happens in the
fixed-mark-up model. However, for intermediate values of the capital stock
(and mark-up), the efficiency externality may be strong enough to offset the
decreasing marginal returns and two extra equilibrium may arise: one when
the (1− µ∗) .F ∗

K function crosses % from below and another one when the
Inada conditions make it cross again from above.

However, government consumption plays a key role activating the de-
creasing branch on the left end of the spectrum, as this effect is not ac-
tive when G = 0. Government expenditure is important in this case act-
ing throuh taxes’ income effect in labour supply and influencing the opti-

24



Figure 5: Equilibrium in the model with endogenous labour supply
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Figure 6: Real interest rate and the equilibrium in the endogenous labour
model
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mal labour-capital mix via mark-up: in the steady-state we have K∗/L∗ =

(%/α)−1/(1−α) .A. (1− µ∗)1/(1−α).

3.4 Local dynamics

Again, we log-linearise it about a steady-state equilibrium: ·

Ĉ
·

K̂

 = J2.

(
Ĉ

K̂

)
(43)

where the new Jacobian matrix J1 is given by

J2 =

 − %.(2−µ∗).(1−α)

(1+2.τ+α).(µ#−µ∗)
%.{[1+τ.(2−α)].µ∗−2.τ.(1−α)}

(1+2.τ+α).(µ#−µ∗)

−%.{2.s∗C .(α+τ)+(1−α).[2−(1+s∗C).µ∗]}
α.(1+2.τ+α).(µ#−µ∗)

ρ + %.[2.(1−α)+(τ+α).µ∗]

(1+2.τ+α).(µ#−µ∗)


where µ# ≡ 2. (τ + α) / [2. (τ + α) + 1− α] ∈ (0, 1). We can observe the

trace is given by

Tr (J2) = ρ +
%.µ∗. (1 + τ)

(1 + 2.τ + α) . (µ# − µ∗)

One can notice there is no solution for Tr (J2) = 0, as it is an increasing
function of µ∗, but this function is not defined for µ∗ = µ#. However, we
know the trace is positive in the interval µ∗ ∈ (0, µ#) and is is always negative
in the interval µ∗ ∈ (µ#, 1). The value for the trace with µ∗ = 0 is equal
to ρ and its value for µ∗ = 1 is − [(α + τ) .ρ + (1 + τ) .δ] / (1− α) < 0. Its
graphical representation is given by

The determinant is given by

det (J2) = −c + ∆

c =
%. (1− α)

α. (τ + α)
. [ρ + (1− α) .δ + s∗C .τ.%] > 0

∆ =
Tr (J2)− ρ

α. (τ + α)
.x

x = − (1− α) . [ρ + (1− α) .δ] + s∗C .α.%. (1 + τ)
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Figure 7: The mark-up and the trace of the Jacobian in the endogenous
labour model

Therefore, the sign of det (J2) is given by

sign [det (J2)] =

{
sign (x) ⇐ µ∗ ∈ (0, µ#)
−sign (x) ⇐ µ∗ ∈ (µ#, 1)

The value of x depends on µ∗, as s∗C is a function of the steady-state
mark-up. Thus, for s∗C > $ ≡ (1− α) . [ρ + (1− α) .δ] / [α.%. (1 + τ)] we
have x > 0 and x < 0 otherwise. One can notice that for small (large)
values of α or τ , or for large (small) values of % (or ρ and δ separately),
$ approximates unity (zero). Thus, it would be more difficult to observe
a positive (negative) value of x, despite the steady-state mark-up level that
determines s∗C . Since we know that

s∗C (µ∗) = S0. (1− µ∗)γ+1 . (µ∗)β.γ ∈ (0, 1)

it is easy to notice that

s∗
′

C (µ∗) = s∗C .γ. (1 + β) .
µ− µ∗

µ∗. (1− µ∗)

i.e. the function is increasing for µ∗ ∈ (0, µ) and it is decreasing for
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µ∗ ∈ (µ, 1). Notice, however, the equilibrium conditions imply that, for a
given parameter set, µ∗ is such that s∗C ∈ (0, 1)).

So, what do we know about the determinant?
1) It is a function of the trace.
2) It is not defined for µ∗ = µ#

3) lim
µ∗→0

det (J2) = −%.(1−α).[ρ+(1−α).δ]
α.(τ+α)

< 0.

4) lim
µ∗→1

det (J2) = %.[ρ+(1−α).δ]
α

> 0.

Since we cannot obtain unambiguous signs to both the trace and the
determinant, the discriminant follows the same way. Therefore, it is possible
to observe complex eigenvalues for some parameter sets.

We then used numerical simulations to assess the possibility of obtaining
something different in its nature from both the fixed-mark-up model and the
exeogenous labour supply case. The following table presents three parameter
sets that present distinct features:

Table I: Numerical values for the parameters
Set α δ ξ ρ σ τ Φ A G
I 1/3 0.025 28.17 0.015 2 1 0.029 1 0.088
II 3/4 0.025 2.41 0.015 2 0.001 20.582 1 0.087
III 1/10 0.025 2.41 0.015 2 0.008 0.049 1 0.087

Their dynamic features are resumed in the following table:

Table II: Equilibrium mark-ups and eigenvalues
Set µ∗ λ1 λ2

I 0.167 −0.049 0.070
0.105 −0.011 0.029

II 0.764 0.016 0.187
0.985 −0.153 −0.008

III 0.211 −0.206− 1.024.i −0.206 + 1.024.i

Set I generates a single saddle-point non-oscillatory stable equilibrium.
Set II generates a trio of non-oscillatory equilibria: one is saddle-point stable,
one is a ’source,’ and one is a ’sink.’ Finally, set III generates a single
equilibrium with complex eigenvalues and local indeterminacy.
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4 Conclusions

In this article we developed a dynamic general equilibrium model with Cournotian
Monopolistic Competition where free entry induces an endogenous desired
mark-up.

In the case where labour supply is innelastic (the Cournotian Ramsey
model), multiple equilibria is a likely outcome. The equilibrium associated
with the high mark-up is unstable and can exhibit complex roots. The low-
mar-up equilibrium is Pareto preferred to the previous one and is saddle-
point stable, as in a fixed mark-up model, including the competitive Ramsey
model. The two equilibrium may be linked through a heteroclinic trajectory.

When labour supply induces disutility to the households, government con-
sumption makes a big difference. In the zero-government-purchases case, the
outcomes are qualitatively identical to the exogenous-labour model. In the
positive-government-purchases model a third equilibrium may exist. Here, lo-
cal indeterminacy is a possible outcome either for one of three equilibria or for
a unique one, and this result does not depend on a overlapping-generations
structure or in assuming the elasticity of substitution between varieties is
smaller than unity. Complex global dynamic structures, including hysteresis
may arise in this case.

This set of qualitative results imply that empirical applications of desired
endogenous mark-up models have to be carefully studied before implemented.
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