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Abstract

This paper presents an essentially affine model of the term structure of interest rates
making use of macroeconomic factors and their long-run expectations. The model extends
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(2001). Application to the U.S. economy shows the importance of long-run inflation ex-
pectations in the modelling of long-term bonds. The paper also provides a macroeconomic
interpretation for the factors found in a latent factor model of the term structure. More
specifically, we find that the standard “level” factor is highly correlated to long-run infla-
tion expectations, the “slope” factor captures temporary business cycle conditions, while
the “curvature” factor represents a clear independent monetary policy factor.

Keywords: Essentially affine term structure model, macroeconomic factors, long-run
market expectations, monetary policy rule.

J.E.L.: E43, E44, E52.

∗Corresponding author. Address: Center for Economic Studies, Catholic University of Leuven, Naamses-
traat 69, 3000 Leuven, Belgium. Tel: (+)32(0)16-326859, e-mail: hans.dewachter@econ.kuleuven.ac.be. We
are grateful for financial support from the FWO-Vlaanderen (Project No.:G.0332.01). We thank the seminar
participants at the European Central Bank for useful comments. The latest version of this paper can be down-
loaded from http://www.econ.kuleuven.ac.be/ew/academic/intecon/Dewachter/default.htm. The authors are
responsible for remaining errors.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6301171?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Standard models of the term structure of interest rates successfully model the entire yield

curve by means of a limited number of underlying factors. The models, however, fail to provide

a clear economic interpretation of the factors.1 In this paper, we construct and estimate a

model of the yield curve based on factors with a clear macroeconomic interpretation.

Even though there is strong empirical evidence that the term structure of interest rates is

linked to macroeconomic factors2, it has been proven difficult to find a model that actually

reproduces these links. In fact, it has been shown in the literature that term structure models

based on macroeconomic variables perform poorly relative to the existing latent factor models.

Although macro factors explain to a large extent the dynamics of the short-term interest rates,

e.g. by standard Taylor rule specifications, the yields of bonds with longer maturities are not

fitted accurately. Ang and Piazessi (2002), for instance, find that even though macroeconomic

factors clearly affect the short end of the yield curve, they do not account for the long-run

end of the yield curve. They close their model by allowing another latent factor to model

the long end of the curve. Dewachter et al. (2001), using Ang and Piazessi’s framework, also

show that the misfit of the long end of the term structure can be quite substantial. Large

and highly persistent pricing errors (of up to 6% p.a.) are found and clearly suggest the

existence of additional factors. Kozicki and Tinsley (2001a,b) suggest that a missing factor

may have a macroeconomic interpretation. Specifically, filtering the missing factor from the

yield curve, they show that this factor may be related to the long-run inflation expectations

of agents. This finding clearly paves the way for a structural macroeconomic interpretation

of the term structure. That is, by adding long-run expectations of macro variables and, in

particular, inflation expectations to the set of (macroeconomic) state variables, the misfit of

the long-term yield curve, inherent in the standard macro-models of the yield curve, could be

resolved in an intuitively plausible way.

The aim of this paper is twofold. First, we propose a model for the term structure of

interest rates modeling long-run expectations consistently. Second, we relate the resulting

factors to the ones obtained from a latent factor model, as usually employed in the finance

literature. This allows us to interpret the latent factors in terms of macroeconomic variables.

Regarding the first aim of the paper, the method proposed improves significantly on the

approach taken in the literature to use long-run expectations of macroeconomic variables

in order to fit the yield curve. Currently, one takes a two step approach where in a first

step these long-run expectations (endpoints) are filtered from the data using some statistical

1 In the financial literature, it has become standard to label the factors by the way they affect the term
structure, i.e. a “level”, a “slope” and a “curvature” factor. This is naturally more of a description of the
effects of the factors on the bond yields than a unambiguous economic interpretation.

2See, for instance, the extant empirical literature on the predictability of the term structure for future
business cycle or inflation dynamics (e.g. Mishkin (1990), Estrella and Mishkin (1997)).
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procedure. These filtered expectations are then subsequently used to fit the term structure.

