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Abstract

We study the problem of a central bank whose policy actions simul-

taneously affect the information flow about its expectations-augmented

Phillips curve and its reputation for toughness in fighting inflation. In

an environment with an unknown relationship between inflation sur-

prises and output, big inflation surprises yield big short-term output

gains and a strong information flow. Yet optimal policy is very conser-

vative because inflation surprises yield information that increases the

volatility of both future inflationary expectations and inflation itself.

In fact, the more there is that can be learned about the Phillips curve

the less does optimal policy aim toward learning.

JEL Numbers: E5, E58, D8, D83

Key Words: Monetary Policy, Learning, Experimentation, Reputation,

Central Bank Conservatism
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1 Introduction

Monetary authorities routinely conduct policy without full knowledge of the

underlying structure of their economy. Some uncertain factors are truly un-

knowable at the time policymakers set their instruments. Other structural

characteristics can be learned through experience. The possibility of learn-

ing about structural parameters creates potential for experimentation, i.e.,

policy partially aimed at generating useful information to improve the qual-

ity of future policy. For example, some have argued that US monetary policy

in the middle to late 1990s was concerned precisely with learning how far

interest rates could be lowered without kindling inflation, taking seriously

the possibility that the structural relationship between interest rates and

inflation might have shifted for the better [e.g. Bean (1999)].

Papers on experimentation and monetary policy include Bertocchi and

Spagat (1993), Balvers and Cosimano (1994), and Wieland (2000).1 Bertoc-

chi and Spagat (1993) provide a simple framework showing how the desire

to learn can bias monetary choices away from those yielding the highest

present payoff and in a direction that generates more information. Balvers

and Cosimano (1994) also consider active learning strategies for a central

bank but with the aim of helping the public to improve its inflation forecasts.

Wieland (2000) uses computational methods to analyze post-unification Ger-

man monetary policy, arguing that the country paid dearly from the failure

of the Bundesbank to experiment with looser monetary policy. These papers

fill an important gap in the literature by considering learning and experimen-

tation by central banks but are incomplete in the post-rational expectations

era because they leave the public inactive.

A key to activating the public is to give it rational inflationary expec-

tations. This can mean, in part, that the public observes the monetary

1Early work on experimentation outside the context of monetary policy includes

Prescott (1972) and Grossman, Kihlstron and Mirman (1977).
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authority, learns about its toughness toward inflation and incorporates this

information into its inflationary expectations as in Backus and Driffill (1984)

and Barro (1986).2 In this literature the public holds Bayesian beliefs about

central banker toughness. Weak bankers have an incentive to maintain an

illusion of toughness because once the public learns the truth it becomes

difficult to conduct effective monetary policy.

In the present paper we combine all of the above elements.3 There is

structural uncertainty about the relationship between inflation surprises and

output.4 In general, different inflation rates will yield different information

about this relationship. In addition, the public will form inflationary ex-

pectations rationally and this calculation will involve Bayesian updating of

beliefs about the toughness of the central bank.

Our results are opposite to those in the present experimentation litera-

ture. In the standard literature, e.g., Bertocchi and Spagat (1993) structural

uncertainty drives policy away from myopic optimality and in the direction

of generating more information. However, activating the public reverses this

conclusion, driving optimal policy to the other side of myopic optimality. In

other words, equilibrium policy in our framework tends to generate less in-

formation than the myopically optimal policy would. Moreover, the more

there is to learn, i.e., the greater is the structural uncertainty, the more

conservative will be the central bank’s behavior, shunning experimentation

increasingly as its ignorance grows.

2Kydland and Prescott (1977) is the early key reference in this literature but it does

not share our Bayesian approach.
3Caplin and Leahy (1996) combine a learning central bank with an active public in a

different context. Their bank gropes for an unknown interest rate that will cause enough

investment to pull the economy out of recession without generating so much as to overheat

the economy. The problem is, e.g., that investors will wait to invest if they believe the

bank will grope by gradually lowering interest rates.
4Throughout the paper we use the term structural uncertainty to mean potentially

learnable uncertainty about parameters of the economic model.
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This paper is closely related to Ellison and Valla (2001) which also argues

for conservatism because of the volatility of inflation expectations caused by

experimentation. There are, however, two important differences between our

approaches. First, their paper adds learning to a framework where the pub-

lic knows with certainty that the central banker has an inflation bias while

our banker may be of this type with some probability but also, with comple-

mentary probability, may be a strict conservative. Thus, in Ellison and Valla

(2001) beliefs about the unknown structural parameter are the only dynamic

variable so learning effects are well addressed, as in the traditional literature,

by comparing myopic behavior with full optimization. Our framework has

two dynamic variables: beliefs about the structural parameter and the pol-

icymaker’s reputation for toughness. Comparing myopic with non-myopic

behavior is inappropriate for us because a myopic policymaker would care

neither about learning nor about his reputation while a non-myopic poli-

cymaker would care about both. To isolate the experimentation effect in

the presence of reputational concerns we utilize a different comparative de-

vice: whether or not a policymaker can commit to ignoring new information.

Note that combining reputation and structural uncertainty leads to a rich

set of equilibrium situations, including multiple equilbria with pooling and

separating outcomes. Moreover, we show that learning effects are crucial

in determining whether or not a weak policymaker will pool, where pooling

corresponds to the most conservative behavior, i.e., choosing zero inflation.

In fact, the greater the structural uncertainty, hence the greater the learn-

ing possibilities, the stronger will be the pressure for conservatism in two

separate senses. First, if the policymaker reveals his weakness he will shade

the inflation rate down to avoid generating too much information. Second,

the weak policymaker becomes more likely to pool with the strong one by

choosing zero inflation. We discuss these possibilities below and in sections

four and five.
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The second key difference between Ellison and Valla (2001) and our

paper is that their approach is computational while ours in analytical with

even a closed-form solution in the special case of section five. Thus, we are

able to establish our results under fairly general conditions. Moreover, the

analytical approach is useful for refining the precision of statements as well

as for the development of intuition. For example, we formalize the volatility

of inflation expectations in terms of second order stochastic dominance and

explicitly compare expectation distributions in our proofs, rendering the

effect of expectational volatility absolutely transparent. In particular, we

can show that experimentation in the present generates information that

is strictly harmful in the next period, with the effect working through the

impact of information on the probability distribution of expectations in the

next period.5

The structure of the paper is as follows. In section 2 we present a model

based on an expectations augmented Phillips curve with an unknown param-

eter governing the relationship between the inflation surprise and output.

