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Abstract 
 
We investigate the finite sample performance of some recent Monte Carlo estimators 
under different market scenarios. We find that the accuracy and efficiency of these 
estimators are remarkable, even when more exotic financial instruments are 
considered. Finally, we extend the Glasserman and Yu (2004b) methodology to price 
Asian Bermudan options and basket options. 
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1. Introduction 
 
The enormous growth of structured products over the last years has transformed the 
option-pricing theory in one of the most dynamic areas in finance. It has now become 
essential for the business and finance industry to extend the traditional option pricing 
methodologies in order to price more exotic type of options with American style 
features.1
 It is well known that pricing American options is fundamentally an optimal 
stopping problem. In fact while with an European options a payoff can only occur 
when the option expires, with American options a payoff can occur at any time during 
the option life, including the expiration date. This feature gives rise to a free boundary 
problem. 
 Different methodologies have been proposed for pricing American style 
options. The binomial method introduced by Cox, Ross, and Rubinstein (1979) is still 
the most widely used valuation model, because it is easy to implement and produces 
reasonably accurate results. However, it has a major drawback, namely the fact that a 
high degree of accuracy can only be achieved with a high number of time steps, which 
reduces the computational speed and results in considerable efficiency costs. 
Furthermore, it is very difficult, if not impossible to price derivatives such as the ones 
analysed in the second part of this paper. 
 Monte Carlo methods to price American style options seem to be now an 
active research area, the reason is mainly due to its suitability to price path dependent 
options and be employed to solve high dimensional problems (see for example 
Xiaoquin, 2001). 
 Recently, Longstaff and Schwartz (2001) suggest using Least squares 
approximation to approximate the option price on the continuation region and Monte 
Carlo methods to calculate the option value. They call this technique least square 
Monte Carlo approach (LSM). They also show that their methodology can be 
extended to price path dependent options and solve high dimensional problems. In 
their empirical analysis, the authors apply their method to price a wide class of 
derivatives instruments, and show that it yields the best combination of price accuracy 
and efficiency amongst the several methodologies they consider. However, apart from 
Proposition 1 and 2, very little is said about the statistical properties of the proposed 
estimator. Furthermore proofs of Proposition 1 and 2 do not consider the effect of  
anthitetic techniques. 
 Recently Clement et al (2002) address some of the above issues by 
undertaking a theoretical analysis of the LSM estimator, and show that the option 
price converges, in limit, to the true option price. However, the theoretical proof in 
Clement et al (2002) might have at least three limitations. Firstly, again, they do not 
consider the effect of anthitetic techniques in their proof. Secondly, their proof is 
based on a sequential limit rather than joint limit.2 The latter might be rather odd on a 
practical ground. Finally, the LSM-estimator assumes constant volatility and this 
assumption is maintained when asymptotic convergence is proved. 
 Glasserman et al (2004a) consider the limitations in Clement et al (2002) and 
prove convergence of the LSM estimator as the number of paths and the number of 
basis functions increase together. They consider two cases for the underlying 
                                                           
1 In fact, American style types of options are embedded in various structured product instruments. 
2 That is, they show convergence in two stages. First they fix the number of replications and let the 
number of basis functions go to infinite. Thereafter, they fix the number of basis functions and let the 
number of replications go to infinite. 
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stochastic process driving the stock prices, namely standard Brownian motion and 
Geometric Brownian motion and show that, in the geometric Brownian motion case, 
the number of paths must increase very fast with respect to the number of basis 
function. 
 Glasserman et al (2004b) show that under certain assumptions, the weighted 
Monte Carlo Estimator (WME) is equivalent to regression estimators and can produce 
less disperse estimates of the option price. Yet proofs of convergence of this class of 
estimators assume constant volatility and furthermore no finite-sample proof of the 
convergence of the proposed estimators is provided in that study. 
 In the last few years, the LSM and the WME estimators have raised great 
interest amongst practitioners working in the finance industry. The main reason for 
this, as mentioned above, is their suitability for pricing very exotic financial 
instruments. However, despite the notoriety of these methods, proofs of convergence 
of these estimators are still limited and based on different assumptions.   The general 
objective of this paper is to analyse the finite sample approximation of the two 
estimators above. To achieve this objective, we allow for different market scenarios, 
different number of basis functions and different number of replications and measure 
the performance of these estimators by estimating the standard error of the regression. 
In this respect, this study extends previous empirical studies such as Xiooquin et al 
(2001), Morenos and Novas (2001) and Stentoft (2004).3  

As shown in Glasserman and Yu (2004a) the choice of the basis function used 
in the regression is very important since (uniform) convergence of the option price to 
the true price can only be guaranteed if the polynomial basis spans the “true 
optimum”. To address this issue, we consider different basis functions and suggest a 
possible “optimal polynomial basis”.  