A drawback of this method is that not all information available is used to filter the long-

run expectations. Typically, these long-run expectations are filtered on a subset of the data

series. Another disadvantage of this approach is that these filtered expectations are not

necessarily consistent with the notion of the expected long-run value.3 To combine rational

expectations with shifting endpoints, a necessary condition for a variable to be a candidate

endpoint is that it follows a (possibly degenerate) random walk model under the empirical

probability measure. However, by imposing the random walk condition on the long-run

expectation, one introduces a random walk in all of the state variables driving the term

structure. While this conforms well with the macroeconomic literature on the unit root

behavior of inflation, and possibly interest rates, it generates a crucial problem in modeling

the term structure: when state variables contain unit roots, term structure models based on

the expectation hypothesis are ill defined (see, for instance, Campbell et al. (1997)). The

two views on the dynamics of the economy, i.e. the (non-stationary) macroeconomic and the

(stationary) finance view, can, however, be reconciled by noting that the two views are defined

in a possibly different probability measure. Macroeconomic models focus on the empirical

probability measure while term structure models are based on the risk neutral probability

measure.4 Hence, we can match the two views by imposing unit roots under the historical

probability measure while generating mean-reverting macroeconomic variables under the risk

neutral probability measure. This reconciliation of the two views is accomplished by allowing

for time-varying risk premia along the line of the class of essentially affine models introduced

by Duffee (2001). This has an important informational advantage as it allows us to filter

the long-run expectations of macroeconomic variables using both the information contained

in observable macroeconomic variables, such as output and inflation, as well as in the term

structure of interest rates. Using this framework, we do find that the entire yield curve can

be explained with reasonable accuracy by macroeconomic factors.

The second objective of the paper is to relate the latent factors typically found in the

finance literature to a set of macroeconomic variables, observable as well as non-observable

(filtered). A typical approach in the literature has been to simply decompose the correlation

structure among the yields of different maturities into a number of factors. A standard result

is that three factors are sufficient to capture the bulk of these correlations. No economic

interpretation for these factors is usually provided. The filtered factors are usually labeled

3Kozicki and Tinsley (2001) propose three types of models: a constant fixed endpoint, a moving average
rule in the macroeconomic variable, and a shifting model. These models are not necessarily consistent. To the
extent that the dynamics of the endpoints deviate from a random walk, one cannot interpret the filtered value
as a long-run expectation (since the endpoint is expected to move) unless one allows for some expectational
biases on the part of the agents.

4Naturally, under the pure expectations hypothesis the risk neutral and the historical probability measure
coincide.
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according to their effect on the yield curve: a “level” factor, affecting equally the entire yield

curve; a “slope” factor, affecting the yield spread; and a “curvature” factor, describing the

additional curvature in maturities typically between 3 and 7 years. In this paper, we find that

each of the different term structure effects, i.e. latent factors, has a macroeconomic source.

More in particular, we find that the “level” effect can be linked to long-run inflation effects,

that the “slope” factor correlates well with the predictable inflation and business cycle com-

ponents, and that the “curvature” effect is related to the current stance of monetary policy,

i.e. to real interest rate movements not related to the standard macroeconomic conditions.

The remainder of the paper is organized as follows. In section 2, we present a continuous-

time model for the macroeconomy and the term structure that integrates in a consistent way

the macroeconomic and the finance view. The mathematical properties of the model ensure

both a proper interpretation of the filtered factors as long-run expectations and a well-defined

term structure model based on these factors. Section 3 implements the model by estimating

the macroeconomic dynamics and filtering the long-run expectations by means of the Kalman

filter. Section 4 discusses the relation of the macroeconomic state variables to those of a

latent factor Vasicek model and verifies the appropriateness of the filtered expectations by

contrasting them to survey expectations. Finally, section 5 concludes and discusses possible

routes for further research.

2 An affine term structure model with macro factors

In this section, we present a continuous-time model of the term structure of interest rates

which incorporates both macroeconomic factors and their long-run expectations. In the first

subsection, we set out the dynamics of the model under the historical probability measure and

introduce the definition of long-run expectations of the macroeconomic variables. The basis is

a simple non-stationary model for the output gap, inflation, and real interest rate dynamics.

Next, we model the dynamics under the risk neutral probability measure and impose the

necessary conditions for stationarity under this measure. As mentioned in the introduction,

this is made possible through the adoption of time-varying risk premia. Implications for the

term structure are also discussed.

2.1 Incorporating long-run macroeconomic expectations

The failure of the standard macroeconomic approach (see, for instance, Ang and Piazessi

(2002)) to model the long end of the yield curve suggests some misspecification in the model-

ing of the long-run expectation of the (short-run) interest rate process. As shown by Kozicki

and Tinsley (2001), the misspecification can be attributed to the failure to incorporate time-

varying attractors (endpoints) for the short-run interest (inflation) rate. Unlike these authors,
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we do not filter these time-varying attractors for the interest rate from the term structure.5

Instead, we construct these attractors from the macroeconomic and term structure dynam-

ics. We start assuming the following dynamics in continuous time for the output gap, y (t),

inflation, π (t) , and the instantaneous real interest rate, ρ (t):

dy (t) = [κyy (y (t)− y∗ (t)) + κyπ (π (t)− π∗ (t)) + κyρ (ρ (t)− ρ∗ (t))] dt+ σydWy (t) ,

(1)

dπ (t) = [κπy (y (t)− y∗ (t)) + κππ (π (t)− π∗ (t)) + κπρ (ρ (t)− ρ∗ (t))] dt+ σπdWπ (t) ,

(2)

dρ (t) = [κρy (y (t)− y∗ (t)) + κρπ (π (t)− π∗ (t)) + κρρ (ρ (t)− ρ∗ (t))] dt+ σρdWρ (t) ,

(3)

where Wi (t) , i = {y, π, ρ}, denotes independent Wiener processes defined on the probability
space (Ω,F , P ) with filtration Ft. As such, we can interpret the shocks dW (t) as structural
shocks to the output gap, inflation, and the real interest rate, respectively. The variables

y∗ (t) , π∗ (t) and ρ∗ (t) can be interpreted as long-run macroeconomic attractors, or endpoints,
if two conditions are satisfied: First, if the market does not expect any change in these

variables (Etdx (t) = 0, x (t) = y∗ (t) ,π∗ (t) , ρ∗ (t)) and, second, if the variables in the system
(1)-(3) converge to their respective central tendencies. Formally, we only allow deviations from

these central tendencies to determine the short-run dynamics of the respective macroeconomic

variables. In this way, we actually ensure that the exogenous central tendency variables act

as long-run attractors in this system:6

lims→∞Et (y (s) | y∗ (t)) = y∗ (t) ,

lims→∞Et (π (s) | π∗ (t)) = π∗ (t) ,

lims→∞Et (ρ (s) | ρ∗ (t)) = ρ∗ (t) ,

(4)

where Et denotes the mathematical expectation operator defined under the historical prob-

ability measure P. Following the recent literature on linear policy rules, we impose that the

central bank uses a linear policy rule for the real interest rate. More specifically, we assume

that the central bank follows a rule based on long-run expectations for both the output gap

and inflation. This policy rule is formalized as:

ρ∗ (t) = γ0 + γy∗y
∗ (t) + γπ∗π

∗ (t) . (5)

5 In their shifting model, Kozicki and Tinsley (2001) filter the endpoint of the short-run interest rate by
taking the average of expected shor rates between five and ten years ahead. This approach yields the actual
endpoint only if, as they assume, risk premia do not depend on long-run expectations and if the convergence
process of interest rates is sufficiently fast to converge in five years time to the long-run endpoint. In our
approach, we do not have to make either of these assumptions.

6Note that these long-run central tendencies can only serve as long-run attractors if the dynamics are stable.
In the estimation of the system, we impose stability of the factors and thus the long-run attracting property
of the exogeneous central tendencies.
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The model is closed with the following definition for the instantaneous interest rate r (t):

r (t) ≡ π (t) + ρ (t) . (6)

The dynamics of the above system conform well to the standard macroeconomic view.

We allow each of the observable economic variables, output gap and inflation, to be affected

through three channels: the (instantaneous) real interest rate (ρ), the other economic variable

(output gap or inflation), and a mean reverting component modeling the possible inertia

in the adjustment process. Central tendencies of output and inflation are assumed to be

strictly exogenous and independent processes. The adoption of a Gaussian (Vasicek) type of

model reflects our intention to offer complete flexibility with respect to the magnitudes and

sizes of the conditional and unconditional correlations among the factors. This specification,

moreover, fulfills the admissibility conditions specified in Dai and Singleton (2000). The

costs associated with this choice are twofold: the lack of flexibility in fitting the interest rate

volatility, since we assume constant conditional variances for the factors; and the possibility

of negative interest rates.

The above representation of the dynamics of the economy can be restated in matrix

notation. Denoting n as the number of factors in the model, five in our case, we define the

vectors of n factors and shocks and an n x n diagonal matrix S as:

f (t) ≡


y (t)
π (t)
ρ (t)
y∗ (t)
π∗ (t)

 , dW (t) ≡


dWy (t)
dWπ (t)
dWρ (t)
dWy∗ (t)
dWπ∗ (t)

 , and

S ≡ diag (σy,σπ,σρ,σy∗ ,σπ∗) .

(7)

The dynamics of the economy can, therefore, be restated as follows:

df (t) = (ψ +Kf (t))dt+ SdW (t) , (8)

where

K =


κyy κyπ κyρ −κyy − κyργy∗ −κyπ − κyργπ∗
κπy κππ κπρ −κπy − κπργy∗ −κππ − κπργπ∗
κρy κρπ κρρ −κρy − κρργy∗ −κρπ − κρργπ∗
0 0 0 0 0
0 0 0 0 0


and

ψ =
�−κyργ0 ,−κπργ0 ,−κρργ0, 0, 0�� .

The macroeconomic dynamics is then modeled by positing two stochastic trends, y∗ and
π∗, and three cointegrating relationships, relating the macroeconomic variables to these sto-
chastic trends. This construction implies a non-stationary framework for the macroeconomic
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dynamics, as often corroborated in the macroeconomic literature, where unit roots in inflation

cannot be rejected.

2.2 The term structure of interest rates

One problematic feature of the above specification of the central tendencies is the presence

of unit roots in the time series of the modeled variables. Unit roots are traditionally avoided

when modeling the term structure. Unit roots in conjunction with the expectation hypothesis

yield unrealistic descriptions of the term structure. Specifically, limiting forward rates tend

to decrease without bounds, eventually becoming more and more negative (see, for instance,

Campbell et al. (1997)). We reconcile the presence of unit roots in observed macroeconomic

series with a well-behaved term structure model by augmenting the pure expectation hypoth-

esis with time-varying risk premia. As long as the factor dynamics are stationary under the

risk neutral measure, the term structure of interest rates, meaning the limiting forward rate,

is still well defined.

Equations (6) and (8) completely specify the instantaneous interest rate and the dynamics

of the macroeconomic variables. This system must, therefore, also determine (up to some risk

premium component) the term structure of interest rates and its dynamics. Absence of

arbitrage opportunities implies that the price at time t of a zero-coupon default-free bond

maturing at time T is defined as:

p (t, T ) = EQt

 exp
− T]

t

r (u) du

 , (9)

where Q denotes the risk-neutral probability measure. In general, this risk-neutral proba-

bility is unknown and can only be specified by assuming some specification for the prices of

factor risk. Following Duffee (2001), time variability in the prices of risk can be captured by

specifying prices of risk as an affine function of each of the factors. The vector containing the

time-varying prices of risk ξ is defined as:

ξ (t)= SΛ+ S−1Ξf(t), (10)

where Λ ≡ (λy,λπ,λρ,λy∗λπ∗)� and Ξ is an n x n matrix containing the sensitivities of the
prices of risk to the levels of the state space factors. Changing probability measures is then

easily done by means of the Girsanov theorem:

dW(t) =dW̃ (t)− ξ (t)dt, (11)

where W̃i (t) constitutes a martingale under measure Q. The macroeconomic state space

dynamics can be restated in terms of this risk-neutral metric Q as:

df (t) =
�
ψ̃ + K̃f (t)

�
dt+ SdW̃ (t) , (12)
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K̃ = K−Ξ, (13)

ψ̃ = ψ − S2Λ. (14)

Note that the dynamics under the risk neutral probability measure are the relevant ones in

pricing bonds, and not the ones under the historical probability measure. As such, non-

stationary historical dynamics can be combined with stationary risk neutral dynamics by

imposing appropriate conditions on the K̃ matrix. More specifically, it is sufficient to impose

that all eigenvalues of K̃ are negative to ensure a stable dynamics under Q and a well-defined

term structure.7 Only under the pure expectation hypothesis, i.e. where the historical and

risk neutral probability measure coincide, will the historical dynamics and its non-stationarity

generate ill-defined term structure models.