There are two types of policymaker with one caring only about inflation

and the other caring about both inflation and output. The public holds

Bayesian beliefs about the relative likelihood of these two types as well as

5Our work is loosely related to a large literature on learning and expectations in macroe-

conomics surveyed in Evans and Honkapohja (2001) that has developed largely indepen-

dently of the above learning literature. Most of this work focuses on learning by the

public but recent work considers central bank learning. Evans and Honkapohja (2002)

and Honkapohja and Mitra (2002) study the issue of convergence to rational expectations

equilibria when both the public and the central bank are learning. This whole research

line differs from the present paper in two substantial ways. First, it uses “statistical” or

“econometric” learning rather than the Bayesian approach of our paper. Second, it is

interested primarily in long-run issues, mainly convergence or non-convergence to rational

expectations equilibria, while we study inflation bias in a reputation and learning environ-

ment. Sargent (1999), on the other hand, does try to explain America’s postwar inflation

experience based on full learning dynamics for the Fed.
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about a structural parameter of the Phillips curb. The public’s inflation-

ary expectations are rational given its information. In section 3 we solve

the optimization problem for the weak policymaker, showing that he will

actively shun new information about the structural parameter because such

information is unusable and, in fact, positively harmful because it introduces

unwanted variability into the inflation rate. A nice intuition underpins this

result. The information of an inflation choice is increasing in the distance

of the inflation rate from the level the public expects, i.e., the bigger the

inflationary surprise the greater is the information. But a policy that aims

at big inflationary surprises generates high volatility both in future inflation-

ary expectations and in future inflation that are, in equilibrium, mutually

reinforcing. Volatility is harmful so the central bank will strive to avoid big

surprises and will, consequently, learn little about the unknown structural

parameter.

In section 4 we study the equilibrium distinguishing between the case

where the weak policymaker can commit to not using new information from

the case where he cannot make such a commitment. There are two types

of equilibria. In one the weak policymaker acts tough and pools with the

strong one by choosing zero inflation. In the other equilibrium the weak

policymaker exploits the output-enhancing potential of the Phillips curve

while revealing his type to the detriment of future policy. The policymaker is

more likely to pool in the no-commitment case than he is in the commitment

case. We also show that the negative effect of new information puts pressure

on the weak policymaker to act tough, that is, structural uncertainty argues

for conservative monetary policy.

In section 5 we study in depth the tractable case where shocks to the

Phillips curve have a uniform distribution. We show that there is a mono-

tonic relationship between structural uncertainty and equilibria, i.e., for

parameter values related to low structural uncertainty the policymaker is
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more likely to separate, and for those related to high structural uncertainty

the policymaker is more likely to pool. There is also an intermediate region

where equilibrium indeterminacy prevails, as the equilibrium can be either

pooling or separating depending on the public’s inflationary expectations.

We draw conclusions in section 6.

2 The Model

The model is a simple aggregate supply and demand framework augmented

by a monetary authority (the “policymaker”) with an unknown willingness

to fight inflation. The novelty of this work is that, in addition to reputation

issues related to the policymaker, both the public and the policymaker have

incomplete information about one of the underlying structural parameters

of the economy.

2.1 The economic environment

The time horizon has two periods, t = 1, 2, and the following describes the

economic environment:

yt = b(πt − πet ) + εt(Supply) (1)

where yt is output deviation from trend, πt is actual inflation, πet is expected

inflation and mt is money growth, all in period t. The variable εt is taken

to be a period-t random shock, and is distributed according to a cumulative

distribution F (.), with a differentiable density f(.) and with full support on

[−εt, εt], where this support may well be the entire real line. For simplicity,

it is assumed that E(εt) = 0.

We assume that the supply curve’s slope, given by the parameter b, is

unknown by all agents and can take the values b and b, 0 < b < b. For

this lack of information, we use the term “structural uncertainty”. At the
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outset, both the public and the policymaker attach a subjective probability

θ, θ ∈ (0, 1), to the event that b = b.

2.2 Policymakers

There are two types of policymakers, weak (ω) and strong (τ), differentiated

by their period-t payoff. These types are policymakers’ private information,

and the public attaches an initial probability p, 0 < p < 1, to the event of

the policymaker being of the weak type.

Policymakers’ pay-offs are given by the following expression:







Type Weak (ω) wωt = yt − aπt
2

2

Type Tough (τ) wτt = −aπt
2

2

where wit stands for the policymaker type i’s payoff in period t, with i = ω, τ .

We assume that a > 0.

The specification above aims to formalize the idea that a weak policy-

maker is the one who may consider exploring the short-run trade off between

inflation and output described by the supply curve. The tough policymaker,

however, cares only about inflation. This specification also formalizes the

fact that the policymakers dislike inflation variability, as both are risk averse

towards inflation. This feature is particularly important in our analysis.

2.3 Strategies and Equilibrium Definition

The simplicity of the model allows us to make relatively simple definitions

of strategies and equilibrium. Policymakers choose inflation in each period.

The public rationally adjusts its expectations in both periods. The equilib-

rium is defined as follows.

Consider a time-and-type-indexed profile of policymakers’ inflation strate-

gies {πit}, where i = ω, τ and t = 1, 2. Also, let {πe1, π
e
2(π1, y1), p, α(π1, y1), θ, µ(π1, y1)}

be the profile of expectations and beliefs held by agents, such that {πe1, π
e
2(π1, y1)}
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are the public’s inflation expectations at t = 1, 2; {p, α(π1, y1)} are respec-

tively the public’s period-1 and period-2 beliefs about the policymaker being

weak; and {θ, µ(π1, y1)} are the period-1 and period-2 beliefs held by the

public and policymakers about b being b. Then the equilibrium requirements

are:

i) Given all beliefs, inflation strategies π∗it, i = ω, τ and t = 1, 2, are

sequentially rational;

ii) Whenever possible, period-2 beliefs α(π1, y1) and µ(π1, y1)} are up-

dated in a Bayesian fashion. Moreover, whenever πτ1 6= 0 we set

α = 1; 6

iii) Inflation expectations πe2(π1, y1) are equal to the expected inflation

strategies over both policymakers’ types, where expectations are taken

using the public’s beliefs in the relative probabilities of these types

α(π1, y1).

Given the previous equilibrium definition, we proceed by solving the

model backwards.

3 Optimal Choice for Policymakers

The main result of this section is that the weak policymaker tends towards

inflation levels that generate only small surprises for the public. This result

derives from the fact that the policymaker can only improve his information

about b by increasing the degree to which he upsets public expectations at

t = 1 while the bigger the surprise at time 1 the larger will be the variability

of inflation at t = 2.

6This last requirement encapsulates the usual equilibrium requirement that agents

attach zero probability in their beliefs to the event that the tough policymaker may play

his dominated strategy πτ1 6= 0.
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3.1 The Tough Policymaker

The tough policymaker cares only about inflation, so his choice is trivial:

πτ1 = πτ2 = 0 (2)

These choices allow us to simplify the notation by dropping the subscript i

for type and referring to the weak policymaker’s inflation choices as simply

π1 and π2. Recall from the equilibrium definition that we assume that if

the public observes π1 different than zero it infers that the policy maker is

weak. Therefore, we can once more simplify the notation and redefine the

public’s beliefs over types at t = 2 solely as function of π1, i.e., α(π1), as

this variable becomes a sufficient statistic for the policymaker’s type.

3.2 The Weak Policymaker

3.2.1 Optimal Choice in Period 2

The public and the policymaker fully observe both output and inflation and

update their beliefs about b in a Bayesian fashion, the expression for this

belief being:

µ(y1, π1;π
e
1) =

θfb
θfb + (1 − θ)f

b

(3)

where, recalling that f(.) is the density function of εt, fb(y1, π1;π
e
1) = f(y1−

b(π1 − πe1)). Note that fb(., π1, π
e
1) is the density function of y1 conditional

on b and π1. As this density depends on πe1, this variable is also included

in the expression of µ(.). In fact, because the weak policymaker’s inflation

strategy at t = 2 will depend on µ(.), and hence on πe1, we make use of

similar notation for that variable, that is, the t = 2 inflation strategy is now

denoted by π2(π1, y1;π
e
1).

The period-2 optimal choice for the weak policymaker solves:7

Maxπ2

∫ ε

ε
[µb(π2 − πe2) + (1 − µ)b(π2 − πe2) − a

π2
2

2
]f(ε)dε

7Notice that we have used the fact that E(εt) = 0.
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Intuitively, this means that the weak policymaker optimally weighs the con-

stant marginal effect of unexpected inflation on output against the increasing

marginal intensity of his dislike of inflation. The solution of this problem is:

π∗2(y1, π1;π
e
1) =

µb+ (1 − µ))b

a
=
E(b|y1, π1, π

e
1)

a
(4)

Note that while πe2 appears in the policymaker’s optimization problem,

the solution to the problem does not depend on it. Nevertheless, period-2

inflation expectations are still relevant because they affect the policymaker’s

payoff in period 2 and, hence, his behavior in period 1.

3.2.2 Inflation Expectations in Period 2

There are only two possible optimal choices for the weak policymaker in

period 1. Either he poses as the strong policymaker and sets π1 = 0 or he

separates himself by choosing some π1 6= 0. Define q, 0 ≤ q ≤ 1, as the

probability the weak policymaker sets π1 = 0. Also, recalling that α(π1) is

the public’s posterior belief about policymaker’s type being the weak one,

note that α(0) = qp
qp+(1−p) , with 0 < α(0) < p, and that α(π1) = 1 if π1 6= 0.

Hence, the public’s period-2 inflation expectation is:

πe2 = απ∗2 . (5)

Therefore, using equations 4 and 5, one can show that the weak policy-

maker’s payoff in period 2 is:

W2(y1, π1, π
e
1) = a[(1 − α) −

1

2
](π∗2)

2 (6)

3.2.3 The Learning Process

Figure 1 illustrates the process of learning about b when εt has a compact

support and πe1 is fixed. The dashed region represents the distribution of

y1 conditional on b being the truth for each possible choice of π1. The light

shaded region gives the same distribution conditional on b. For sufficiently
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b full Learning Region
b full Learning Region
Partial Learning Region

y1

1

e
1

b

b

Increasing
LR(y1)
Ratio
Region

Decreasing
LR(y1)
Ratio
Region

Figure 1: Learning Regions.

high or sufficiently low π1 these regions do not overlap and all agents learn

the truth with probability 1. For π1 close enough to πe1 the two support

regions intersect in the dark shaded region. When output falls into this

overlapping area there is only partial learning; when it falls outside there is

full learning. In the case where εt has a support over the real line, the dark

shaded region becomes the whole (y1, π1) plane.

As one can see from equation 3, the likelihood ratio LR(y1, π1, π
e
1) ≡

fb

f
b

plays a key role in the learning process, indicating how agents update beliefs

after observing y1. We introduce the following properties for the likelihood

function associated with the density function f(.) that apply throughout the

paper:

P.1) (Crossing property) There is a non-empty interval I such that LR(y1, π1, π
e
1) =

11



1 if y1 ∈ I and LR(y1, π1, π
e
1) 6= 1 if y1 /∈ I.

P.2) (Monotonicity) If π1 ≥ πe1 the function LR(y1, π1, π
e
1) = 1 is non-

increasing in y1 ; if π1 ≤ πe1 it is non-decreasing.

Notice that in case where εt has compact support, P1 restrains the anal-

ysis to the case where the two supply curves always overlap, which also re-

strains the feasible choices of π1. Notice also that this property generalizes

the analysis to shock distributions like the uniform, with regions where f(.)

is flat. Property P.2 means that in the case π1 ≥ πe1 higher output growth

is associated with higher probability on b, and likewise, if π1 ≤ πe1 higher

output growth is associated with higher probability on b. This property is

illustrated in figure 1.8

For simplification of the exposition, with the exception of section 5, prop-

erties P.1 and P.2 will be considered to hold strictly. That is, the interval

I will be given by a single point, and the likelihood function LR(y1, π1, π
e
1)

will be taken to be strictly monotonic. Moreover, the support distribution

of the shock εt will spread through the entire real line. As is illustrated dur-

ing the analysis of the uniform case (see section 5), these restrictions should

represent no loss of generality.

3.2.4 Optimal Choice in Period 1

We can express the full payoff function for the weak policymaker as:

W1(π1, π
e
1) = [θb+(1−θ)b](π1−π

e
1)−a

(π1)
2

2
+βa[(1−α)−

1

2
]Ey1 [(π

∗

2)
2] (7)

where Ey1(.) stands for the expectation operator over all possible values of

y1, and β ∈ (0, 1) is a discount factor. Then, the policymaker will choose π1

to maximize this payoff function.

8These properties hold for most standard distributions such as the uniform distribution

and the normal distribution.
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Suppose the weak policymaker decides to reveal his weakness in period

1, that is, π1 6= 0 and α(π1) = 1. The next result shows that his choice

will be biased towards inflation levels that generate small surprises for the

public. In other words, in period 2 the policymaker will be penalized to the

extent he has surprised the public in period 1.

Proposition 1 Consider the case where π1 6= 0. If π1 ≥ πe1, the func-

tion W2(y1, π1, π
e
1) is strictly decreasing in π1. If π1 < πe1 the function

W2(y1, π1, π
e
1) is strictly increasing in π1.

9Ey1[W2(y1, π1, π
e
1)], treated as a

function of π1, is single peaked and achieves its maximum at π1 = πe1.

The proof is in the appendix. The key is to show that the closer the

inflation level is to πe1 the lower is the volatility of period-2 inflation in

the sense of second order stochastic dominance. Since the central bank

has no information advantage over the public, the former will be unable

to explore the output-inflation trade-off on an improved basis in period 2

based on knowledge of b gleaned from inflation policies very different than

πe1 in period 1 . In fact, a better information flow about b will only increase

the volatility of both expected inflation and inflation itself. As the policy

maker is risk averse toward inflation, once he reached period 2 he will prefer

period-1 inflation levels that limit inflation volatility in period 2. In fact, the

proof basically relies on showing that from a period-1 perspective inflation

levels closer to πe1 dominates those further away from it.

Interestingly, proposition 1 implies that when the weak policymaker

chooses a separating strategy at t = 1, this policy will depend on expected

inflation at that time. Hence, the optimal separating policy will solve the

following trade-off. On the one hand the policymaker may try to take ad-

vantage of the immediate gains of high inflation, but on the other hand he

has to minimize the effects of upsetting the public expectations over t = 2

expected pay off.

9Later we will show that π1 will be either zero or strictly positive.
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4 Equilibrium Analysis

The equilibrium of the model is given by the strategies (π∗1 , π
∗

2), beliefs µ(.)

and expectations α(.) as described in the previous section. In addition, the

condition πe1 = qpπ∗1 must hold, where q is the probability that the weak

policymaker chooses a separating policy π∗1 6= 0, and p is the prior probability

that the policymaker is weak. For simplicity, we focus on the pure strategy

case, that is, either q = 1 (separating) or q = 0 (pooling).

The following result simplifies the analysis. Define πθ ≡ (θ)b+(1−θ)b
a

. This

is the inflation level that maximizes the first-period payoff in equation 7.

lemma 1 Any equilibrium has to be such that 0 ≤ π∗1 < πθ.

Proof:

In a pooling equilibrium π∗1 = 0 < πθ, so the lemma is true. Hence we need

to consider just the case of separating equilibrium.

Notice that in any separating equilibrium α = 1, and so the effect of

second-period expected payoff on equation 8 is unambiguously negative. It

follows from that and from proposition 1 that for π1 > πe1 the period-2

expected payoff is decreasing in π1, and for π1 < πe1 it is increasing on π1.

Assume first that π∗1 < 0. In this case, the weak policymaker strictly

prefers choosing π1 = πe1 to any π1 < πe1, since both the expected period-2

payoff and the period-1 payoff are increasing in π1 for all π1 < πe1 when

π1 < 0. However, since πe1 = pπ1, such a π∗1 cannot be an equilibrium, and

so for any potential separating equilibrium, it must be that π∗1 ≥ 0.

Assume now π∗1 ≥ πθ. In equilibrium π∗1 > pπ∗1 = πe1 so the second-

period payoff is strictly decreasing in π1 for all π1 ≥ πe1. By monotonicity, it

has both right and left hand side derivatives, which in this case are negative.

The first period pay off is a differentiable concave function with maximum

at πθ. So for any equilibrium policy π∗1 ≥ πθ, the first period pay off‘s

derivative is non-positive, and the second period pay off‘s side derivatives

14



are strictly negative, which implies that this policy cannot possibly be a

maximizing separating policy.

2

As we pointed out in the previous section information is harmful to

the policymaker. Therefore, he would like to either blind himself to new

information or else commit himself to ignore it. This distinction is useful

for studying the effect that learning has on the choice of π1. We proceed by

comparing the optimal choice for the policymaker of period-1 inflation when

he cannot credibly commit to an information-insensitive rule with what his

optimal choice would be if he were allowed to ignore or not respond to new

information. We will refer to this latter, case as the “commitment case” and

the former case as the “no-commitment case”.10

Proposition 2 In the commitment case the weak policymaker is more will-

ing to reveal himself as weak than is the case in the no-commitment case,

i.e., in the former case π1 6= 0 for a wider set of parameter values than in

the latter case.

Proof:

In any separating equilibrium, α = 1, hence the effect of expected period-2

on equation 7 is unambiguously negative. In the no-commitment case, any

period-2 optimal strategy π∗2(.) is such that the following equality holds:

E(π∗2(y1, π1;π
e
1)) =

E(E(b|y1, π1;π
e
1))

a
=
E(b)

a
=
θb+ (1 − θ)b

a

In the commitment situation, we have π∗2 = πθ ≡ θb+(1−θ)b
a

. Then, from

Jensen’s inequality, it follows that (π∗2)
2 = (πθ)2 = [E(π∗2(y1, π1;π

e
1))]

2 ≤

E[((π∗2(y1, π1;π
e
1))

2], and the period-2 expected payoff in the commitment

10We do not consider the commitment case to be especially realistic. Rather, we use it

a benchmark to compare with the no-commitment case.
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case is always larger than that in the no-commitment case.11 As the period-

1 payoff is the same in both situations, for any separating inflation rate

0 < π1 ≤ πθ the weak policy maker will enjoy a larger overall payoff in the

commitment case than in the non-commitment case.

The result then follows from the observation that the pooling payoff for

the weak policy maker is the same regardless of the possibility of commit-

ment. This is because in a pooling equilibrium πe = π1 = 0, implying that

LR(.) = 1 and, hence (3), µ(.) = θ for every y1. Since nothing about b is

learned in a pooling equilibrium the possibility of committing to ignore new

information is irrelevant in this case.

2

The next result gives a necessary and sufficient condition applicable to

the commitment case ensuring that the only equilibrium is a pooling one.

Note that, given result 2, this condition is also a sufficient condition for the

equilibrium to be a pooling one in the no-commitment case.

Proposition 3 In the commitment case, the weak policymaker chooses the

pooling strategy π1 = 0 if and only if (1−p)β > 1
2 . Moreover, if this condition

is satisfied the weak policy maker will never choose a separating strategy in

the no-commitment case.

Proof:

In the commitment situation the weak policymaker always sets π∗2 = πθ ≡

θ(b)+(1−θ)(b)
a

. Hence, if he separates in period 1, W1(π
θ, πe1) = −aπe1π

θ+a(1
2−

β
2 )(πθ)2, and if instead he pools, W1(0, π

e
1) = −aπe1π

θ+a[(1−p)− 1
2 ]β(πθ)2.

Thus, the pooling strategy dominates the separating one if and only if:

W1(π
θ, πe) < W1(0, π

e) ⇐⇒
1

2
< (1 − p)β

11Note that the commitment period-2 strategy takes no argument. This was done on

purpose, as it should not depend on either y1, π1 nor πe
1. For more details, see the

discussion following proposition 3.
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2

As the proofs of the propositions 2 and 3 suggest, there is a impor-

tant distinction between the commitment situation and the no-commitment

situation. As in many pure reputation model, in the commitment situation

the weak policymaker’s strategy does not depend on period-1 inflationary

expectations. In particular, the optimum separating strategy will be the one

that maximizes the period-1 pay off, π∗1 = πθ, and will not depend on the

period-2 pay off. However, as noted in the previous section, this is in marked

contrast to the no-commitment case, where the expected t = 1 inflation πe1

plays a key role in case the weak policy maker decides to separate, as this

variable determines how much will be learned, and hence how much period-2

policy will fluctuate.

To sum up this section we note that forces of conservatism work on the

weak policymaker in two distinct ways. First, they push him toward of

zero-inflation pooling equilibrium. Second, even if he separates, creating a

positive inflation surprise, he still chooses less inflation than the myopically

optimal level, πθ. This last result runs against the standard one in the

experimentation literature that suggest the bank should adjust from πθ in

the direction of more information, i.e., up.

5 The Uniform Case

To gain precision and clarify the exposition, we now consider a case that

yields closed-form solutions. The analysis illustrates the effects of the struc-

tural uncertainty over the supply curve’s slope on the equilibrium outcome.

In particular, we identify a region in the parameter space representing struc-

tural uncertainty where the unique equilibrium is a pooling one, another re-

gion with a unique separating equilibrium and third region where there are

multiple equilibria, with the pooling and separating equilibria co-existing.
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Let εt be distributed uniformly, that is, f(εt) = 1
2ε if εt ∈ [−ε, ε], and 0

otherwise. Thus, the likelihood ratio is such that LR(y1, π1, π
e
1) = 1 if y1

is in the partial learning region (the dark shaded region in figure 1), and

LR(y1, π1, π
e
1) is either 0 or ∞, depending on whether y1 falls respectively in

the b or b full-learning zones (the dashed and light shaded regions in figure

1).12 Equation 3 for the posterior probabilities becomes:

µ(π1, y1;π
e
1) =







θ if non-learning region

1 if b full learning region

0 if b full learning region

Equation 4 for period-2 inflation π∗2(.) specializes to:

π∗2(π1, y1;π
e
1) =







πθ2 ≡ θb+(1−θ)b
a

non-learning region

π
b
2 ≡ b

a
if b full learning region

πb2 ≡ b
a

if b full learning region

It is also useful to calculate the probability the economy falls in the non-

learning region, P (π1, π
e
1). The expression for this is:

P (π1, π
e
1) =







Max{1 − (∆b)(π1−π1
e)

2ε , 0} if π1 ≥ π1
e

Max{1 + (∆b)(π1−π1
e)

2ε , 0} if π1 < π1
e

where ∆b ≡ b− b. Note that if π1 ≤ π1 ≡ π1
e− 2ε

∆b or if π1 ≥ π1 ≡ π1
e + 2ε

∆b

then there is complete learning with probability 1.13 It follows that P (π1, π
e
1)

has a triangular shape, where the upper vertex is at πe1, the side vertices are

π and π, and its support is the interval [π1, π1]

Given the expressions for µ(.), and π∗2(.) and P (π1, π
e
1), equation 7 be-

comes:

W1(π1, π
e
1) = aπθ(π1 − πe1) − a

π2
1

2
+ βa[(1 − α) −

1

2
] ·

12The partial learning zone implies no learning at all in this case precisely because the

likelihood ratio is constant in this region.
13In figure 1, these thresholds are the right and left extremes of the dark shaded region.
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·{[θ(π
b
2)

2 + (1 − θ)(πb2)
2] − P (π1, π

e
1) [θ(π

b
2)

2 + (1 − θ)(πb2)
2 − (πθ2)

2]
︸ ︷︷ ︸

γ

}

(8)

Note that the constant γ in 8 is the unconditional variance of period-2

inflation policy, and that a2γ is the unconditional variance of b. As one can

readily see, the appearance of γ in that expression - along with the triangular

shape P (π1, π
e
1) - is just a version of result 1 to the current specialization of

the model. That is, if the policymaker separates and α = 1, it follows from

γ > 0 that π1’s closer to πe1 will be preferred to those farther away.

Suppose the weak policymaker separates and sets π1 > 0. He will then

maximize equation 8 with respect to π1, the first order condition being:

dW1

dπ1
= (πθ − π1) +

dP (π1, π
e
1)

dπ1
γ
β

2
≥ 0. (9)

Note that this function is not continuous at the points π1 = πe1, π1 and π1,

and hence the equality does not necessarily hold. More precisely, note that

dP (π1, π
e
1)

dπ1
=







∆b
2ε ≥ 0 if π1 ∈ [π1, π

e
1]

−∆b
2ε ≤ 0 if π1 ∈ [πe1, π1]

0 if π1 /∈ (πe, πe)

The discontinuity stems from the compactness of εt and appears in figure 1

in the form of kinks on the edges of the dark shaded region when π1 is either,

πe1, π1 or π1.
14

Define φ ≡ γβ∆b
4ε > 0. There are three possible maximizing points for

equation 8, depending on the parameters πθ and φ, and on πe1. If πθ−φ > πe1,

the possible solutions are πθ−φ, if this policy is on the support of P (π1, π
e
1),

and πθ, if this policy falls off the support of the same function. This is so

14It may appear that at πe
1, π1 and π1 the derivative

dP (π1,πe

1
)

dπ1

is ill defined, as it may

assume different values depending on the direction of the approximations. However, one

should note that at these points we are slightly abusing the definition of the derivative

and extending it to the case where the left hand and right hand derivatives are different.
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because in this case these two policies satisfy the first order condition of the

separating problem.

If πθ − φ ≤ πe1, the possible solutions are πe1 and πθ. In fact, if this

inequality holds, it follows from equation 9 that dW1
dπ1

> 0 at πθ − φ, so the

maximum of W1(π1, π
e
1) within the support of P (π1, π

e
1) is achieved at πe1.

Moreover, for the same reason as in the previous paragraph, if πθ falls outside

the support of P (π1, π
e
1) it is also a possible solution for the separating

problem.

For simplification of the analysis, we will restrict the range of the study

to the case where πθ ≤ 2ε
∆b , that is, we require the supply shock to be large

relative to the difference of the possible supply curve slopes. Given this

assumption, we have that πθ is always on the support of P (π1, π
e
1) in any

equilibrium. This is so, because by this assumption together with lemma 1

imply that π1 = πe1 + 2ε
∆b >

2ε
∆b ≥ πθ as πe1 ≥ 0. Note also that π1 = πθ − φ

will also be on the support of P (π1, π
e
1) , as πθ − φ < πθ. Hence, under the

stated assumption the first order condition of the separating problem will be

satisfied with equality only for πθ +φ > πe1, and πθ is never a policymaker’s

best action.

It is worth noting that the assumption πθ ≤ 2ε
∆b creates a similar en-

vironment to the one we would have if the support of εt were unbounded,

that is, a case where the interval I in the definition of property P.2 is al-

ways non-empty. In these environments any separating policy implies some

learning, driving the policymaker to chose inflation lower than πθ, the opti-

mal separating policy in the commitment case. In contrast, if πθ > 2ε
∆ then

there will always be a threshold π1 above which the policymaker receivers no

additional information about b, making it possible that πθ could be optimal.

We now consider the effect of mean-preserving risk spreads on the prior

distribution of b on the equilibrium. That is, we gradually increase γ while

keeping the expected value of b constant. These mean-preserving spreads
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on b will increase the value of φ, as both γ and ∆b will increase, forcing the

weak policy maker to chose lower levels of π1 in case of separation as πθ−φ

decreases. Moreover, mean-preserving spreads also decreases the willingness

of the weak policymaker to separate himself from the tough one.15

The following proposition fully characterizes the equilibrium within the

range of study.

Proposition 4 Suppose that (1− p)β < 1
2 and that πθ − φ ≥ 0 . There are

three equilibrium regions in (p, γ)-space, where changes in γ correspond to

mean-preserving spreads on b:

i) A unique equilibrium region with a separating equilibrium π∗1 = πθ − φ

and πe1 = p(πθ − φ).

ii) A unique equilibrium region with a pooling equilibrium π∗1 = 0 and

πe = 0.

iii) A multiple equilibria region, with a separating equilibrium as in i) and

a pooling equilibrium as in ii).

We leave the details of the proof to the appendix but give here its main

argument. As pointed out above, there are two policies to compare, a pooling

one with π1 = 0, and separating one with π1 = πθ−φ. The proof consists just

in comparing W1(π
θ−φ, p(πθ−φ)) with W1(0, p(π

θ −φ)) when π1 = πθ− θ

and πe1 = p(πθ− θ) is the candidate equilibrium, and likewise, W1(0, 0) with

W1(π
θ − φ, 0), when π1 = πe = 0 is the candidate equilibrium.

We summarize the main features of the equilibrium in figure 2. The

figure describes the equilibrium for different mean preserving spreads on b

and for different prior probabilities p of the policy maker being of weak type.

15This exercise implies “squeezing” the non-informative region, increasing the informa-

tion content of larger π1’s as it moves away from πe
1(1).
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We know from previous discussion that the larger is γ the less willing the

policymaker will be to separate. In addition, and in common with standard

reputation models, the larger is p the more willing to separate is the weak

policy maker. Hence, the figure captures the basic tension between these

two forces in the model.

Consider first the case where the policy maker can commit to ignore

any new information. For this situation, the relevant line is the vertical

line at p = 1 − 1
2β . From result 2, we know that to the left of this line

there is a unique pooling equilibrium, and to the right a unique separating

equilibrium. That is, the possible deterrent effect of high γ′s have no bite

in the commitment case and the policymaker is only concerned with his

reputation.

Matters change considerably when the policy maker is unable to commit

against any new information. Define γπθ as the value of γ such that πθ = φ.

This line divides the commitment separating area into two regions. For the

region above this γπθ , lemma 1 implies the pooling equilibrium is the unique

equilibrium, which in the present context accounts to say that the deter-

rence effect of future information discovery is so strong that no separating

equilibrium arises, regardless of p. For the region under this horizontal line,

the result 4 holds, according to which this region can be separated into three

subregions. The region at the bottom (dark shaded) where the separating

equilibrium (πθ − φ, p(πθ − φ)) is the unique equilibrium; the region at the

top, where the pooling equilibrium is the unique one; and the region in the

middle of these two, where the two equilibria co-exist.

The main properties of the regions in between the straight lines p = 1− 1
2β

and γ = γπθ (proven in the appendix) are as follows. Define Bp(p, γ) as the

set of (p, γ) such that W1(0, 0) = W1(π
θ−φ(γ), 0), and analogously Bs(p, γ)

as set of (p, γ) such that W1(π
θ − φ(γ), p(πθ − φ(γ))) = W (0, p(πθ − φ(γ))).

We show in the appendix that the pooling equilibrium region lies above
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Figure 2: Slope Mean-Preserving Spread (πθ=constant)

Bp(p, γ) and that the points (1 − 1
2β , 0) and (1, γπθ ) belong to Bp(p, γ).16

We also show that the separating region lies below Bs(p, γ) and that the

points (1− 1
2β , 0) and (1, γπθ ) belong to this region as well. Finally, we have

the property that the line Bp(p, γ) lies below the line Bs(p, γ), implying

that the multiple equilibrium region is made up of the intersection of the

separating equilibrium region and the pooling equilibrium region.

In light of these properties, the intuition for figure 2 is clear. As in pure

reputation models, the higher is p the more likely is the weak policy maker

to separate. In the present context, if γ = 0, the same result is replicated

here. However, as γ grows larger, the learning effect grows in importance,

shrinking the set of p for which separation occurs. In fact, by proposition 4,

16It is also show in the appendix that Bp(p, γ) implicitly defines an increasing relation-

ship between γ and p.
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for values of γ high enough, the learning effect is so strong that separation

occurs only when the policymaker is quite likely to be weak.

There does exist a region with multiple equilibria in between the sepa-

rating and the pooling regions, where the combinations of γ and p are such

that neither the learning effect through γ nor the reputation effect through

p are strong enough to dominate. If it were not for the dependence of the

learning effect on expected inflation, as shown in proposition 1, we would

observe a sudden change from a separating to a pooling equilibrium as γ

increases, rather than having the two equilibria co-exist. That is, we would

have Bp(p, γ) = Bs(p, γ). But, as argued above, this is not case, as the

curve Bp(p, γ) lies above the curve Bs(p, γ). Within this multiple equilib-

rium region the prevailing equilibrium may well depend on exogenous factors

which can coordinate agents inflationary expectations either to πe1 = 0 or

πe1 = p(πθ − φ). However, in either case the expectations will be such that

the weak policy maker will be forced to make a choice such that those ex-

pectations will necessarily be fulfilled.

Finally, consider mean-preserving spreads on the shock ε1. The definition

φ ≡ γβ∆b
4ε and the proof of proposition [FILL IN] make clear that these will

make policy less conservative in two senses. First, there will be separating

equilibria for a larger set of parameter values and pooling equilibria for a

smaller set. Second, even in separating equilibria mean-preserving spreads

push π∗1 closer to πθ. In other words, increasing the variability of the shocks

has the opposite effect of increasing the spread on the b’s.

6 Conclusion

We can envision various extensions of this work that could change or modify

some of the results. For example, giving the central bank more limited

control over monetary policy would be more realistic and might give it some

scope for experimenting without completely losing its reputation. Another
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change that might lead to more experimentation would be to give the bank

some scope for maintaining an information advantage over the public.17

Despite these caveats, it is still interesting to take the model in its present

form seriously and think about what it might imply about policy. In this

spirit we emphasize our result that high structural uncertainty is grounds for

conservatism. This idea sounds similar to that of Brainard (1967), recently

reemphasized in Blinder (1998) who offers the following advice for central

bankers: “...Estimate how much you need to tighten or loosen monetary pol-

icy to ‘get it right.’ Then do less.” (Blinder[1998], p. 17]. However, while

our conclusion is similar to Brainard’s our reasoning is different. Brainard’s

parameter uncertainty is fundamentally unlearnable while ours is. Thus, our

model suggests that central bankers who care about output should be con-

servative out of fear of learning too much about how the economy functions,

and thereby introducing excessive instability. The less a central bank knows

about economic structure the more conservative it should be ceteris paribus.

Thus, new central banks, such as the European Central Bank and those for

economies in transition from communism, should be among the most conser-

vative whereas well-established banks such as the US Federal Reserve Bank

can afford to be somewhat more experimental in their policies.
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A Appendix

A.1 Proof of Proposition 1

Consider the case where π1 ≥ πe1. The opposite case being similar. Take

π′′1 > π′1 ≥ πe1. Since the period-2 payoff is given by a concave function in

π2 when α = 1, it is enough to prove that π∗2(y1, π
′′

1 ;πe1) is a mean-preserving

spread of π∗2(y1, π
′

1;π
e
1).

Consider the function g(π1) as defined below:

g(π1) =

∫ w

−∞

P (π∗2(y1, π
′

1;π
e
1) ≤ w)dw (A.1)

for any w. To prove that π∗2(y1, π
′′

1 ) is a mean-preserving spread of π∗2(y1, π
′

1)

it is sufficient to prove:

∫ w

−∞

[P (π∗2(y1, π
′

1;π
e
1) − P (π∗2(y1, π

′′

1 ;πe1))]dw = g(π′1) − g(π′′1 ) < 0

since E(π∗2(y1, π1;π
e
1)) = θb+(1−θ)b

a
for every π1 (see Laffont [1989], pp. 25-

26). Moreover, since π′′1 > π′1, it is sufficient to prove dg(π1)
dπ1

> 0 for every

π1 ≥ πe1.

Consider first a few useful expressions. Recall that the expression for the

likelihood function is L(y1, π1;π
e
1) =

fb(.)

f
b
(.) , where fb(.) ≡ f(y1 − b(π1 − πe1)).

We calculate the derivatives:

∂LR(y1, π1, π
e
1)

∂y1
= [f

b
(.)
∂fb(.)

∂y1
− fb(.)

∂f
b
(.)

∂y1
]/(fb(.))

2 (A.2)

∂LR(y1, π1, π
e
1)

∂π1
= −[bf

b
(.)
∂fb
∂y1

− bfb(.)
∂f

b
(.)

∂y1
]/(fb(.))

2 (A.3)

Note that
∂LR(y1,π1,π

e
1)

∂y1
< 0 if and only if ψ ≡ [f

b
(.)

∂fb(.)

∂y1
−fb

∂f
b

∂y1
] < 0. Recall

that π∗2(.) is decreasing in LR(.) (equations 3 and 4) and the LR(.) is strictly

decreasing in y1 by property P.2. Thus, π∗2(y1, π1;π
∗

2) is strictly increasing

in y1 and strictly decreasing in π1.

Define h(w;π1;π
e
1) = {y1;π

∗

2(y1, π1;π
e
1) = w}. Then we have that this

function is well defined for w within the range of possible period-2 inflation
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rates because of property P.2. To calculate ∂h(w,π1)
∂π1

precisely, first re-write

π∗2(.) = [LR(.)bθ + b(1 − θ)]/[LR(.)θ + (1 − θ)] and the use this expression

to obtain the following derivatives:

∂π∗2
∂π1

=
1

ρ
{
∂LR(.)

∂π1
bθ[LR(.)θ + (1 − θ)] −

∂LR(.)

∂π1
θ[LR(.)bθ + b(1 − θ)]}

(A.4)

∂π∗2
∂y1

=
1

ρ
{
∂LR(.)

∂y1
bθ[LR(.)θ + (1 − θ)] −

∂LR(.)

∂y1
θ[LR(.)bθ + b(1 − θ)]}

(A.5)

where ρ = [LRθ + (1 − θ)]2. It follows, using equations A.4, A.5 and A.2

and A.3 that:

∂h(w, π1)

∂π1
=
dy1

dπ1
= −

∂π∗2
∂π1

∂π∗2
∂y1

= −

∂LR(.)
∂π1

∂LR(.)
∂y1

=
[bf

b
(.)

∂fb

∂y1
− bfb(.)

∂f
b
(.)

∂y1
]

[f
b
(.)
∂fb(.)

∂y1
− fb(.)

∂f
b
(.)

∂y1
]

︸ ︷︷ ︸

ψ

(A.6)

Given the function h(w, π1) = y1, equation A.1 can be written as follows:

g(π1) =

∫ w

−∞

P (y1 ≤ h(w, π1))dw

and from that follows:

dg(π1)

dπ1
=

∫ w

−∞

∂P (y1 ≤ h(w, π1))

∂π1
dw (A.7)

Notice that the expression for P (y1 ≤ h(w, π1)) is as below:

P (y1 ≤ h(w, π1)) =

∫ h(w,π1)

−∞

θf(y1 − b(π1 − πe)) + (1 − θ)f(y1 − b(π1 − πe))dy1

Hence, by applying Leibniz’s rule:

∂P (y1 ≤ h(w1, π1))

∂π1
=

{θf(h(w, π1) − b(π1 − πe1)) + (1 − θ)f(h(w, π1) − b(π1 − πe1))}
∂h(w, π1)

∂π1

−{

∫ h(w,π1)

−∞

bθf ′(y1 − b(π1 − πe1)) + b(1 − θ)f ′(y1 − b(π1 − πe1))dy1 =

{θf(h(w1, π1) − b(π1 − πe1)) + (1 − θ)f(h(w, π1) − b(π1 − πe1))}
∂h(w, π1)

∂π1
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−[bθf(h(w, π1) − b(π1 − πe1)) + b(1 − θ)f(h(w, π1) − b(π1 − πe1))] =

θ(
∂h(w, π1)

∂π1
− b)fb(h(.), π1;π

e
1) + (1 − θ)(

∂h(w, π1)

∂π1
− b)f

b
(h(.), π1;π

e
1)

(A.8)

Using equation A.6, we arrive at expressions for the coefficients of the equa-

tion A.8:

∂h(w, π1)

∂π1
− b = −[(∆b)fb(.)

∂f
b
(.)

∂y1
]/ψ

∂h(w, π1)

∂π1
− b = −[(∆b)f

b
(.)
∂fb(.)

∂y1
]/ψ

where ∆b = b−b > 0, ψ < 0 are as defined above. These expressions cannot

be signed immediately because of the
∂f

b
(.)

∂y1
and

∂fb(.)

∂y1
terms. However, using

the definition of ψ, we can re-write these expressions as:

∂h(w, π1)

∂π1
− b =

−∆b

[(f
b

∂fb

∂y1
)/(fb

∂f
b

∂y1
)] − 1

(A.9)

∂h(w, π1)

∂π1
− b =

−∆b

[1 − (fb
∂f

b

∂y1
)/(f

b

∂fb

∂y1
)]

(A.10)

Now notice that:

ψ ≡ [f
b
(.)
∂fb(.)

∂y1
− fb(.)

∂f
b
(.)

∂y1
] < 0 ⇐⇒ (fb

∂f
b

∂y1
)/(f

b

∂fb
∂y1

)] > 1

Therefore both equations A.9 and A.10 are positive. It follows that

equation A.8 is positive and so is equation A.7.

A.2 Proof of Proposition 4

We start by restating the value function for the weak policy maker, since

the proof heavily depends on it:

W1(π1, π
e
1) = aπθ(π1 − πe1) − a

π2
1

2
+ βa[(1 − α) −

1

2
] ·

·{[θ(π
b
2)

2 + (1 − θ)(πb2)
2] − P (π1, π

e
1) [θ(π

b
2)

2 + (1 − θ)(πb2)
2 − (πθ2)

2]
︸ ︷︷ ︸

γ

}

(A.11)
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where

P (π1, π
e
1) =







Max{1 − (∆b)(π1−π1
e)

2ε , 0} if π1 ≥ π1
e

Max{1 + (∆b)(π1−π1
e)

2ε , 0} if π1 < π1
e
.

Define as in section 0.4 φ = γ∆b
4ε and note that for mean-preserving spreads

on b, dφ(γ)
dγ

> 0.

Item i):

For this region it must be that W1(π
θ−φ, p(πθ−φ)) ≥W1(0, p(π

θ−φ)).

This relationship holds if and only if the following set of inequalities hold:

(πθ)2

2
−

(φ)2

2
−
β

2
[θ(πb)2 + (1 − θ)(πb)2) − P (πθ − φ, p(πθ − φ))γ]

≥ β[(1 − p) −
1

2
][θ(πb)2 + (1 − θ)(πb)2) − P (0, p(πθ − φ))γ] ⇐⇒

(πθ)2

2
−

(φ)2

2
−
β

2
[P (0, p(πθ − φ)) − P (πθ − φ, p(πθ − φ))]γ

≥ β(1 − p)[1 − [P (0, p(πθ + φ))]γ + (πθ)2]

Note that from the expression for P (π1, π
e
1),

β
2γ[P (0, p(πθ − φ)) − P (πθ −

φ, p(πθ−φ))] = φ[(πθ−φ)(1−2p) and γβ[1−P (0, p(πθ−φ))] = 2pφ(πθ−φ).

Substituting these equalities into the last inequality above, we have a new

set of relationships:

(πθ)2

2
−

(φ)2

2
− φ(1 − 2p)(πθ − φ) ≥ 2(1 − p)pφ(πθ − φ) + β(1 − p)(πθ)2

⇐⇒
(πθ − φ)2

2
+ 2p2(πθ − φ)φ− β(1 − p)(πθ)2 ≥ 0

(A.12)

Define Bs(p, φ) as when inequality A.12 holds as an equality. Since φ is a

(increasing) function of γ, define as well Bs(p, γ) ≡ Bs(p, φ(γ)). Then the

following properties follow:

1. The inequality A.12 holds for γ = 0 and every p ≥ 1 − 1
2β .

To see this, take φ = 0. Then, it is easy to see that p = 1 − 1
2β is the
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solution of the equation Bs(p, 0), and for every p ≥ 1 − 1
β

inequality

A.12 holds. But γ = 0 implies φ = 0, thus γ = 0 implies that A.12

holds for all p ≥ 1 − 1
2β .

2. Define γπθ as the value of γ such that πθ = φ. Then if p = 1, the

inequality A.12 holds for every γ ≤ γπθ .

Take p = 1 and note that in this case φ = πθ is the solution of the

equation Bs(1, φ), and that inequality A.12 holds for every φ ≤ πθ.

As dφ
dγ
> 0, for p = 1 there is a number γπθ such that A.12 holds for

every γ ≤ γπθ , where γπθ is as defined above.

Notice that the definitions for Bs(p, γ) made here and the one in section

3 are exactly the same. Hence, from the properties just demonstrated, it

follows that the curve Bs(p, γ) is as in figure 2, and so the separation region

is as depicted there.

Item ii):

In this case, we have to analyze the values of p and γ in the (p, γ)

space such that W1(0, 0) ≥ W1(π
θ − φ, 0) holds. Using the value function’s

expression, we have that the following set of inequalities must hold:

β[(1 − p) −
1

2
](πθ)2 ≥

(πθ)2

2
−

(φ)2

2
−
β

2
[θ(πb)2 + (1 − θ)(πb)2 − P (πθ − φ, 0)]

⇐⇒ β[(1 − p)](πθ)2 ≥
(πθ)2

2
−

(φ)2

2
−
β

2
[1 − P (πθ − φ, 0)]γ

As γ β2 [1−P (πθ − φ, 0)] = φ(πθ − φ), the inequality above can be written as

below:

β[(1 − p)](πθ)2 −
(πθ − φ)2

2
≥ 0 (A.13)

As in the previous item, define Bp(p, φ) as when inequality A.13 holds as an

equality, and set Bp(p, γ) ≡ Bp(p, φ(γ)). Again, following steps analogous

as those in item1, the following properties can be shown:

1. If γ = γπθ (that is, πθ = φ), the inequality A.13 holds for all 0 ≤ p ≤ 1.
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2. If γ = 0 (φ = 0), inequality A.13 holds for all 0 ≤ p ≤ 1 − 1
2β .

3. The curve Bp(p, γ) defines a function implicitly, p(γ), such that dp(γ)
dγ

>

0. In fact, from Bp(p, φ) we can find that dp
dφ

= πθ
−φ

β(πθ)2
> 0. As dφ

dγ
> 0,

then dp
dγ
> 0.

Hence, the pooling equilibrium region is as depicted in figure 2 and we

verify that Bp(p, γ) as defined in section 5 is just Bp(p, γ) = Bp(p, φ(γ)).

Item iii):

Take any point (p̂, γ̂) that satisfies the equation Bp(p̂, φ(γ̂)). As φ(θ −

φ) > 0, it follows that inequality A.12 is satisfied for (p̂, φ(γ̂)). Thus, the

set of (p, γ) that satisfies Bp(p, γ) lies below the one that satisfies Bs(p, γ).

Moreover, the multiple equilibria region is non-empty and lies on the in-

tersection of the pooling and the separating regions, as indicated in figure

2.
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