Finally, our study is the first empirical study on the WME as in Glasserman et 
al (2004b) and it also extends that methodology to price options on a maximum of 

assets and Bermudan-Asian options. We show that even when more difficult 
payoffs are considered, the WME estimator produces reasonably accurate prices. 
n

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                           
3 These studies consider finite sample approximations of the LS (2001) estimator, when both the 
number of basis functions and paths increase, but they do not consider different market scenarios. 
Since, as we mentioned above, these estimators raise great practical interest, we believe it might be of 
some interest to see how well they perform under different market conditions.  

 3



 
2. The LS (2001) Monte Carlo Method 
 
In the following sections we briefly review the methodologies analysed in this paper 

and critically assess some of their relevant assumptions.  

We consider a probability space ),,( ΡΑΩ and its discrete filtration , 

with being an integer. Define with a 

niiF ,...,0)( =

n nXXX ,..., 10
dR valued Markov chain 

representing the state variable recording all the relevant information on the price of a 

certain underlying asset. If an American option is exercised at time i , with 

, its payoff is given by the following sequence of square integrable random 

variables , and we assume that the latter is an adapted process on , such 

that for , , for some functions 

ni ,...,1,0=

nii ,...1,0)*( =Ρ iF

ni ,...1,0= ),(* ii XiΘ=Ρ ,.)(iΘ . The focus here is on 

computing , where denote the randomised stopping times. ττ ΡΓ∈ E
n,0

sup iΓ

Define with , , the value of an option if exercised at time under 

the state . The value of this option within a dynamic programming framework can 

be written as: 

)(xVi
dRx∈ i

x

 
]|)([sup)( xXXExV ii =Θ= Γ∈ τττ   (1) 

 
with  
 

)()( xxV nn Θ=      (2) 
 
 

]}|)([(),(max{)( 11 xXXVExxV iiini =Θ= ++  (3) 
 
 

Since the objective here is to determine , this reduces to (i) approximating the 

conditional expectations in (3) in some ways, and (ii) obtaining a numerical (Monte 

Carlo) evaluation of the latter. 

0V

 Since the payoff above is a square integrable variable, then will be a 

function spanning the Hilbert space and we may consider approximating the 

conditional expectations in (3) by the orthogonal projection on the space generated by 

a finite number of basis functions 

(.)iV

kiφ , ni ,...,1=  and Kk ,...,1,0= , such that  
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)()( xxV nn φ=        (5) 
 
 

]}|)([(),(max{)( 11 xXXVExxV iiiii == ++φ    (6) 
 
 
Therefore the conditional expectations can now be approximated, for all , by a 

simple regression approach: 

i

 

1
0

,,11 )()( +
=

++ +≡ ∑ i

K

k
ikikiii XcXV εφ     (7) 

 
 
In this way we have transformed the complex problem in (6) in a simpler one, 

requiring the estimation of the 1+K  coefficients in (7). This can be easily achieved 

by using a least square approach as follows: 

 
 

1
1

*
1

**
1

*
0 ])'()(][)'()([(),...,,( −

++= XXXXVEccc iiiiiiiiKii φφφ   (8) 
 

 
One may also considering replacing (6) with its continuation value as: 
 
 

]}|)}([(),({max{)( 1111 xXXXEx iiiiii =Κ=Κ ++++ϕ    (9) 
 
with the final condition  0)( =Κ xn

 
And the least squares coefficients  now solve *ϕ
 
 

1
1

*
1

**
1

*
0 ])'()(][)'()([(),...,,( −

++Κ= XXXXE iiiiiiiiKii ϕϕϕϕϕϕ             (10) 
 
 

Once we have solved the conditional expectation problem by using a finite number of 

basis functions as in (7), the next step consists in evaluating it numerically. This can 

be done by simulating paths of the Markov process , with , and 

calculating, at each stopping time 

j j
iX mj ,...,1=

τ , recursively, the payoff . ),(* j
ii

j Xτφτ =Ρ
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Remark 1. Note that in (8) we assume that the coefficients are estimated using a 

sample, therefore to account for sample bias we have included residuals in (7). This 

allows equation (7) to be an exact approximation of the conditional expectations in 

(3)4.  

 
Assumption 1. For all 1,...,0 −= ni , ( )i 0)|( 1 =+ ii XE ε , )(ii 0])'()([( =iiii XXE φφ . 
 