It is well known that given the essentially affine dynamics under Q, equation (9) has an

exponentially affine solution in the factors f (t) . Denoting the time to maturity of the bond

by τ = T − t, the functional form for the bond prices is given by:

p (t, T ) = p (f (t) , τ) = exp
�
−a (τ)− b (τ)� f (t)

�
, (15)

where b (τ) is an n x 1 vector. The values for a (τ) and b (τ) are determined by imposing the

no-arbitrage condition in the bond markets:

DQ ( p (f (t) , τ)) = r (t) p (f (t) , τ) , (16)

where DQ denotes the Dynkin operator under the probability measure Q. The intuitive

meaning of the latter condition is that, once transformed to a risk-neutral world, instantaneous

holding returns for all bonds are equal to the instantaneous riskless interest rate. Using

Girsanov’s theorem, we can infer the implications for the real world by changing from the

risk-neutral measure, Q, to the historical one, P.

Equations (15) and (16) determine the solution for the functions a (τ) and b (τ) in terms of

the following system of coupled ordinary differential equations (ODEs) which, in the general

case, can only be solved numerically:

∂a (τ)

∂τ
= b(τ)�ψ̃ − 1

2
b(τ)�S2b(τ),

∂b (τ)

∂τ
= b0 + K̃�b(τ).

(17)

A particular solution to this system of ODEs is obtained by specifying a set of initial con-

ditions on a and b. Inspection of equation (15) immediately shows that the relevant initial

7A proof of this statement is available upon request.
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conditions are: a (0) = 0 and b (0) = 0. The vector of constants b0 is defined by the inter-

est rate definition presented in equation (6) and in the setting of this paper is equal to b0
= (0 1 1 0 0)�.

The bond pricing solution differs in important ways from the standard (independent)

multi-factor term structure literature. First, allowing for interrelations among the factors

(i.e. non-zero off-diagonal elements in K̃) generates a coupled system of ODEs instead of a

set of uncoupled ODEs. The bond pricing solution for the a and b functions, therefore, do

not reduce to the standard multi-factor result (see, for instance, de Jong (2000)). Second,

not all of the factor loadings start from unity at maturity τ = 0. In our case, both the

output gap and the stochastic central tendencies have zero loadings in the determination of

the short rate. However, since the central tendencies serve as attractors for the observable

macroeconomic variables, they become more important for longer maturities. This property

also makes clear why the introduction of long-run expectations solves the problems faced by

standard macro models in fitting the long end of the term structure. The introduction of

these long-run expectations basically does not affect the short-run yields (factor loadings are

very small) but does affect the long maturities in a crucial way. Long-run expectations can,

therefore, model the long end of the term structure without directly affecting its short end.

3 Estimation

The model is estimated by means of a Kalman filter. Given the Gaussian structure of the

model, the filtered long-run expectations are consistently estimated. Relative to the specifi-

cation presented above, we simplify the empirical model by concentrating on a single central

tendency, representing the long-run inflation expectation. The output central tendency y∗ is
filtered out by applying a Hodrick-Prescott (HP) filter on the output data and making use

of the transitory component of the series. This redefines the y variable as the output gap

with a long-run expectation equal to zero (y∗ = 0). We start discussing the data set used

to estimate the model. Next, the Kalman filter specification is explained taking care of the

necessary perfect up-dating condition for the observable state variables. Finally, we present

and discuss the parameter estimates of the model.

3.1 Data

We base our analysis on data from McCulloch and Kwon (1993) and Bliss (1997) provided

by Duffee (2001). This data set consists of month-end yields on zero-coupon U.S. Treasury

bonds with maturities of 3 and 6 months and 1, 2, 5, and 10 years. We use a quarterly

frequency in the construction of the time series in order to incorporate the output gap series.

Our data set consists of 140 data points (1964:Q1 to 1998:Q4) for each of the series. Although

the original data set starts in 1958:Q1, we decide not to use the data before 1964 since Fama
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and Bliss (1987) point to the unreliability of the data for long-term bonds before this date.

The output and inflation series were obtained from International Financial Statistics (IFS)

database provided by the International Monetary Fund (IMF). As mentioned before, a proxy

for the output gap is obtained by using an HP filter on the GDP series over the sample

period.8 Inflation was constructed by taking the yearly percentage change in the CPI index,

that is πt = lnCPIt − lnCPIt−4. Figure (1) depicts the series for the output gap, inflation
and the term structure.

Insert Figure 1

In Table 1 we give some descriptive statistics of the sample series. The average term struc-

ture series display an increasing yield curve and the observed variance of the term structure

tends to decrease in the maturity. There is strong evidence against normality in most series

in terms of skewness and excess kurtosis (both decreasing with maturity) and in terms of a

summary Jarque-Bera statistic (p-values are reported in the table). Also, strong autocorre-

lation is observed in all series over the sample period. Most interestingly, however, is the

correlation matrix showing extreme correlation among the various bonds and significant but

more moderate correlations between bonds on the one side and output gap or inflation on

the other side. The output gap is positively correlated with the term structure up to 2-year

yields and negatively correlated afterwards, while inflation is positively correlated with the

entire term structure. The output gap and inflation are positively correlated with each other.

3.2 The Kalman filter

In order to estimate the model’s parameters and filter its central tendencies (long-run per-

ceptions), we derive the discrete-time implications of the continuous-time model so as to

match the observation frequency of the sample. The discrete time dynamics, consistent with,

i.e. derived from, the continuous-time model can then be used in a Kalman filter procedure

to generate the unobservable central tendencies of the macroeconomic factors. Under the

historical probability measure, the dynamics of the state vector f (t) are fully defined as:

f (s) = expK(s−t)ψ (s− t) + expK(s−t) f (t) +
s]
t

expK(s−u) SdW (u) (18)

The stochastic properties of the state vector are thus (in discrete) time also fully known.

More specifically, f (s) is conditionally normally distributed with mean and variance equal

to9, respectively:

Et [f (s)] = expK(s−t)ψ (s− t) + expK(s−t) f (t) (19)
8We use a standard “lambda” in the filtering procedure equal to 1600.
9 In practice, since the matrix K is in general not diagonal, the computation of the conditional mean and

variance of the factors are not easily done. Dewachter et al. (2001) and Fackler (2000) provide equivalent
procedures to compute the conditional mean and variance of the factors.
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Table 1: Summary statistics for the data used (1964:Q1-1998:Q4)

yield1q yield2q yield1yr yield2yr yield5yr yield10yr y π

Mean (%) 6.522 6.778 7.009 7.252 7.564 7.770 0.034 4.776
Std. (%) 2.624 2.660 2.615 2.525 2.405 2.324 1.642 2.844
Min (%) 2.780 2.878 3.090 3.822 4.055 4.157 -4.689 1.128
Max (%) 15.241 15.924 15.911 16.107 15.696 15.065 3.879 13.502
Auto 0.986 0.987 0.989 0.992 0.995 0.997 0.869 0.993
Skew 1.333 1.316 1.201 1.175 1.098 0.917 -0.331 1.199

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.110) (0.000)
Kurt 4.745 4.764 4.382 4.247 3.950 3.543 3.413 3.769

(0.000) (0.000) (0.001) (0.003) (0.022) (0.189) (0.318) (0.063)
JB 59.188 58.550 44.782 41.284 33.365 21.351 3.555 36.971

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.169) (0.000)

correlations
yield1q 1.000
yield2q 0.995 1.000
yield1yr 0.982 0.994 1.000
yield2yr 0.959 0.973 0.990 1.000
yield5yr 0.900 0.914 0.943 0.979 1.000
yield10yr 0.852 0.866 0.899 0.947 0.991 1.000

y 0.190 0.177 0.144 0.068 -0.033 -0.078 1.000
π 0.680 0.683 0.661 0.617 0.558 0.533 0.078 1.000

The bond yield data are based on spliced data from McCulloch and Kwon (1993) and Bliss (1997) provided
by Duffee (2001) and concern U.S. Treasury bonds with maturities of 3 and 6 months and 1, 2, 5, and 10
years. Output gap (y) and inflation (π) data are constructed as mentioned in the text. The data series
cover the period from 1964:Q1 until 1998:Q4, totalling 140 quarterly time series observations. Mean denotes
the sample arithmetic average, expressed as p.a. percentage, Std standard deviation, Min minimum, Max
maximum, Auto the first order quarterly autocorrelation, Skew and Kurt stand for skewness and kurtosis,
respectively, while underneath these statistics are the significance levels at which the null of no skewness
and the null of no excess kurtosis may be rejected. JB stands for the Jarque-Bera normality test statistic
with the significance level at which the null of normality may be rejected underneath it.

Et
k
(f (s)−Etf (s))2

l
=

s]
t

expK(s−u) SS�(expK(s−u))�du. (20)

In order to estimate the parameters of the model and filter the central tendencies, we make use

of a measurement equation including both the observable macroeconomic variables, output

gap and inflation, and the observed yield curve. In this way, we ensure that the filtered central

tendencies are consistent with both the macroeconomic dynamics and the term structure of

interest rates. Consider a set of observed yields, ŷ (τ i, t) , i = 1, ...,m. Given that the yield is

defined as − lnp (τ i, t) /τ i, the model implies a linear relation between the theoretical yields
and the factors, i.e. ŷ (τ i, t) = a (τ i) /τ i + b

� (τ i) /τ if (t) . The measurement equation can
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then be written as: 
ŷ1 (t, τ1)

...
ŷm (t, τm)
y(t)
π (t)

 =
 a
0
0

+
 B
e�1
e�2




y(t)
π(t)
ρ (t)
y∗(t)
π∗ (t)

+ εt , (21)

where ei is a (n × 1) column vector of zeros with a one on the ith row, εt is an (m+2) x 1
vector of measurement errors and

a = (a (τ1) /τ1, ... , a (τm) /τm)
� , (22)

B =

 b (τ1)
� /τ1
...

b (τn)
� /τm

 . (23)

We can rewrite the measurement equation more concisely as:

z (t) = cz +Hf (t) + ε (t) ,

Et (ε (t)ε� (t)) = R,
(24)

where z (t) denotes the left-hand side of (21). Finally, we impose zero measurement errors for

the output gap and inflation. This ensures that the actual observed output gap measure and

inflation rate are in the information set of the agents. By imposing a zero measurement error

on these variables, we make sure that agents update their inflation and output gap assess-

ments to the actual observed ones. Technically speaking, this perfect updating is obtained by

imposing zero variance-covariance structure on the m+1-th and m+2-th rows and columns

of the variance-covariance matrix R.

Given this measurement equation and the conditional normality of the factors, we can

apply the standard Kalman filter algorithm. Defining Φ (s) = expK(s), c (s) = expK(s)ψs and

Q (s) =

s]
0

expK(s−u) SS�(expK(s−u))�du, we can express the necessary prediction equations

to be used in the Kalman filter as:

f̂t+∆t | t = c (∆t)+Φ (∆t) f̂t | t,

(25)

P̂t+∆t | t = Φ (∆t) P̂t | tΦ
� (∆t) +Q (∆t) .

The updating equations for the filtered factors and variance-covariance matrix are then equal

12



to:

f̂t+∆t | t+∆t = f̂t+∆t | t + P̂t+∆t | tH�
�
HP̂t+∆t | tH� +R

�−1 �
z (t+∆t)− cz −Hf̂ t+∆t | t

�
,

P̂t+∆t | t+∆t = P̂t+∆t | t − P̂t+∆t | tH�
�
HP̂t+∆t | tH� +R

�−1
HP̂t+∆t | t .

(26)

Finally, given the non-stationary nature of the central tendencies, the standard full maximum

likelihood procedure is infeasible. To circumvent the problem, we estimate additionally the

first observation of the central tendency of inflation, π∗ (1), and assume that this is known
such that the initial variance-covariance matrix P̂1|1 = 0. Conditional on these additional

assumptions, we estimate the parameters of the model, collected in the vector ζ, by means of

a maximum likelihood procedure, where the likelihood function is given by:

c
�
Z | ζ, f1|1, P̂1|1

�
=

nd[
t=1

−12 ln
���HP̂t+∆t | tH� +R���

−
nd[
t=1

1
2

�
z (t+∆t)− cz −Hf̂ t+∆t | t

�� �
HP̂t+∆t | tH� +R

�−1 �
z (t+∆t)− cz −Hf̂ t+∆t | t

�
,

(27)

and nd stands for the number of observations in the data set.

3.3 Parameter estimates

In this subsection we discuss the estimation results of the model.10 This includes the analysis

of the dynamic properties of the estimated factors and an assessment of both the long- and

short-term real interest rate policy rule adopted by the central bank. The parameter estimates

can be found in Table 2 and we concentrate on its more important implications.

By far the most important feature of the estimates is the finding that all of the macro-

economic variables, i.e. y (t) , π (t) and ρ (t) exhibit statistically significant reversion towards

their stochastic trend. This can be inferred from the statistically significant negative diagonal

elements of the K matrix. This finding corroborates the idea that each of the macroeconomic

series has a trend-cycle decomposition.

Since we impose a random walk model on the long-run inflation expectation under the

empirical probability measure, the system is, under this measure, non-stationary. Under

the risk neutral probability measure, however, the state space dynamics is stable, i.e. the

real parts of the eigenvalues of the matrix K̃ are all negative. Moreover, K has imaginary

eigenvalues, indicating an oscillating impulse response for the dynamic system. Figure 2

10The full model is estimated in a single step procedure. Optimization was performed using the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) algorithm with a convergence tolerance for the gradient of the estimated
coefficients equal to 1E-04. The robustness of the “optimum” reported is verified by checking convergence from
an array of starting points.
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Table 2: Maximum likelihood estimates (1964:Q1-1998:Q4)

y π ρ π∗

κy,· -0.9888 -0.4496 0.0835
(0.1347) (0.0648) (0.0488)

κπ,· 1.1313 -0.3646 -0.3889
(0.1064) (0.0958) (0.1237)

κρ,· 0.2744 -1.1707 -1.9107
(0.1503) (0.2498) (0.2910)

γ0 0.0038
(0.0041)

γ· 0.3251
(0.1374)

σ2· 0.000339 0.000107 0.000850 0.000043
(0.000056) (0.000014) (0.000121) (0.000015)

λ· 71.2743 -242.6286 40.2630
(26.5016) (147.5687) (18.2616)

Ξ·,π∗ 1.3038 -3.1465 4.4159 0.1040
(0.5343) (1.0096) (0.9333) (0.0425)

Ξρ,· 1.5258 -1.1236 -2.0459
(0.1932) (0.2603) (0.3159)

R1q 13.7340
R2q 14.5482 22.8339
R1yr 5.8979 18.0036 19.4094
R2yr -2.4018 9.1557 12.7532 10.0375
R5yr -11.1427 -2.3571 2.1555 2.3205 0.0006
R10yr -7.4120 -0.9746 2.1784 2.2424 0.0755 0.0000

Maximum likelihood estimates with robust standard errors between brackets. The
values in the measurement error covariance matrix (R) are multiplied by 106. To-
tal likelihood is equal to 5929.4434 or 42.3532 on average (excluding constant in the
likelihood).

presents the filtered time series for the four factors involved: two observable ones (output

gap, y, and inflation, π) and two non-observable ones (the real interest rate, ρ, and the

long-run inflation expectation, π∗). The time series “STrule” also presented in this figure is
discussed below.

Insert Figure 2

Next to the macroeconomic dynamics, Table 2 also provides important information with

respect to the estimated prices of risk. Due to identification issues, we only estimate a subset

of the prices of risk.11 Note that the prices of risk are estimated with relatively high precision.

11We face identification problems when we allow for the estimation of all market prices of risk. The chosen
set of market prices of risk avoids identification problems and gives enough flexibility in the determination of
the time-varying risk premia. Duffee (2001) and Dai and Singleton (2001) also estimate restricted sets of the
market prices of risk due to identification problems.
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Only one of the parameter estimates is not significant at the five percent level. More striking,

however, is the observation that the inflation expectations enter significantly in the prices of

risk attached to any of the state variables. Inflation expectations thus tend to function as a

general factor of the size of all of the risk premia, indicating that market prices of risk attached

to any of these factors tend to increase with the level of the expected long-run inflation.

3.3.1 The real interest rate rule

The above economic framework estimates implicitly a Taylor-type rule. In order to make

this rule explicit, we re-arrange equation (3) to obtain a real interest rate dynamics that

conforms to standard Taylor rule specifications (see Clarida et al. (1998)). More specifically,

we construct what we call the central bank short-term target rate, ρ∗s, and make future
expected real interest rate movements conditional on the gap between the observed and the

target real interest rate:

Etdρ (t) = κρρ (ρ− ρ∗s(t))dt,

ρ∗s = γ0 −
κρy
κρρ

y (t)− κρπ
κρρ

π (t) +

#
γπ∗ +

κρπ
κρρ

$
π∗ (t)� ~} �

central bank short-term target

.

Based on the estimates reported in Table 2, this rule can be written as (see also Figure 2):

ρ∗s = 0.004 + 0.144 y (t) − 0.613 π (t) + 0.938 π∗ (t) .
(0.004) (0.083) (0.117) (0.184)

The above rule shows the importance of both the observed level of inflation and of its long-

run expectation. In special, one observes the almost one-to-one relation between the central

tendency of inflation and the short-run real interest rate target. The negative loading on

observed inflation may at first seem strange. However, it can be interpreted as an indication

of a forward looking Taylor rule specification. Recall that the dynamic specification we use

models future expected dynamics for the output gap, inflation and the real interest rate in

terms of deviations form the stochastic trend. