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Abstract

We test for mean reversion in real exchange rates using a recently developed unit root test for non-

normal processes based on quantile autoregression inference in semi-parametric and non-parametric

settings. The quantile regression approach allows us to directly capture the impact of di¤erent

magnitudes of shocks that hit the real exchange rate, conditional on its past history, and can detect

asymmetric, dynamic adjustment of the real exchange rate towards its long run equilibrium. Our

results suggest that large shocks tend to induce strong mean reverting tendencies in the exchange

rate, with half lives less than one year in the extreme quantiles. Mean reversion is faster when

large shocks originate at points of large real exchange rate deviations from the long run equilibrium.

However, in the absence of shocks no mean reversion is observed. Finally, we report asymmetries in

the dynamic adjustment of the RER.
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1 Introduction

1.1 Real exchange rate issues and related literature

Purchasing Power Parity (PPP) has long been considered as one of the fundamental arbitrage laws in

international asset pricing. The building block of PPP is the Law of One Price (LOP), which contends

that, in the absence of arbitrage, identical goods should be selling at the same price across countries.

Aggregating across all tradable goods in an economy, we obtain PPP, which suggests that price levels

between two countries should be equal, if expressed in the same currency. PPP, therefore, provides an

equilibrium relationship for the real exchange rate (RER), which is the nominal exchange rate, adjusted

for relative price levels. If PPP holds, the relative price levels and/or the bilateral nominal exchange

rate would adjust in such a way so that the RER remain constant. In that sense, variations in the RER

would suggest deviations from PPP.

Although intuitive theoretically, PPP lacks strong empirical support. In practice, the RER exhibits

high variability over time and spends long periods away from its suggested PPP equilibrium. The

ambiguity surrounding the persistency of the RER and the validity of PPP, is well summarized into two

relevant puzzles. The �rst one directly investigates the persistency of the RER process. As long as the

RER is reverting back to its PPP equilibrium, albeit slowly, this implies that PPP should, at least, be

seen as a long term anchor for determining the RER equilibrium value, although it may not be holding at

each point in time. However, if the deviations from the PPP are permanent, this suggests the absence of

a unique, constant equilibrium. The second puzzle (Rogo¤, 1996) is trying to rationalise the persistence

of the RER and reconcile its extremely volatile nature in the short run with the extremely slow rate at

which shocks appear to damp out. This puzzle raises the issue of the types and role of the shocks that

hit the RER and how they impact on the RER mean reversion1 .

Given the importance of PPP in international �nance and our limited understanding of the RER

behaviour, an extensive amount of research is being dedicated to testing the unit root hypothesis in the

RER. Evidence from early attempts was clearly rejecting PPP (for a summary exposition of early tests

see Sarno and Taylor, 2003). Nevertheless, it soon became obvious that standard unit root tests have

low power in rejecting the null of a unit root. This shortcoming is nurtured by the inability of these

tests to take into account certain distributional stylised facts of the exchange rates in general, and the

1Namely, it would be di¢ cult to rationalise the short-run variability of the RER with reference to real shocks only,
because they are not so frequent and, in any case, would tend to induce permanent deviations. On the other hand, it
would also be di¢ cult to attribute RER behaviour to the e¤ect of nominal shocks, because their e¤ect would be apparent
for a short period of time, only (Rogo¤, 1996).
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RER in particular2 . More precisely, although the true RER distribution of the RER is not known, the

notion that it is normally distributed is refuted, because the overall process appears to be better described

by leptocurtic distributions (McLachlan and Peel, 2000). The non-normality of the RER distribution

confounds standard unit root tests, by lowering their power (Perron, 1990; Kim, Nelson and Startz,

1998).

Parametric unit root tests of increased sophisticated and complex structures, which accounted for

the non-normality of the RER, o¤ered more robust alternatives (Pippenger and Goering, 1993, 2000;

Michael, Nobay and Peel, 1997; Nelson, Piger and Zivot, 2001). These tests would typically result from

regime switching models, where the RER is allowed to display di¤erent behaviour and, therefore, assume

di¤erent speeds of adjustment at the di¤erent states. Several models were competing for the choice of

the �correct�switching function, based on theoretical considerations about the nature of forces driving

the RER behaviour (Leon and Najarian, 2005).

A big strand of non-linear unit root tests argues in favour of a discrete or smooth adjustment towards

the PPP equilibrium, consistent with the limits to arbitrage theory. The latter relates to the existence

of trade barriers and transaction costs (Dumas, 1992), which induce di¤erent dynamic adjustment of the

RER towards its long run mean for di¤erent magnitudes of RER deviations from the PPP equilibrium.

In case of discrete transition functions, �xed arbitrage costs create an implicit inaction band, within which

the RER can �oat freely. The implication is that in this regime it is possible to observe a random walk

in the RER. On crossing this threshold, however, arbitrage forces ensure that the RER process becomes

mean reverting. Such behaviour is captured by a Threshold Autoregressive (TAR) model (Tong, 1990).

Empirical application of a TAR model (Obstfeld and Taylor, 1997; Sarno, Taylor and Chowdhury, 2004,

Leon and Najarian, 2005), provides support for the theory of discrete adjustments towards the PPP

equilibrium and, thus, o¤ers evidence in favour of the PPP.

However, advocates of smooth adjustment (Teräsvirta, 1994; Dumas, 1994; Bertola and Caballero,

1990) suggest a Smooth Transition Autoregressive (STAR) model (Teräsvirta, 1994) as an appropriate

formulation3 . This model assumes no explicit threshold, rather the speed of RER mean reversion to its

2 In order to overcome the low power problem, other strands of the literature adopted long span studies or panel unit
root studies in linear settings (Abuaf and Jorion, 1990; Lothian and Taylor, 1996; Taylor, 2002). Although both methods
provided supportive evidence of the PPP condition, it is still contentious whether favourable outcomes using these methods
are enough to validate PPP (Frankel and Rose, 1996; Lothian, 1997; Taylor and Sarno, 1998; Sarno and Taylor, 2003)

3Kilian and Taylor (2003) argue that a smooth adjustment of STAR type can also be due to the interaction of heterogenous
agents in the foreign exchange market, namely economic fundamentalists, technical analysts and noise traders. As long
as fundamentalists disagree about the level of the RER equilibrium, the traders will tend to act on information from the
technical analysts. The latter follow trending techniques, which impart a unit root behaviour in the RER. However, as
fundamentalists agree that the RER is far from its equilibrium, the tendency for the RER to revert back to its equilibrium

3



long run equilibrium increases as the degree of misalignment from the PPP equilibrium increases. Further

(simulation) analysis reveals that the mean reversion rate also varies with both the size of the RER shock

and the initial conditions, that is the degree of RER disequilibrium when a given magnitude of shock

hits the RER (Taylor, Peel and Sarno, 2001)4 . Empirical applications of STAR model variants provide

strong evidence of non-linear mean reverting behaviour for large deviations from the PPP equilibrium

(Michael, Nobay and Peel, 1997; Taylor, Peel and Sarno, 2001).

Finally, a growing strand of literature is using Markov-Switching (MS) functions to model the behav-

iour of the RER. Such models allow for the distribution of the RER to be approximated as a mixture

of normal distributions, and can, thus, permit changes in the speed of reversion, the mean and the vari-

ance of the RER process. Such models have been typically used for long-span data analysis, but RER

applications with encouraging results are also found for the recent �oat (Leon and Najarian, 2005). The

various regimes can depend on the deviation of the RER from its PPP equilibrium (Sarno and Valente,

2005), or the volatility of the RER shock (Engel and Kim, 1999) 5 .

By allowing for di¤erent RER behaviour at the di¤erent states, the afore mentioned literature implic-

itly raised a further relevant question. This concerns the potentially di¤erent speeds of adjustment for

positive or negative deviations of the RER from its PPP equilibrium, i.e. the possibility of asymmetric

mean reversion towards the RER equilibrium. There is a considerable division of feelings in the literature

over this issue, as theoretical and empirical arguments can be found in support for both sides. On the

one hand, if goods arbitrage is driving the impetus back towards the long run PPP equilibrium, it would

be di¢ cult to explain why the speed of adjustment should be di¤erent above or below the equilibrium

(Taylor, Peel and Sarno, 2001). That is because, the limits to arbitrage theory, which motivates the spec-

i�cation of the TAR and STAR models, relies on the existence of symmetric transactions costs, and would,

therefore, also require symmetric adjustment above or below the PPP equilibrium (Obstfeld and Taylor,

1997; Michael, Nobay and Peel, 1997; Taylor, Peel and Sarno, 2001, Sarno, Taylor and Chowdhury, 2004;

Sarno and Valente, 2005).

On the other hand, a more recent strand of literature suggests that the limit to arbitrage theory

is increasing.
4Notably, Taylor, Peel and Sarno (2001) provide further insight into the mean reverting process of the estimated non-

linear (STAR) model, through a dynamic stochastic simulation. This allows the analysis of impulse response functions,
where arbitrary magnitudes of shocks are imposed to drive the RER away from its equilibrium, in order to study the mean
reverting path back to it and calculate half lives of shocks. Their �ndings suggest that if a shock of a given magnitude
hits the RER and drives it further away from the equilibrium, the larger the shock, the faster the RER mean reversion. In
that case half lives can fall just under one year (10 months).

5An extensive amount of literature has found that MS models are suitable for modelling the exchange rate behaviour
(e.g. see Engel and Hamilton, 1990; LeBaron, 1992; Engel, 1994; Dueker and Neely, 2005 and Sarno and Valente, 2006).
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cannot alone explain the dynamics of the RER. They bring forward the role of central bank intervention

as an underlying force a¤ecting the dynamic adjustment of the RER. In this context, asymmetries may

arise as a result of intervention policies directed at the RER. Almekinders and Eij¢ nger (1996), provide

evidence in favour of asymmetries in the intervention policies of the US and the German central banks

in the post-Louvre period, by showing that the banks tried to counteract appreciations of their currency

more strongly that depreciations. Taylor (2004) shows that net intervention from the same central banks

could stabilise the RER, with the e¤ect becoming bigger, the bigger the deviations of the RER from its

equilibrium value. On the same note, Dutta and Leon (2002) argue that governments might want to

defend an appreciation of the currency more or less rigorously than a depreciation, therefore inducing

asymmetric dynamic adjustment behaviour. Finally, Leon and Najarian (2005) provide direct empirical

support for the existence of asymmetries in the RER mean reverting behaviour across a wide range of

countries6 .

In this paper, we address the issues confounding previous PPP tests and also assess the symmetric

properties of the RER mean reverting behaviour with the aid of the recently developed methodology

of quantile unit root inference. Our unit root test adopts an agnostic approach towards the potential

RER distribution and allows the RER to assume di¤erent speeds of adjustment at di¤erent states, while

naturally revealing asymmetries in the RER mean reversion process. As a result, the quantile unit root

test provides an alternative approach for robust unit root inference. Our method e¤ectively addresses

the two PPP puzzles and further re�nes and enhances previous results in the PPP literature.

1.2 The quantile approach to the PPP puzzles

We investigate three major currencies (UK pound, Japanese yen and Euro versus the US dollar) using a

recently developed, unit root test for non-normal processes based on the quantile autoregression (QAR)

approach in both semi-parametric7 (Koenker and Xiao, 2004a,b) and non-parametric (Koenker, Ng and

Portnoy; 1994) settings. By using the more robust quantile unit root alternative we aim to re�ne previous

results and shed further light into the PPP puzzle.

Quantile regression estimation (Koenker and Basset, 1978) allows one to estimate and conduct infer-

ence on a whole range of conditional quantile functions, that is models where quantiles of the conditional

6Leon and Najarian (2005) adopt both a time-varying TAR model and a smooth transition (STR) model. In the �rst
case, the magnitudes, frequencies and durations of the deviations of the RER from its forecast are allowed to di¤er for
depreciations and appreciations. In the case of the STR model asymmetric adjustment is allowed for middle and outer
regimes.

7The method is semi-parametric, in that it only assumes a linear relationship between the dependent and explanatory
variables, without making any distributional assumptions.
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distribution of the response variable are expressed as functions of explanatory variables8 . By making

no prior distributional assumptions, the quantile regression examines quantiles of the conditional distri-

bution, in order to uncover di¤erent stochastic dependencies in the di¤erent quantiles. It, therefore,

provides a more complete and nuanced picture of how covariates in�uence the location and shape of the

entire response variable distribution (Koenker and Xiao, 2004a).

More speci�cally, we consider QAR models, where the autoregressive (slope) parameters may vary

with quantiles. In the case of the RER, di¤erent solutions in distinct quantiles may be interpreted as

di¤erences in the mean reverting behaviour of the RER at various quantiles of the conditional distribution

of the RER, that is at di¤erent magnitudes of RER shocks. In that case, bigger (positive or negative)

shocks correspond to more extreme (high or low) quantiles9 . As a consequence, the quantile unit root

test is modi�ed to incorporate the e¤ects of various sizes of RER shocks (Koenker and Xiao, 2004b),

and is, therefore, more robust compared to standard unit root models. Furthermore, QAR unit root

inference can reveal di¤erent patterns of mean reverting behaviour for positive or negative shocks to the

RER and, thus, naturally expose asymmetries in both the distribution of RER shocks and the impact of

these shocks in the dynamic adjustment process of the RER to its long run equilibrium10 .

Seen in a di¤erent way, the linear QAR model captures state dependencies in a way comparable to,

but di¤erent from a non-linear MS, TAR or STAR model. The linear QAR model adopts a di¤erent

characterization of states, by allowing for multiple discrete regimes, which are chosen on the basis of the

conditional distribution of the RER (i.e. RER shocks). This procedure can e¤ectively expose transient

and/or permanent states (i.e. quantiles) in the RER adjustment process, thereby presenting a more

compete and nuanced picture of the RER dynamic behaviour. In this sense, the linear QAR model

bodes well with the spirit of the aforementioned non-linear models.

Overall, QAR inference has signi�cant advantages in analysing dynamics and persistence in time series

with non-Gaussian distributions and can, thus, provide a more robust alternative to the standard unit

root tests, while sacri�cing little e¢ ciency under normality (Koenker and Xiao, 2004a,b). In the context

8This is in sharp contrast with the traditional conditional mean estimation procedure, which assumes normality in esti-
mating a single measure of the conditional mean function. In cases of Gaussian distributions, the latter estimation method
would adequately describe the whole conditional distribution and would, in fact, enjoy a certain optimality. Moreover, the
coe¢ cients of the dependent variables would be independent of the speci�ed quantiles.

9A more re�ned analysis of what exactly we mean by �mean reversion at the di¤erent quantiles� is o¤ered in section
2.2.3.
10Although limit to arbitrage models typically impose uniform or symmetric behaviour (Obstfeld and Taylor, 1997; Sarno,

Taylor and Chowdhury, 2004; Taylor, Peel and Sarno, 2001), evidence on non-linear asymmetric dynamic adjustment, due
to government policies (i.e. intervention) has been recently emerging in the literature (Dutta and Leon, 2002; Leon and
Najarian, 2005).
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of PPP, the QAR approach provides an alternative, robust way of looking at the validity of the PPP,

while addressing the question of wether di¤erent magnitudes of shocks may generate di¤erent (symmetric

or not) persistency patterns on the RER. Our application is, to the best of the author�s knowledge, the

�rst contribution of quantile regression in this context.

1.3 Contribution, main results and structure of the paper

The QAR analysis provides original insights in the RER behaviour because of its general, yet �exible

formulation. In contrast to previous, parametric designs, the quantile framework adopts a more general

approach. It remains agnostic about the underlying distribution of the RER, and, consequently, in

the treatment of the causes and speci�cation of the dynamic adjustment of the RER to its long run

equilibrium. In other words, we may obtain evidence of dynamic adjustment, consistent with the

previous parametric (non-linear) literature, but without specifying the nature of the parametric (non-

linear) relationship. In this way, the quantile approach is nesting assumptions and results from previous

parametric models, in an a-theoretical way, thus circumventing the need to discriminate across di¤erent

parametric model formulations.

The generality of the quantile model is well exploited by a �exible estimating framework, where the

researcher is allowed to choose the quantiles under investigation, and, therefore, determine the level

of detailed analysis that needs be undertaken. In the context of the RER, the above qualities allow

insights into the following: a) We are able to detect how di¤erent sizes of shocks a¤ect the RER speed

of adjustment, (irrespective or not of the RER disequilibrium point when the shock hits the RER). The

shocks analysed are actual, observed shocks, whose sizes are determined endogenously by the model.

This o¤ers an original view into the role of shocks on the RER and enriches anecdotal evidence from

previous literature (Taylor, Peel and Sarno, 2001; Engel and Kim, 1999) b) The quantile method is

able to reveal asymmetries in both the distribution of RER shocks and their impact on the RER mean

reverting behaviour in a simple, intuitive and yet e¤ective way. In this way, we shed more light to the

relevant debate, by providing evidence using an original and relatively more simple model. c) As a

result from the above, the quantile unit root test is a more robust alternative in cases of non-gaussian

innovations, compared to standard unit root tests. Overall, the quantile analysis sheds light into the two

PPP puzzles by further re�ning and enhancing results previously obtained by, amongst others, Taylor,

Peel and Sarno (2001), Leon and Najarian (2005).

More speci�cally, our results suggest that the RER is not a standard linear stationary or a constant
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unit root process. Namely, we �nd that: a) the dynamic behaviour of the RER is a¤ected by the

magnitude of RER shocks, with large RER shocks undermining the unit root behaviour of the RER and

inducing potentially strong mean reverting tendencies. Half lives in that case can fall well below one

year. b) When large shocks to the RER originate at large RER disequilibrium levels (i.e. far away from

its PPP equilibrium), the e¤ect can be even stronger. c) On the contrary, small shocks to the RER

considerably weaken mean reversion tendencies, irrespective of the disequilibrium point of the RER at

the time of the shock. d) There are marked asymmetries in the behaviour of the RER, i.e. extreme

positive shocks can generate di¤erent reversion patterns than extreme negative shocks. Their extent also

depends on the original condition of the RER with respect to its long run equilibrium.

The paper proceeds as follows. Section 2 introduces the quantile regression techniques employed

in this paper. Section 3 describes the data and some preliminary data analysis. Section 4 presents

the empirical results from the semi-parametric and non-parametric quantile approach, and Section 5

concludes.

2 Methodology

In this section we present the QAR framework in both its semi-parametric and non-parametric settings.

We begin with the simple linear QAR(1) model and explain the estimation and inference procedure (i.e.

quantile unit root tests within each quantile), as presented in Koenker and Xiao (2004b). We then

proceed to a basic exposition of the non-parametric quantile estimation technique (Koenker, Ng and

Portnoy, 1994).

The semi-parametric and non-parametric settings correspond to a general and a more re�ned analysis

of shocks respectively. In the general (semi-parametric) analysis we consider di¤erent magnitudes of

RER shocks in a linear QAR context in order to investigate their impact on the mean reversion of the

RER. This methodology allows di¤erent speeds of adjustment for di¤erent magnitudes of RER shocks.

However, this analysis does not consider the origin of the shock , i.e. the deviation of the RER from

its RER long-run equilibrium when the shock occurs11 . The limit to arbitrage theory o¤ers plausible

support for such considerations. We, therefore, further re�ne our results with a non-parametric quantile

11Note that there is an important di¤erence between RER shocks and RER deviations from equilibrium. A shock hits
the RER at a time t and has an observable impact on the RER at time t+ j. A shock is equal to a RER deviation if they
both occur at the same time interval studied and if the shock originates at equilibrium. However, shocks conditional on
the past history of the RER can occur at any point of the RER distribution with respect to the equilibrium (i.e. can occur
when the RER is below or above its long run equilibrium). Because of that, RER deviations can be the additive result
of cumulative shocks to the RER and the two expressions are no longer tautologous. Overall, the e¤ects of shocks on the
RER can be variable, depending on the magnitude of the shock and the RER disequilibrium position at the impact.
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model. In that context, we observe patterns of RER behaviour, which are identi�able primarily by the

magnitude of shocks (size), but also by the level of RER disequilibrium when the shock occurred (origin).

We can, therefore, gauge results about di¤erent speeds of adjustment when shocks of given magnitude

hits the RER on, below or above its equilibrium.

2.1 Semi-parametric QAR model

Our semi-parametric analysis is founded on the recent extension of the theory of quantile regression to

autoregressive models, which resulted in the linear QAR model (Koenker and Xiao, 2004b). We use a

linear QAR estimation framework on the deviation of the real exchange rate from its equilibrium value

and perform di¤erent quantile unit root tests in order to gain a more re�ned view of the RER dynamic

behaviour.

2.1.1 Estimation of the QAR model

Let us consider a simple �rst order autoregressive, AR(1), model of the type

yt = �yt�1 + "t; (1)

where yt = qt � �, with qt denoting the logarithm of the RER and � being the long run equilibrium

level of qt, i.e. the unconditional mean of qt. Following the standard literature, the RER is de�ned

as qt � st � pt + p�t , where st is the logarithm of the nominal exchange rate (domestic price of foreign

currency) and pt and p�t denote the logarithms of the domestic and foreign price levels respectively.

Hence, yt represents the deviations of the real exchange rate from its equilibrium value. Finally, "t is

an error term. In this traditional conditional mean function, standard unit root theory suggests the

existence of a unit root in the RER, if the autoregressive coe¢ cient, �, equals unity. In that case,

deviations from the long run RER equilibrium are permanent. However, if the autoregressive coe¢ cient

is smaller than unity, the real exchange rate is a stationary process, suggesting that any deviations from

equilibrium are transitory.

Following the methodology set out by Koenker and Xiao (2004b), the equivalent � th quantile repre-

sentation takes the form:

Qyt(� j yt�1) = Q"t(�) + �(�)yt�1; (2)

where Qyt(� j yt�1) is the � th conditional quantile of yt, conditional on yt�1, and Q"t(�) is the � th
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conditional quantile of "t. In other words, the � th conditional quantile function of the dependant

variable yt is expressed as a linear function of its own lagged value. �(�) is the autoregressive coe¢ cient,

which measures the persistence of the real exchange rate deviations within each quantile and is dependent

on the � th quantile under investigation.

Estimation of the linear QAR model involves solving a minimisation problem of weighted residuals,

where all the observations are considered, but are being weighted in such a way, so that the residuals fall

into the selected quantile:

min
�2R2

X
t:yt�x|t �

�t(yt � x
|
t �(�)); (3)

where �t(") = "(� � I(" < 0)) is a check function with I denoting an indicator taking the value of 1 if

the expression in parentheses is true and 0 otherwise, xt = (1; yt�1) and �(�) = (Q"(�); �(�)). Thus,

equation (3) is equivalent to:

min
�2R2

X
t:yt�x|t �(�)

�(yt � x|t �(�)) +
X

t:yt<x
|
t �(�)

(� � 1)(yt � x|t �(�)): (4)

In our case the QAR model was estimated in the �quantreg� package included in R, using a modi�ed

simplex algorithm of Barrodale and Roberts (Koenker and d�Orey, 1987, 1994). This package o¤ers

the possibility to estimate a whole range of conditional quantile functions and computes bootstrapped

standard errors for the parameters. In our case the number or replications employed were 2000.

2.1.2 Quantile unit root tests

A general analysis of the unit root behaviour based on the quantile approach involves examining the unit

root property over a range of quantiles. The relevant statistic for testing the null of a constant unit root

process over a range of quantiles is a Kolmogorov-Smirnov (KS) test based on the regression quantile

process over a range of � 2 T . Koenker and Xiao (2004a,b) suggest

QKS = sup jt(�)j ; (5)

where t(�) is the t-statistic of the autoregressive coe¢ cient at the � th quantile. In practice, we may

calculate t(�) at � 2 T and construct the QKS statistic by taking the maximum statistic value over � 2

T . The limiting distribution can be approximated by resampling methods, as explained below.

A more detailed examination of the unit root properties of the series is by examining the unit root

property in each quantile separately. This allows for a closer look at the dynamics of the series and also

10



permits the detection of possible asymmetries in the process. The relevant unit root test involves a simple

t-statistic test, t(�) for the null of a unit root. In other words, we are testing that the autoregressive

coe¢ cient in the speci�c quantile, �(�), will be equal to unity. Given that �(�) depends on � , it is

possible to have di¤erent mean reverting behaviour in the di¤erent quantiles. This implies that it is

possible to observe sequences of innovations that reinforce the unit root behaviour of the series, followed

by occasional realisations that induce mean reversion and thus undermine the persistency of the whole

process.

For both types of tests we base our inference on a resampling (bootstrap) exercise, as described by

Koenker and Xiao (2004b)12 , which was coded in R. The main idea of this exercise is to generate a

distribution for the relevant statistic values and observe where our actual statistic values lies with respect

to the bootstrapped distribution. For this purpose, we construct dependent variables (yt) under the

null of a unit root in the RER data generating process, by resampling from the original data. We

then estimate the same quantile regression speci�cation under the null and get the relevant t-statistic

values. We repeat this procedure 2000 times. We, thus, create the distribution of the t(�) test and

generate the distribution of the QKS. We then compare the statistic value of the original (true)

regression with the distribution under the null (of a unit root). The percentage amount of times that

the statistic value will be above the bootstrapped statistic value gives us the probability of rejecting the

null hypothesis of a unit root, within each quantile. In this study, we investigate a range of quantiles for

� = (0:01; 0:05; 0:1; 0:25; 0:5; 0:75; 0:9; 0:95; 0:99)13 .

Koenker and Basset (2004b) by means of a Monte-Carlo analysis, compare the power of the OLS and

QAR models for the case of Gaussian and Student-t innovations. Their results show that the quantile-

based tests have superior power than the simple Augmented Dickey-Fuller (ADF) and Phillips-Perron

tests in cases of Student-t innovations. In turn, the t(�) test has more power than the QKS test, albeit

marginally.

2.1.3 Interpretation of the quantiles and quantile mean reversion

In order to interpret our results from the QAR model, it is important to consider �rst the meaning of each

quantile, i.e. what exactly the quantiles capture, and second the meaning of quantile mean reversion. As

regards the �rst issue, looking at the QAR speci�cation and the estimation procedure (equations 2-4),

it becomes obvious that the quantile approach estimates quantiles of the conditional distribution of the

12Methods of asymptotic inference are also available for the t(�) test. The asymptotic distribution is not the conventional
Dickey�Fuller distribution, but rather a linear combination of the Dickey�Fuller distribution and the standard normal.
13For an explicit technical description of the procedure see Koenker and Xiao (2004b).
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RER, conditional on its own past values, i.e. it estimates quantiles of the error term. Therefore, in

the simple case of a QAR(1) model the quantiles capture the magnitude of shocks from period t � 1 to

period t14 . That is, one-o¤ shocks of similar magnitude, which are classi�ed as falling into the same

quantile are, in e¤ect, the shocks that determine the �t of this quantile. The magnitude of these shocks

is summarised by the constant term, Q"(�). Therefore, the more extreme the quantile the more extreme

the shocks that hit the RER in the same quantile.

The quantile methodology has the potential to reveal di¤erent localised mean reverting patterns, by

explicitly testing for a unit root at the di¤erent quantiles (i.e. locally). More speci�cally, RER mean

reversion at a speci�c quantile suggests that shocks of similar magnitude, that fall into this quantile,

tend to undermine the persistency of the series and induce mean reversion tendencies on the RER. On

the contrary, unit root behaviour within a quantile suggests the existence of innovations of a certain

magnitude, which reinforce the persistency of the RER. It is, therefore, possible for a series to exhibit

localised unit root behaviour (i.e. unit root in certain quantiles), followed by mean reverting occasions (i.e.

mean reversion in other quantiles) capable of inducing stationarity in the overall process (i.e. globally).

2.2 Non-parametric QAR estimation

In the next step of our analysis we move to a non-parametric QAR framework. Namely, we investigate

if the impact of di¤erent magnitudes of RER shocks is further a¤ected by initial conditions (i.e. the level

of RER disequilibrium when the shock hits the RER). According to the limits to arbitrage argument,

should large deviations from the PPP equilibrium a¤ect mean reversion, then the linear �t should not be

a good approximation of the quantile process and instead we should observe kinks (i.e. di¤erent slopes)

in each of the di¤erent quantile �ts. We, therefore, employ a non-parametric model in an e¤ort to allow

for a more �exible functional form within each quantile compared to a semi-parametric one. Our aim

is to expose distinct linear sub-segments, i.e. linear sub-segments with di¤erent gradients, within each

quantile.

The preferred non-parametric estimation technique, is the method of quantile smoothing splines with

total variation roughness penalty (Koenker, Ng and Portnoy, 1994). If y, x and � are de�ned as above, the

idea underlying this method is to derive the quantile smoothing spline estimator of g� (x), as the solution

to a trade-o¤ problem between ��delity�and �roughness�, i.e. between a �t the bears a reasonable degree

of �delity to the observed points and a �t with a plausible degree of smoothness:

14 In a case of a higher order QAR model, of the type speci�ed by Koenker and Xiao (2004a,b), they would capture the
cumulative e¤ect of the t� n periods to period t, where n is the number of lags allowed for.
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min
g
�fidelity�� ��roughness� (6)

where,

�fidelity�=
nX

yi�g(xi)>0
�(yi � g(xi)) +

nX
yi�g(xi)<0

(� � 1)(yi � g(xi)) (7)

and

�roughness�= V (g0): (8)

Therefore, the quantile smoothing spline estimator is the solution to

min
nX
i=1

�� (yi � g(xi))� �V (g0) (9)

where g is a smooth function with a uniformly continuous �rst derivative g0 and bounded second derivative

g00 . In our approach, lambda (�) penalises the total variation of function g0, which we denote as V (g0),

with V (g0) =
R b
a
jg00(x)j dx. � is a regularisation parameter, or the roughness penalty, that balances the

trade o¤ between �delity and roughness and therefore determines the smoothness of the �tted function.

As � increases the penalty prevails until, for very high values of �, the roughness penalty is maximised

and we get a perfectly smooth line, matching the semi-parametric linear �t. The solutions are piecewise

linear functions with knots at xi (Koenker, 2005).

The estimation techniques for this type of non-parametric �t depend on the dimensionality of the

vector of conditioning variables x. Our QAR(1) case corresponds to a univariate case of non-parametric

smoothing and for this purpose the quantile model was estimated using the COBS (Constrained B-Splines

Smoothing) algorithm of He and Ng (1999)15 .

The quantile smoothing spline methodology is appealing in our case, both technically and intuitively,

since it provides a direct comparison with the semi-parametric linear �t, while also allowing a role for

the limits to arbitrage theory. Namely, in each quantile we are testing the robustness of the linear �t,

thereby investigating the validity of the limits to arbitrage argument. In the quantiles where deviations

from the RER do not a¤ect the mean reversion properties of the RER, the graphical results should deliver

the same linear quantile �t found using the semi-parametric methodology. In the opposite case, however,

where large RER deviations from its equilibrium value induce mean reversion, the linear quantile �t

15The COBS package in R permits the implementation of this algorithm and also enables the calculation of con�dence
intervals, based on the asymptotic results of He and Shi (1998).
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should change to a piecewise linear quantile �t. If the limits to arbitrage theory is supported by our

data, we would expect to �nd sub-segments with less than unity slope at the left and right hand side of

a particular quantile, while the middle part could preserve a unity slope. Such a result would suggest

that, when a given magnitude of shock is originated at a high disequilibrium level, the mean reversion of

the RER is stronger.

3 Data and preliminary data analysis

The data sources used to construct our RER data set are the International Monetary Fund (IMF)�s, In-

ternational Financial Statistics (IFS) and the Organisation for Economic Co-operation and Development

(OECD)�s, Main Economic Indicators (MEI). The countries analysed include the euro area, the UK and

Japan with the US as the reference country, for a period from January 1973 to December 2004. For each

country, we obtained the relevant nominal bilateral (end-of-period) exchange rates vis-à-vis the US dollar.

These were the euro (EU), the UK pound (GBP) and the Japanese yen (JY) denominated in US dollar

(USD) terms. In order to prolong the EU nominal exchange rate series, euro-dollar values before the

introduction of the euro were proxied with Deutsche mark-dollar data. CPI (total index) monthly data

for the �ve countries were collected from MEI. The �nal times series - monthly RER (deviations from

the long run mean) in logarithmic terms (yt) - were constructed following the methodology in Section

3.1.1..

As a preliminary exercise we compared the sample moments of the RER deviations of the three

exchange rates in question, and performed normality tests (Table 1). For the individual series in levels,

the summary statistics con�rm evidence of leptokurtosis and non-normality. The formal Jarque-Bera

test rejects normality in every case, adding support for using quantile regression.

4 Empirical results

In this section we report estimation results from the semi-parametric linear QAR model and the non-

parametric quantile smoothing method. Results are complemented with calculations of the relevant

half lives. The semi-parametric method provides some evidence of mean reversion across a range of

quantiles. A more detailed and instructive view is taken by focusing on the speci�c quantiles, where the

mean reversion becomes much stronger in the extreme quantiles (i.e. for extreme RER shocks). The

non-parametric test further reveals that the behaviour in each quantile is exacrabated when extreme

shocks combine with extreme deviations from the RER long run equilibrium.
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4.1 Estimation, unit root tests and half lives

As a �rst step, we had to choose the order of the AR process. Towards this, we followed previous practices

from Granger and Teräsvirta (1993), Teräsvirta (1994) and Taylor, Peel and Sarno (2001) and focused

on the partial autocorrelation function. In our case (results not reported, but available upon request)

this analysis clearly reveals that only the �rst partial autocorrelation coe¢ cient is signi�cantly di¤erent

from zero at the �ve percent level. Overall, in all cases a simple AR(1) model su¢ ciently captures the

dynamics involved. We enhance this result with a test for residual correlation (FRS test in Table 2,

Panel A), where we �nd that we can reject the hypothesis of serial correlation at the �ve percent level for

the AR(1) speci�cation. We then estimate a conventional conditional mean speci�cation, i.e. a simple

AR(1) model using OLS, and a QAR(1) model for � = (0:01; 0:05; 0:1; 0:25; 0:5; 0:75; 0:9; 0:95; 0:99). For

both speci�cations we performed (quantile) unit root tests (Table 2, Panels A and B). Our analysis is

completed with the estimation of half lives16 for both the AR(1) and the QAR(1) models (Table 3, Panels

A and B).

4.1.1 Conditional mean (OLS) speci�cation results

The naive conditional mean estimate of the autoregressive coe¢ cient in the AR(1) model con�rms the

stylised facts of a unit root in the RER, with all estimated coe¢ cients very close to unity and the relevant

unit root tests in levels suggesting that the coe¢ cient values are not statistically di¤erent from unity at

the �ve percent level of signi�cance. Overall, evidence from the two unit root tests employed, the

Phillips-Perron (1988) and the Ng and Perron (2001) tests, on the levels and �rst di¤erences indicate

that, while changes in the real exchange rate are stationary, the level of the real exchange rate contains

a unit root. These �ndings replicate well established results in the literature.

4.1.2 QAR speci�cation results

We now reconsider these series using quantile unit root tests. In particular, we �rst apply the QKS test

based on the QAR model for a range of quantiles T = (0:01; 0:99). This test is gives us a general idea of

the unit root behaviour of the series in question. Results are reported in Table 2, Panel B. Contrary to the

conventional unit root tests presented above, QAR unit root tests provide some evidence in favor of mean

reversion for the GBP and the EU, at the 10% signi�cance level. For the JY, we cannot reject the null of

a unit root. This is not overall unexpected for the JY, which has, in fact been notorious for such type of

16Half lives for a simple AR(1) model are computed based on the formula log(0:5)= log(a), where � is the autoregressive
coe¢ cient under consideration.
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behaviour. This could be the result of the Japanese catching up after the WWII, creating productivity

di¤erentials which determine the long run equilibrium of the RER (Harrold-Balassa-Samuelson e¤ects).

By and large we �nd the comparison between the two sets of results encouraging. For a more re�ned

investigation, we turn our attention towards the behaviour of speci�c quantiles (Table 2, Panel B). The

�rst striking observation is a varied behaviour across the di¤erent quantiles, both for the intercept (�0) and

the autoregressive coe¢ cient (�(�)). As noted above, the intercept captures the magnitude of the typical,

observed RER shock in each quantile (negative signs suggesting negative shocks, loosely interpreted as

appreciations and positive signs suggesting positive shocks, loosely interpreted as depreciations). The

�0 coe¢ cients present a monotonically ascending, symmetric behaviour, i.e. the absolute magnitudes

of positive and negative RER shocks are quite similar for a given set of complementary (symmetric)

quantiles (e.g. the 1% and the 99% or the 25% and 75% quantiles), therefore the magnitudes of shocks

hitting the RER appear to be symmetric. We also observe that the magnitudes of shocks are similar

across currencies, with the biggest shocks in absolute value deviating from the long run equilibrium by

approximately 0.035 log units.

However, the most interesting results are the values of the autoregressive (slope) coe¢ cients �(�) and

the relevant unit root tests in the QAR(1) model, which determine the mean reverting behaviour of the

RER in each quantile. A careful look reveals a distinct pattern and gives clear support for mean reversion

in certain quantiles and unit root behaviour in others. In particular, in the middle quantiles we observe

coe¢ cient values very close to unity (above and below), and in fact not di¤erent from unity in statistical

terms, suggesting a unit root in the RER17 . However, in the extreme quantiles coe¢ cients appear to be

lower with p-values rejecting the null of a unit root in conventional signi�cance levels, suggesting that the

persistence in the RER drops. A graphical representation of the above results is produced in Figure 1,

where the values of the autoregressive coe¢ cient for the di¤erent quantiles are displayed. It is possible

to see an inverse U-shaped pattern, suggesting that the coe¢ cient is smaller in the extreme quantiles

than in the mean quantiles. This heterogeneity in the slope coe¢ cients suggests a dynamic adjustment

towards the long-run PPP equilibrium. In fact, our main conclusion is that in the presence of small and

medium shocks, the RER does not adjust towards its PPP equilibrium value, but extreme shocks seem

to have the potential to induce mean reversion. These results are in line with evidence from Taylor, Peel

and Sarno (2001) and also relate to relevant evidence from Engel and Kim (1999).

Our results from the t(�) test identify that the series under consideration are not constant unit root

17 It is also worth noting that the estimated autoregressive coe¢ cient (�) in the conditional mean model assumes values
very close to the conditional median quantile estimates.
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processes. Nevertheless, the inconsistency with the QKS test, for the case of the JY raises questions

about the global properties of this series. This inconsistency could be due to the lower power of the QKS

test. However, our series do not follow a Student-t distribution, therefore evidence on the comparison

of the two unit root tests in terms of power (Koenker and Xiao, 2004b) is weak. Overall, our results

suggest that there are cases (i.e. quantiles) where the RER is mean reverting, and these tend to be cases

where big shocks hit the RER (i.e. the most extreme quantiles). We can say with some certainty (90%)

that this is enough for the whole process to revert back to its long run mean (apart from the case of the

JY).

Turning our attention to the estimated half lives (Table 3, Panels A and B), in the simple AR(1)

model, half lives are equal to in�nity, because a unit root behaviour dominates the results. However, in

the QAR(1) model, for the mean reverting quantiles we get di¤erent results. Namely, in the very extreme

quantiles (99%) we get surprisingly low half lives, ranging from 5 to 8 months. Half lives increase, but

still remain quite low in the 95% quantile, ranging from 10 to 14 months and only in the 90% quantile we

can see half lives of more than one year. These �ndings are well below the four year average suggested

by Rogo¤ (1996) and also below the �ndings of the non-linear literature.

We, therefore, see that the simple linear quantile model, in its ability to conduct analysis on the

di¤erent magnitudes of RER shocks, can give signs of mean reversion at the di¤erent quantiles, consistent

with the PPP.

4.1.3 Asymmetric dynamics

It is interesting, however, to note that only in the case of the GBP this e¤ect appears symmetric, i.e.

the RER is a less persistent process in both extreme positive and negative shocks (although more so for

extreme positive shocks). In the case of the EU and the JY the RER appears to be mean reverting

only in cases of extreme positive shocks. In statistical terms, this asymmetry suggests a shortage of

extreme values in the low or high quantiles with the potential to induce mean reversion. This might

be the case either because extreme shocks do not occur or because the shocks of di¤erent signs weight

di¤erently. Given the symmetric magnitudes of shocks, as reported from the constant term values (�0),

it is more plausible to assume the latter explanation. A potential reason for such asymmetries might lie

on monetary policy choices and o¢ cial intervention that impact asymmetrically on exchange rates (Dutta

and Leon,2002; Leon and Najarian, 2005). Overall, the semi-parametric quantile analysis suggests that,

although the shocks that hit the RER are of symmetric magnitudes, they impact asymmetrically on the

mean reversion of the RER.
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4.2 A graphical representation of the RER behaviour

A closer look at Figure 2, should provide a clearer intuition on the focus and results of the QAR(1) model.

In the graph we plot the realisations of the RER on the lagged value of the RER for the GBP. Given that

our data are monthly, the graph plots the realisations (dots) of the UK pound RER this month against its

value in the previous month. The straight diagonal line is the 45 degree, x = y axis, suggesting that the

RER has not changed since last month, i.e. implying an autoregressive coe¢ cient of unity and therefore

a unit root process. All the dots above the diagonal line suggest negative shocks (depreciations) to the

RER, because a deviation at time t is followed by a bigger deviation at time t + 1. Alternatively, all

realisations below the diagonal suggest positive shocks (appreciation), because a deviation at time t is

followed by a smaller one at time t+ 1.

A �rst look at the realisations can give a deceptive unit root impression, since most realisations lie

across the diagonal line. A closer look, however, reveals di¤erent patterns, namely that the centre of the

graph is more dense, i.e. most realisations lie close and around the long run equilibrium, whereas the

tails of the unconditional distribution (top right hand and bottom left hand corner) are not only more

sparsely populated but also have relatively bigger deviations from equilibrium, i.e. there appear to be

either large positive or negative shocks.

The dotted line is the mean (OLS) and the dashed line is the median (50% quantile) �t. It is obvious

that the slopes of both lines are very similar to each other and are, in fact, di¢ cult to discern from the

diagonal (long-slash) line, suggesting that the OLS and median quantile outcome will favor a unit root

behaviour. However, the image changes when we look at the outer slashed lines, which are the �ts on the

1% quantile (lowest line) and the 99% quantile (highest line), representing extreme negative and positive

shocks to the RER. In our case, the slopes of the extreme quantile �ts are de�nitely smaller than the

slope of the diagonal, suggesting that extreme shocks tend to induce mean reversion in the RER.

Finally, it is important to note that, for a given quantile, the slope that represents the RER adjustment

process, is determined by RER realisations that are close to (points in the middle part of the quantile

�tted line) or far away from (points at the two ends of the quantile �tted line) the PPP equilibrium.

That is, each quantile �t depends on realisations (shocks) that hit the RER at various RER points with

respect to its PPP equilibrium. A linear �t suggests that it is only the magnitude of the shocks and

not the original conditions of the RER at the time of the shock that a¤ect the �t. However, the limit

to arbitrage theory suggests that original conditions can impact on the mean reversion of the RER. In

order not to ignore potentially richer dynamics, that might result when a shock occurs far away from the
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PPP equilibrium, we accommodate such considerations in the non-parametric part of our analysis.

4.3 Non-parametric results

In this section we present the results of the piecewise linear �t, obtained by non-parametric quantile

smoothing, using total variation regularisation, following the methodology set out by Koenker, Ng and

Portnoy (1994). A graphical representation of the results is presented in Figure 3, Panels A to C. For

each currency we impose the 1%, 50% and 99% quantiles of the piecewise linear �t on a line with unity

slope and a constant equal to the respective quantile �0 coe¢ cient, so that any discrepancy between the

unit root case and the non-parametric �t is easier to detect. Figure 4, Panels A to C graphically presents

the various slopes in the individual quantiles under consideration, corresponding to the piecewise linear

plots in Figure 3. Finally, the analysis is complemented with Table 3, Panel C, where we show the slope

coe¢ cients and the relevant half lives for each subsegment of the piecewise linear �t.

Looking at the extreme quantiles we observe distinct departures from the linear QAR model. The

multiplicity of linear sub-segments within the same quantile stresses the di¤erence between the semi-

parametric and the non-parametric method and, moreover, o¤ers support to the limits to arbitrage theory.

A careful look will reveal that the left and right end of the 99% and 1% quantiles are, in the majority of

cases, associated with strong mean reverting RER behaviour for all currencies involved. Figure 4 and

Panel C of Table 3 gives ample support to that observation, with half lives recording very fast mean

reversion, as low as 1.3 months (GBP in 1% quantile). This outcome is much stronger compared to the

previous results of the literature, and even stronger than our results in the semi-parametric model. For

the middle part of the extreme quantile �ts, however, we get evidence of an autoregressive coe¢ cient

close to unity in most cases. In line with the limits to arbitrage argument, evidence from the extreme

quantiles suggests that large shocks, which originate at large disequilibrium levels, tend to induce strong

RER mean reversion. Mean reversion tendencies in the presence of large shocks are much weaker around

the RER long run equilibrium.

A quite novel insight comes from looking at the behaviour of the median quantiles, which di¤ers

signi�cantly from the one mentioned above. In the median (50% quantile) the �t appears to be the same

as in the linear case. Note that in the median quantiles the shock to the RER is minimal. This leads us

to conclude that, in the absence of shocks, the dynamic behaviour of the RER is not a¤ected, irrespective

of the RER deviation from the equilibrium.

As regards asymmetric dynamic adjustment patterns, compared to the linear, semi-parametric QAR
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model, we �nd evidence of mean reversion in both extreme quantiles for all currencies, although by no

means exactly symmetric. However, a more careful examination reveals a pattern. Asymmetries in

the adjustment dynamics of the RER are more pronounced when large shocks hit the RER at points far

away from its equilibrium. Asymmetries become less pronounced, or even disappear when large shocks

hit the RER near its equilibrium value. Finally, in the absence of shocks, for any disequilibrium level, we

cannot establish asymmetric dynamic adjustment patterns.

By and large, our results in this section o¤er support to the limits to arbitrage theory, put forth by

non-linear TAR and STAR methodologies. In the mean time, by taking into account both the e¤ect of

di¤erent magnitudes of RER shocks and the original disequilibrium condition of the RER we manage to

�nd half lives signi�cantly smaller compared to the previous literature. Overall, our results suggest the

following about the driving forces behind the RER mean reverting behaviour: a) When a big shock hits

the RER at a point already far from its equilibrium level, this shock tends to induce mean reversion. b)

Big shocks that originate at points near the PPP equilibrium have much reduced mean reversion abilities.

c) Small shocks either around or away from the RER equilibrium do not appear to induce mean reversion.

d) We �nd asymmetries in the adjustment dynamics of the RER when large positive or negative shocks

of the same absolute magnitude hit the RER at large disequilibrium points. Asymmetries become less

pronounced when a big shock hits the RER near its equilibrium value or in the absence of shocks, despite

the disequilibrium level of the RER.

5 Conclusions

This paper elaborates on the long standing PPP puzzles. Earlier literature seeked answers by employing

unit root tests with di¤erent levels of sophistication. Amongst those, the ones which accommodated

the non-Gaussian behaviour of the RER, seemed to have better power in detecting reversion towards

the PPP equilibrium. In this paper, we present QAR semi-parametric and non-parametric methods as

an alternative approach for robust inference in non-gaussian series. The quantile approach adopts an

agnostic and yet �exible framework for the analysis of the RER behaviour, thus sidestepping the need

to specify theory-consistent driving forces of the RER dynamic adjustment process. More precisely, the

quantile framework makes no assumptions about the underlying distribution of the RER, while allowing

for di¤erent (symmetric or asymmetric) persistence patterns at the di¤erent quantiles. It this sense,

it is possible to observe sequences of unit-root behaviour, while occasional mean reverting tendencies

can undermine the persistence of the whole process. By taking into account the di¤erent adjustment
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processes at the di¤erent quantiles, the quantile approach o¤ers a more robust unit root test than standard

alternatives.

More importantly, the QAR analysis and inference sheds light into both PPP puzzles. As concerns

the �rst one, our methodology o¤ers some support for the PPP, by providing evidence in favour of a

mean reversion in the RER from two di¤erent quantile unit root tests. Our approach also addresses the

second PPP puzzle by undertaking a detailed analysis of the impact of di¤erent magnitudes of actual

shocks on the RER. We rationalise the high persistence of the RER behaviour, by suggesting that

di¤erent magnitudes of shocks can induce di¤erent speeds of adjustment to the RER, while maintaining

consistency to the limit to arbitrage theory.

More speci�cally, our evidence from two di¤erent quantile unit root tests in semi- and non-parametric

settings suggests that the RER is not a constant unit root process across quantiles. We �nd that the

bigger the shock to the RER (i.e. the bigger the quantile), the faster the mean reversion back towards

its long run equilibrium, with half lives comfortably less than a year, in the case of extreme shocks. Our

results are further enhanced when large shocks hit the RER at points already far from its equilibrium.

In such cases half lives can fall signi�cantly less than a year. However, the mean reversion ability of large

shocks is diminished in cases when the RER is around its equilibrium value. Finally, in the absence of

shocks, mean reversion cannot be established irrespective of the RER disequilibrium level. In addition,

our method captures asymmetric dynamic adjustment of the RER, i.e. positive shocks have di¤erent

impact than negative shocks. Our results o¤er novel insights on the RER mean reverting behaviour and

further re�ne and enhance previous evidence in the PPP literature.
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Table 1. Descriptive statistics

GBP JPY CHF EUR

Mean 1.04E-10 -1.30E-11 -1.30E-11 1.08E-02

St. Dev. 0.057 0.093 0.071 0.143

Skewness 0.325 0.061 0.305 -0.538

Kyrtosis 3.251 2.108 2.750 2.055

Jarque Bera 7:829
[0:019]**

13:178
[0:001]*

7:371
[0:025]**

33:247
[0:000]*

Notes. The table presents the results from the descriptive statistics (the �rst four moments) and the
Jarque-Bera normality test. Values in brackets are asymptotic p-values. One and two asterisks denote

signi�cance in the 1% and 5% level respectively.
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Table 2. Autoregression estimation and unit root tests

Panel A) Conditional mean (OLS) speci�cation (lags=1)

OLS GBP JY EUR

� 0:974
(0:012)

0:981
(0:018)

0:988
(0:005)

FRS [0.089]* [0.087]* [0.088]*

Unit root tests in levels

PP �2:276
[0:180]

�2:394
[0:144]

�2:322
[0:165]

MZa -2.954 -0.474 -0.614

Unit root tests in �rst di¤erences

PP �18:145
[0:000]***

�18:091
[0:000]***

�18:245
[0:000]***

MZa -78.483 -20.594 -23.139

(Table 2 continues...)
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(...Table 2 continued)

Panel B) Quantile autoregressive linear speci�cation (lags=1)

Quantile GBP JY EUR

QKS unit root test over a range of quantiles (1% to 99%)

1%-99% [0:073)] [0:492] 0:093

Quantile estimation and unit root tests within each quantile

�0 a(�) �0 a(�) �0 a(�)

1% �0:034
[0:000]***

0:875
[0:023]**

�0:039
[0:000]***

0:960
[0:138]

�0:035
[0:000]***

0:992
[0:541]

5% �0:022
[0:000]***

0:958
[0:455]

�0:028
[0:000]***

0:985
[0:600]

�0:021
[0:000]***

0:988
[0:261]

10% �0:017
[0:000]***

0:964
[0:292]

�0:020
[0:000]***

0:986
[0:671]

�0:014
[0:000]***

0:988
[0:359]

25% �0:009
[0:000]***

0:987
[0:715]

�0:008
[0:000]***

0:986
[0:455]

�0:007
[0:000]***

0:994
[0:680]

50% �0:000
[0:472]

0:988
[0:690]

0:000
[0:349]

0:992
[0:292]

0:001
[0:070]*

0:993
[0:427]

75% 0:008
[0:000]***

1:009
[0:957]

0:008
[0:000]***

0:984
[0:179]

0:010
[0:000]***

0:992
[0:461]

90% 0:016
[0:000]***

0:984
[0:613]

0:016
[0:000]***

0:977
[0:079]*

0:020
[0:000]***

0:973
[0:283]

95% 0:021
[0:000]***

0:953
[0:075]*

0:021
[0:000]***

0:953
[0:065]*

0:027
[0:000]***

0:935
[0:060]*

99% 0:032
[0:000]***

0:898
[0:010]***

0:032
[0:000]***

0:912
[0:055]*

0:034
[0:000]***

0:918
[0:015]**

Notes: Panel A) The table shows the estimated values of the autoregressive (�) coe¢ cient of a

simple AR(1) model with the correspondent standard errors in parenthesis, the p-values of the residual

correlation F-test (FRS), and two unit root tests, the Philips-Perron (PP) (test statistic and p-values in

brackets) and the Ng and Perron (MZa) test statistic. Unit root tests are reported for the level and the

�rst di¤erence of each series in question. The critical values for the MZa test are -13.800, -8.100 and

-5.700 for the 1%, 5% and 10% level respectively. Panel B. The table shows the bootstrapped p-values

(2000 replications), calculated using the pair-wise bootstrap method for the Kolmogorov-Smirnov (QKS)

test, for the null of a unit root over a range of quantiles � 2 T , where T = (0:1; 0:99). It also shows the
estimated values of the constant term (�0) and autoregressive (a(�)) coe¢ cient of a QAR(1) model, for

� = f0:01; 0:05; 0:1; 0:25; 0:5; 0:75; 0:9; 0:95; 0:99g. Numbers in brackets are bootstrapped p-values (2000
replications), calculated using the pair-wise bootstrap method. For the constant term we are testing the

null of zero statistical signi�cance, whereas for the slope coe¢ cients we are testing the null of a unit root.

One, two and three asterisks denote statistical signi�cance at the 10, 5 and 1 percent level respectively.
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Table 3. Autoregressive coe¢ cients and estimated half lives

Panel A) Autoregressive coe¢ cients and half lives (lag=1)

OLS GBP JY EUR

� 0:974
(1)

0:981
(1)

0:988
(1)

Panel B) Quantile autoregressive coe¢ cients and half lives (lags=1)

Quantile GBP JY EUR

a(�) a(�) a(�)

1% 0:875
(5:191)

0:960
(1)

0:992
(1)

5% 0:958
(1)

0:985
(1)

0:988
(1)

10% 0:964
(1)

0:986
(1)

0:988
(1)

25% 0:987
(1)

0:986
(1)

0:994
(1)

50% 0:988
(1)

0:992
(1)

0:993
(1)

75% 1:009
(1)

0:984
(1)

0:992
(1)

90% 0:984
(1)

0:977
(29:78)

0:973
(1)

95% 0:953
(14:398)

0:953
(14:398)

0:935
(10:313)

99% 0:898
(6:443)

0:912
(7:525)

0:918
(8:101)

(Table 3 continues...)
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(...Table 3 continued)

Panel C) Non-parametric quantile autoregressive coe¢ cients and half lives (lags=1)

GBP/USD JY/USD EU/USD

Quantile 1% 50% 99% 1% 50% 99% 1% 50% 99%

0:597
(1:344)

0:988
(1)

0:789
(2:925)

1:050
(1)

0:992
(1)

0:855
(4:425)

0:925
(1)

0:994
(1)

0:719
(2:101)

1:070
(1)

1:004
(1)

1:051
(1)

0:950
(13:513)

0:954
(1)

1:084
(1)

a(�) 1:124
(1)

0:898
(6:443)

1:006
(1)

1:188
(1)

0:761
(2:538)

0:667
(1:712)

1:094
(1)

0:937
(10:652)

1:053
(1)

0:934
(10:152)

1:004
(1)

0:771
(2:665)

0:926
(9:016)

0:992
(1)

0:774
(2:706)

0:665
(1:699)

0:894
(6:186)

Notes: Panel A) The table presents the estimated values of the autoregressive (�) coe¢ cient of

a simple AR(1) model with the correspondent half lives in parenthesis, for each of the currencies under

consideration. Panel B) The table shows the estimated values of the autoregressive (a(�)) coe¢ cient of a

QAR(1) model and the correspondent half lives in parenthesis, for � = f0:01; 0:05; 0:1; 0:25; 0:5; 0:75; 0:9;
0:95; 0:99g. Panel C) The table shows the estimated values of the autoregressive coe¢ cient (a(�)),

as they result from the non-parametric total variation penalty, quantile smoothing method, and their

correspondent half lives in parenthesis for � = f0:01; 0:5; 0:99g. For all panels only the mean reverting

coe¢ cients (i.e. smaller than unity) were assigned a half live, whereas for the case of coe¢ cients either

bigger than unity or statistically not di¤erent from unity, half lives are set to in�nity1. The signi�cance
of the coe¢ cients with respect to unity, for the case of the non-parametric �t, was determined using

asymptotic inference methods (He and Ng, 1999).
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Figure 1.  Quantile intercept and autoregressive (QAR) coefficients 
 
 

 
 
Notes: The figures plot the quantile process of the intercept (right plots) and QAR coefficients (left plots) for each 
one of the major currencies. The vertical axis measures the values of the coefficients and the horizontal axis 
represents the values of the quantiles, ranging from 0.0 to 1.0. The nine points on the plots are the coefficient 
(intercept and slope) estimates at τ={0.01,0.05,0.10,0.25,0.5,0.75,0.90,0.95,0.99}. The grey areas indicate the 95% 
confidence band. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Figure 2.  OLS and quantile fits 
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Notes:  The figures present the realisations of the logged RER deviations (period t-1 against period t) from Jan 1973 
to Dec 2004 for the four currencies under consideration. The horizontal and vertical axes represent degrees of dis-
equilibrium of the RER. The long-slash line represents the diagonal axis (x=y) and superimposed on that are the 
(OLS) mean and median fits, dotted and slashed lines respectively. The outer slashed lines represent the fit in the 1% 
(lower) and 99% (higher) quantile respectively. 
 
 



 
 
 

Figure 3.  Non-parametric quantile fit 
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(Figure 3 continues…) 



 
 
 
(…Figure 3 continued) 
 
 
 
Panel B) Japanese Yen 
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(Figure 3 continues…) 



 
 
 
 
 
(…Figure 3 continued) 
 
 
Panel C) Euro 
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Notes:  The figures present the realisations of the logged RER deviations (period t-1 against period t) from Jan 1973 
to Dec 2004 for the three currencies under investigation. The horizontal and vertical axes represent degrees of 
disequilibrium of the RER. Superimposed on the realisations are the fits of the regression quantiles smoothing splines 
for τ = (0.01, 0.5, 0.99)) (solid lines), with standard error bands (dotted lines).  The long-slash lines represent the 
diagonal axis (x=y) for the intercept values of the respective QAR fits (Table 2).  
 
 



Figure 4.  Non-parametric quantile fit– slope coefficients 
 
Panel A: British pound 
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Panel B: Japanese Yen  
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(Figure 4 continues…) 



 
 
 
(…Figure 4 continued) 
 
Panel C: Euro 
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Notes:  The figures present the correspondent slope coefficients at the different quantiles of the non-parametric 
quantile fits in Figure 3, Panel B, for τ = (0.01, 0.5, 0.99). The vertical axis presents the range of slope coefficient 
values and the horizontal axis the number of observations (relating to the ordered values of the RER realisations in 
the horizontal axis of Figure 3). 
 
 