 
Remark 2. Assumption 1 (i) requires 1+iε being strictly exogenous for all i . Proofs are 

given in Grosserman and Yu (2004a) and Longstaff and Schwartz (2001). Assumption 

1 (ii) is slightly trickier and we shall come back to this issue in the next sections.  

 
Under Assumption 1 (i) and (ii) as ∞→m ii VmV =||* , where is the estimated 

option price, or also, once fixed , that 

*
iV

m ∞→Klim )|*()||*( iiii FPEFmE =Ρτ , 

Clement et al (2002). 

 

Remark 3.  

Clement et al (2002) analytically show convergence of the LS estimator. They also 

prove that the rate of convergence of the LS estimator is tight. However, their proof is 

a sequential one and not a joint proof. Theoretically, the LS method can be seen as 

consisting of two stages. First, the evaluation of the conditional expectations, that can 

be regarded as an optimal stopping problem on τ . Second the estimation of the option 

value. Therefore, we can, first, check the convergence of the value function as the 

number of basis functions increases, for a given . Finally, we can fix m K , and check 

the convergence as m increases. We have already discussed about the limitations of 

this approach. 

 

 

 

 

                                                           
4 Clement et al (2002) do not consider sample bias and assume that the coefficients can be exactly 
estimated by least square methods. 
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3. The Grasserman and Yu (2004b) Method 

 

In equation (7) we approximated the conditional expectation by using a finite number 

of current basis functions (that is )( ii Xφ ). However one would expect the option 

price at time 1+i to be more closely correlated with the basis function 

)( 11 ++ ii Xφ rather than )( ii Xφ .Glasserman and Yu (2004b) develop a method based on 

weighted Monte Carlo simulation where the conditional expectation in (3) is 

approximated by )( 11 ++ ii Xφ rather than )( ii Xφ . They show that their Monte Carlo 

scheme has a regression representation given by: 

 
 

∑
=
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and the least squares estimator is, therefore, given by: 
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Provided that Assumption 2 below holds: 
 
 
Assumption 2. )()|)(( 11 iiiii XXXE φφ =++ , for all i . 
 
 

Remark 4. Grasserman and Yu (2004b) consider the following assumptions on : 

(i), , (ii) . These assumptions together 

with Assumption 2 (i.e. martingale property of the basis function) guarantee that 

. 

^

1+iε

0))()((( 11

^

1 =−+++ iiiii XXE φφε 0)|(
^

1 =+ ii XE ε

^

ii VV =

 

Glasserman and Yu (2004b) call this method regression later, since it involves using 

basis functions )( 11 ++ ii Xφ . On the other hand, they call the LS (2001) method 

regression now since it uses basis functions )( ii Xφ . 
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4. Valuing American Put Options 

 

In this section we apply the methodologies above to price American style put options. 

Although there are other applications of the Longstaff and Schwartz (2001) Monte 

Carlo method to price American style options (see for example Xiooquin et al, 2001 

and Moreno and Novas, 2001), none of them has considered such a wide set of 

parameters as the present study does. We consider a wide range of parameters for 

strike, maturity and volatility. Allowing for a wide range of volatility parameters is 

particular important since both the methodologies assume constant volatility. 

Therefore it might be informative to investigate the performance of these methods 

when volatility changes. Finally, at the best of our knowledge this is the first study to 

empirically assess the method proposed in Glasserman and Yu (2004b). 

 As in Longstaff and Schwartz (2001), we implement the methodologies by 

using antithetic techniques (for example, 50,000 simulations plus 50,000 antithetic). 

As a benchmark, we consider the Binomial method with 10,000 time steps. For each 

set of parameters we report option prices obtained by using different basis functions 

and different polynomial order. We consider polynomial of second, third up to the 

fifth order. We have also considered different number of replications, that is 30,000, 

50,000 and 150,000 paths. Results are available upon request. For each set of 

parameters, we calculate the bias with respect to a Binomial price. We also calculate 

the absolute best price across the four.  

As we pointed out above (see equations (1)-(3) and (4)-(5)), the methods 

appear to suffer from two main biases. First there is a bias in the approximation of the 

conditional expectation and consequently in the estimation of the optimal stopping 

strategy. This will lead to underestimate the true option price. This bias should tend to 

zero as the number of basis function increases. There is also a second bias that results 

from using a sample to estimate the price of the option. This should tend to zero as the 

number of replication increases5. We present crude estimates of the first bias, by 

calculating the absolute error6, and of the second bias by calculating the standard 

errors. Combining the increase in the number of basis with a correct increase in the 

                                                           
5 There is also a bias introduced by replacing the American option problem with a series of Bermudan 
options. Glasserman et Yu (2004a) use martingales basis to deal with this issue. 
6 A better measure of bias based on mean square error (MSE) was proposed in Glasserman and Yu 
(2004a). The analysis of the MSE and martingales basis as suggested in Glasserman and Yu (2004a) is 
the aim of a companion paper. 
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number of replication, and assuming that the polynomial spans the “true optimum”, 

then convergence of the estimated price to the true price should be guaranteed7. 

We only report prices when in the money options are considered since this 

should be the most interesting case to consider here. However we have also 

considered at the money and out of the money options. Results are available upon 

request8.  

 Price estimates of the option using the LS (2001) method and associate bias 

are reported in Table 1, Table 3, and Table 5. We note that, in general, the bias 

approaches to zero as the number of basis increase, and convergence seems to be 

faster when simple exponential basis are used than in other cases9. This result 

contrasts with what reported in Longstaff and Schwartz (2001) since they find 

Laguerre basis over-performing the others. Generally three or four basis are sufficient 

to eliminate the bias when exponential basis are used. 

 Recently, Glasserman and Yu (2004b) suggest a Monte Carlo method based 

on martingales basis. We repeat exactly what we have done with the LS (2001) 

method with the Glasserman and Yu (2004b). To apply this method we need to satisfy 

the martingales assumption on the basis functions as requested by Assumption 2. This 

is rather demanding particularly when applying it to solve high dimensional problems. 

In the Geometric Brownian motion case, we specify the following basis function for 

kφ , , where W is a standard Brownian motion process. Results are 

reported in Table 7.  

2/)( 2

)( tktkW
k et −=φ

In general, the method, in terms of bias, produces rather accurate prices. The 

error is well inside a bid-ask price for similar traded options. However, the accuracy 

does not seem to be as good as with the LS (2001) method. Furthermore the bias does 

not seem to drop to zero as fast as with the LS (2001) method and it tends to be 

particularly relevant when volatility changes. Probably this is due to the martingale 

assumption made on the basis functions. In fact the latter might become too restrictive 

in this context (see Glasserman and Yu, 2004b).  

                                                           
7 As we have already mentioned this is one of the objectives of this study. 
8 However, the first source of bias should not be very relevant in these particular cases. 
9 As pointed out in Glasserman and Yu (2004ab) the inclusion of too many bases functions may cause 
an over-fitting of the true price and consequently we may observe a non-monotone convergence. This 
problem seems not to be relevant in our empirical analysis probably due to the sufficiently low number 
of basis considered. 
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 We now consider the second source of bias (i.e. sample bias) by calculating 

standard errors. These were obtained by replicating the option price one hundred 

times. Standard errors for the LS (2001) method are reported in Tables 2, Table 4, and 

Table 6. In general, standard errors are very low, and much lower than what reported 

in Longstaff and Schwartz (2001)10. Apart few cases with Hermite basis, standard 

errors do not vary noticeably across the different number of basis. This might suggest 

that the method, regardless the basis used, tends to produce estimates that are not very 

dispersed. In general, standard errors with exponential methods are at least as low as 

standard errors obtained with Laguerre basis. We confirm a significant reduction of 

the standard errors when the numbers of replications increase from 50,000 to 

100,00011. Standard errors for the Glasserman and Yu (2004b) method follow a 

similar pattern. This result might imply that Theorem 1 in Glasserman and Yu 

(2004b) also holds when a multi-periods framework is considered. 

 

6. Valuing American Bermuda Asian Options 

 

In the following sections we consider the previous methodologies when pricing more 

complex options such as American Asian options and options written on a maximum 

of assets. It is with this type of options that these methodologies become useful and 

interesting

n
12. 

As in Longstaff and Schwartz (2001), we consider pricing an American Asian 

option having also an initial lockout period. Pricing these types of options is rather 

demanding since they contain two features. Firstly, the option features a lock out 

period. Secondly, it is path dependent since its value depends not just on the price of 

the underlying asset but also on the arithmetic average price. Therefore the 

continuation value function in this case will depend not just on the price of the 

underlying asset but also on the average price. 

 In order to use the options prices reported in Longstaff and Schwartz (2001) as 

benchmark, we consider an American call option that after an initial lock out period 
                                                           
10 However as pointed out in Rasmussen (2002) it is likely that standard errors in that study were 
computed without using variance reduction techniques. 
11 Results available upon request. 
12 In fact standard applications on American put options may well be covered by standard Binomial 
methods. However, as noted in Caporale and Cerrato (2005), even in these standard applications there 
is a trade-off between price accuracy and number of time steps to be considered when using Binomial 
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of three months can be exercised at any time up to maturity T . We assume 

2=T years. The average is the (continuous) arithmetic average of the underlying 

stock price calculated over the lock out period. As in Longstaff and Schwartz (2001) 

the strike price is $100, the risk free rate of interest 0.06 and volatility 0.20. We use 

anthitetic technique plus different scenarios for the stock prices  and assume 200 

steps for both stock price and average. 

)(S

 Results are reported in Table 9. Longstaff and Schwartz (2001) use the first 

eight Laguerre basis functions in their application13 and 50,000 replications. We do 

exactly the same and report results in the 5th column of Table 9. Qualitatively, our 

results support those reported in Tables 3 of Longstaff and Schwartz (2001). 

However, we also change the number of replications and the basis functions. We note 

that by increasing the number of replications we obtain prices that are, generally, very 

close to the ones reported in the Table 3 of Longstaff and Schwartz (2001), with a 

slightly preference for Laguerre basis.  

In Table 10, we extend the Glasserman and Yu (2004b) method to price 

American Asian options. We use Hermite basis ( KHφ ) to satisfy Assumption 2 as 

follows, KHkf φ , with . The method seems to underestimate the true option 

price.

2/k
k tf =

14

 

7. Valuing American Basket Options 

 

Finally, we consider solving high dimensional problems. We consider an American 

call option written on a maximum of five risky assets paying a proportional dividend. 

We assume that each asset return is independent from the other. Once again, we use 

the same parameter specifications as in Longstaff and Schwartz (2001) and Broadie 

and Glaserman (1997) such that we can use prices reported in these papers as 

benchmark. 

 Broadie and Glasserman (1997) use stochastic mesh to solve this type of 

problems and report confidence interval for the option prices. However, the 
                                                                                                                                                                      
methods.  Caporale and Cerrato (2005) propose a dynamic programming approach based on binomial 
probabilities and they show that their approach is more efficient than an accelerated Binomial method. 
13 That is first two Laguerre basis on the stock price and average plus their cross products including an 
intercept. 
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computational time in that study appears to be a serious matter since it takes about 20 

hours on a 266-Pentium 2 to achieve an accurate price. 

 Longstaff and Schwartz (2001) use their LS-Monte Carlo method and estimate 

a price with the same level of accuracy as in Brodie and Glasserman (1997), but in 

only two minutes. However, that study only considers Hermite polynomials. 

We consider three different options with initial stock prices of 90,100, and 110 

respectively15. The assets pay a 10% proportional dividend, the strike price of the 

option is 100, the risk free rate of interest is 10% and volatility is 20%. Confidence 

intervals reported in Brodie and Glasserman (1997) are [16.602, 16.710] when the 

initial asset value is 90; [26.101, 26.211] with initial asset value of 100, and finally 

[36.719, 36.842] when the initial value is 110.  

The option prices in Longstaff and Schwartz (2001) are respectively, 16.657, 

26.182, and 36.812 and they all fall within the Broadie and Glasserman `s confidence 

interval above. Using a 300MHz Pentium II processor the authors claim that they are 

able to achieve that accuracy in only 2 minutes. 

We note that regardless of the number of replications or basis functions used, 

we achieve, in all the cases, a price that follows within the above interval. We also 

calculated the average time for the computation of the price by using a Pentium 4 1.6 

Hz-M. The average time is about 8.2 seconds. The gain in terms of time seems to be 

greater when exponential basis are used rather than Hermite basis. 

Finally, we extend the Glasserman and Yu (2004b) method to price these 

types of options. Once again we use Hermite basis as in the previous section to satisfy 

Assumption 2. We note that option prices estimates fall within the Broadie and 

Glasserman `s confidence interval when 50,000 paths are considered. In terms of 

computational speed, the method seems to be more demanding than the LSM method. 

 

 

 

 

 

 
                                                                                                                                                                      
14 Note that we take the prices reported in Longstaff and Schwartz (2001) Table 3, column 6th, as true 
prices. However, prices reported in Table 9, column 7th, above are a good approximation of the ones 
reported in Longstaff and Schwartz (2001). 
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8.Conclusions 
 
From an academic and even a practitioner`s point of view, pricing American options 
still remains an interesting research area, particularly when Monte Carlo techniques 
are used. This is due mainly to the flexibility of this method when used to solve high 
dimensional problems. 
 Recently, Longstaff and Schwartz (2001) and Glasserman and Yu (2004b) 
propose two methods based on simulations to price American options. Proofs of 
convergence of the LSM estimator are given in Clement et al (2002) and Egloff 
(2004), while proofs of convergence of the WME, as in Glasserman and Yu (2004b), 
are given in the same paper. However, those proofs are based on a set of assumptions 
that, in some cases might result rather restrictive. 
  The general objective of this paper is to undertake a large empirical analysis 
to investigate the finite sample approximations of these estimators. We consider 
different market scenarios, use different polynomial basis, and number of basis 
functions. Therefore, in this respect, the present study differs substantially from the 
previous empirical ones in the area since the latter are rather limited.  

Other objectives are (i) estimating the bias induced by these methodologies, 
(ii) suggesting  “optimal” basis functions. Finally, this is the first empirical study on 
the estimator proposed in Glasserman and Yu (2004b) and it extends that method to 
price exotic type of American options, and solve high dimensional problems. 
 Overall, we find that the option price estimate provided by these estimators is 
economically acceptable regardless the type of option considered. Large part of the 
sample bias can be eliminated with an acceptable number of replications (i.e. 
100,000). However, in general, the LS (2001) estimator performs the best. With this 
estimator we found simple exponential basis functions to over-performing the others. 
Therefore, in practical applications, we recommend using this basis. In general, a 
number of basis equals to three, 100,000 replication and exponential basis appear to 
be sufficient for the method to eliminate the bias. 
 Two issues on the agenda for future research in this area. Firstly, finding 
martingales basis for the most common used basis functions, such as to satisfy 
Assumption 2 in this paper and consequently implementing the Glasserman and Yu 
(2004b) methodology. In fact, it is evident, from the empirical results in sections 7-8 
that this is particularly important when the Glasserman and Yu (2004b) method is 
applied to high dimensional problems. This might also explain the weaker 
performance of that methodology with respect to the LSM methodology in that 
context. Secondly, considering the method proposed in Glasserman and Yu (2004a) 
and the measure of bias proposed in that paper to investigate finite sample 
approximations. 
 
 
 
 
 
 
 
 
 

                                                                                                                                                                      
15 Note that we assume the initial value of the asset to be the same for all the five stocks in the basket.  
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Table 1: 100,000 Paths with Exponential Basis. LS (2001) Method 
Stri 
ke 

Matu 
rity 

Volati 
lity 

Order    Bino
mial 

Difference   Best

   2 3 4 5  2 3 4 5  
45 0.0833 0.2 4.996 4.9963 4.998 4.9962 5 0.00 0.00 0.00 0.00 0.00
45 0.3333 0.2 5.075 5.0863 5.077 5.0873 5.087 -0.01 0.00 -0.01 0.00 0.00
45 0.5833 0.2 5.267 5.2447 5.259 5.2594 5.265 0.00 -0.02 -0.01 -0.01 0.00
45 0.0833 0.3 5.052 5.0578 5.057 5.0435 5.06 -0.01 0.00 0.00 -0.02 0.00
45 0.3333 0.3 5.686 5.6985 5.713 5.7077 5.706 -0.02 -0.01 0.01 0.00 0.00
45 0.5833 0.3 6.219 6.2375 6.25 6.2307 6.244 -0.02 -0.01 0.01 -0.01 0.01
45 0.0833 0.4 5.265 5.2807 5.29 5.2942 5.286 -0.02 -0.01 0.00 0.01 0.00
45 0.3333 0.4 6.508 6.5139 6.508 6.5104 6.51 0.00 0.00 0.00 0.00 0.00
45 0.5833 0.4 7.364 7.3827 7.387 7.3748 7.383 -0.02 0.00 0.00 -0.01 0.00

  

Table 2: Standard Errors LS (2001) Method and Exponential Basis.  
Stri 
ke 

Matu 
rity 

Volati 
lity 

Order    

   2 3 4 5 
45 0.0833 0.2 0.0017 0.0018 0.0022 0.0019
45 0.3333 0.2 0.0047 0.0040 0.0050 0.0053
45 0.5833 0.2 0.0065 0.0065 0.0060 0.0068
45 0.0833 0.3 0.0038 0.0019 0.0036 0.0039
45 0.3333 0.3 0.0065 0.0063 0.0061 0.0054
45 0.5833 0.3 0.0070 0.0076 0.0073 0.0065
45 0.0833 0.4 0.0052 0.0046 0.0046 0.0047
45 0.3333 0.4 0.0073 0.0063 0.0067 0.0062
45 0.5833 0.4 0.0074 0.0075 0.0083 0.0084

  

Table 3: 100,000 Paths with Laguerre Basis. LS (2001) Method 
Strike Matu 

rity 
Volat 
ility 

Order    Bino 
mial 

Difference  Best

   2 3 4 5  2 3 4 5  
45 0.0833 0.2 4.9964 4.997 4.9965 4.997 5 0.00 0.00 0.00 0.00 0.00 
45 0.3333 0.2 5.0674 5.0748 5.0785 5.082 5.087 -0.02 -0.01 -0.01 0.00 0.00 
45 0.5833 0.2 5.174 5.2112 5.2454 5.2518 5.265 -0.09 -0.05 -0.02 -0.01 0.01 
45 0.0833 0.3 5.0134 5.0455 5.0469 5.0461 5.0597 -0.05 -0.01 -0.01 -0.01 0.01 
45 0.3333 0.3 5.4138 5.4977 5.6559 5.6699 5.7059 -0.29 -0.21 -0.05 -0.04 0.04 
45 0.5833 0.3 5.6949 5.7385 5.9944 6.1951 6.2438 -0.55 -0.51 -0.25 -0.05 0.05 
45 0.0833 0.4 5.1981 5.2465 5.2443 5.2545 5.2863 -0.09 -0.04 -0.04 -0.03 0.03 
45 0.3333 0.4 5.063 5.2776 5.69 6.1073 6.5096 -1.45 -1.23 -0.82 -0.40 0.40 
45 0.5833 0.4 6.2169 6.1817 6.5022 6.9545 7.3829 -1.17 -1.20 -0.88 -0.43 0.43 
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Table 4: Standard Errors LS (2001) Method and Laguerre Basis 
Stri 
ke 

Matu 
rity 

Volati 
lity 

Order    

   2 3 4 5 
45 0.0833 0.2 0.0017 0.0018 0.0019 0.0016
45 0.3333 0.2 0.0049 0.0049 0.0049 0.0048
45 0.5833 0.2 0.0060 0.0062 0.0060 0.0063
45 0.0833 0.3 0.0043 0.0035 0.0045 0.0046
45 0.3333 0.3 0.0070 0.0063 0.0060 0.0065
45 0.5833 0.3 0.0065 0.0068 0.0069 0.0067
45 0.0833 0.4 0.0050 0.0046 0.0047 0.0048
45 0.3333 0.4 0.0070 0.0072 0.0073 0.0072
45 0.5833 0.4 0.0092 0.0082 0.0093 0.0091

 
 
Table 5: 100,000 Paths with Hermite Basis. LS (2001) Method   
  
Strike Maturity Volatil

ity 
 Bino

mial
Diffe 

Rence 
 Best

   2 3 4 5  2 3 4 5  
45 0.0833 0.2 4.9963 4.9963 4.9963 4.9963 5 -0.0037 -0.0037 -0.0037 -0.0037 0.0037
45 0.3333 0.2 5.0823 5.0830 5.0841 5.0849 5.087 -0.0047 -0.0040 -0.0029 -0.0021 0.0021
45 0.5833 0.2 5.2538 5.2630 5.2635 5.2633 5.265 -0.0112 -0.0020 -0.0015 -0.0017 0.0015
45 0.0833 0.3 5.0514 5.0519 5.0534 5.0544 5.0597 -0.0083 -0.0078 -0.0063 -0.0053 0.0053
45 0.3333 0.3 5.6871 5.6941 5.6958 5.6982 5.7059 -0.0188 -0.0118 -0.0101 -0.0077 0.0077
45 0.5833 0.3 6.2185 6.2321 6.2363 6.2322 6.2438 -0.0253 -0.0117 -0.0075 -0.0116 0.0075
45 0.0833 0.4 5.2560 5.2842 5.2834 5.2831 5.2863 -0.0303 -0.0021 -0.0029 -0.0032 0.0021
45 0.3333 0.4 6.4865 6.5020 6.5056 6.4930 6.5096 -0.0231 -0.0076 -0.0040 -0.0166 0.004
45 0.5833 0.4 7.3657 7.3792 7.3870 7.3819 7.3829 -0.0172 -0.0037 0.0041 -0.0010 0.001

 

Table 6: Standard Errors LS (2001) Method and Hermite Basis 
Strike Maturity Volatil

ity 
 

   2 3 4 5 
45 0.0833 0.2 0.0018 0.0019 0.0017 0.0050
45 0.3333 0.2 0.0052 0.0047 0.0050 0.0041
45 0.5833 0.2 0.0054 0.0058 0.0056 0.0055
45 0.0833 0.3 0.0036 0.0038 0.0037 0.0050
45 0.3333 0.3 0.0057 0.0054 0.0060 0.0060
45 0.5833 0.3 0.0071 0.0063 0.0072 0.0050
45 0.0833 0.4 0.0047 0.0041 0.0044 0.0028
45 0.3333 0.4 0.0066 0.0065 0.0069 0.0039
45 0.5833 0.4 0.0078 0.0079 0.0082 0.0056
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Table 7: 100,000 Paths, GY (2004b) Method 
Stri 
ke 

Matu 
Rity 

Volati 
lity 

Order Bino 
mial 

Difference  Best

   2 3 4 5 2 3 4 5  
45 0.083 0.2 5 4.996 4.997 4.996 5 -0.0041 -0.0037 -0.0034 -0.0037 0.0034
45 0.333 0.2 5.08 5.092 5.08 5.086 5.087 -0.0051 0.0049 -0.0068 -0.001 0.001
45 0.583 0.2 5.26 5.248 5.252 5.259 5.265 -0.0062 -0.0172 -0.0126 -0.006 0.006
45 0.083 0.3 5.05 5.053 5.053 5.052 5.06 -0.0091 -0.0068 -0.007 -0.0076 0.0068
45 0.333 0.3 5.69 5.678 5.699 5.688 5.706 -0.018 -0.028 -0.0066 -0.0184 0.0066
45 0.583 0.3 6.22 6.229 6.212 6.228 6.244 -0.0269 -0.0146 -0.0315 -0.0155 0.0146
45 0.083 0.4 5.27 5.278 5.286 5.278 5.286 -0.0182 -0.0087 0.0001 -0.0083 0.0001
45 0.333 0.4 6.49 6.491 6.493 6.498 6.51 -0.0206 -0.0182 -0.0171 -0.0114 0.0114
45 0.583 0.4 7.37 7.367 7.352 7.347 7.383 -0.0161 -0.0157 -0.0309 -0.0357 0.0157

 

Table 8: Standard Errors GY(2004b) Method 
Stri 
ke 

Matu 
Rity 

Volati
lity 

Order 

  2 3 4 5
45 0.083 0.2 0.0019 0.0018 0.0022 0.0019
45 0.333 0.2 0.0050 0.0040 0.0050 0.0053
45 0.583 0.2 0.0059 0.0065 0.0060 0.0068
45 0.083 0.3 0.0046 0.0019 0.0036 0.0040
45 0.333 0.3 0.0070 0.0063 0.0061 0.0054
45 0.583 0.3 0.0059 0.0076 0.0073 0.0065
45 0.083 0.4 0.0054 0.0046 0.0046 0.0047
45 0.333 0.4 0.0073 0.0063 0.0067 0.0062
45 0.583 0.4 0.0084 0.0075 0.0083 0.0084

 

Table 9: American Bermudan Asian Options (LS 2001 Method) 
 Expon. Lagu. Expon. Lagu. Expon. Lagu. 

S m = 30,000 M = 50,000 m = 75,000  
80 0.9211 0.9218 0.937 0.945 0.9322 0.957 
90 3.084 3.108 3.211 3.314 3.222 3.312 

100 7.492 7.522 7.699 7.855 7.744 7.874 
110 13.23 13.89 14.198 14.234 14.355 14.501 
120 20.09 21.2 22.091 22.122 22.198 22.311 

Note: S is the stock price, m the number of simulations, while Expon. and Lagu. 
are respectively exponential and Laguerre basis functions. 
 

Table 10: American Bermudan Asian Options (GY, 2004b Method)  
 Hermite   

S m = 30,000 M = 50,000 m = 75,000
80 0.923 0.932 0.942
90 3.189 3.311 3.167

100 7.521 7.544 7.563
110 13.82 14.122 14.311
120 20.01 21.633 22.011

Note: S is the stock price, m the number of simulations. 
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Table 11: American Basket Option (LS 2001 Method) 
 Expon. Hermite Expon. Hermite Expon. Hermite 

S m = 30,000 m = 50,000 m = 75,000 
90 16.6895 16.677 16.6555 16.6171 16.6632 16.642 

100 26.1758 26.1744 26.1708 26.1033 26.0804 26.12 
110 36.7697 36.7642 36.7826 36.7482 36.8214 36.748 

Average 
time 

8.21 8.5 12.23 12.53 15.22 15.3 

Note: S is the stock price, m the number of simulations, while Expon. and Hermite 
are respectively exponential and Hermite basis functions. 
 
 
Table 12: American BasketOptions  (GY, 2004b Method) 

  Hermite 
S m = 

30,000 
m = 
50,000 

m = 75,000 

90 16.5935 16.623 16.4759
100 26.0789 26.181 25.6802
110 36.286 36.71 36.1032

Average 
time 

9.05 13.3 16.9

Note: S is the stock price, m the number of simulations. 
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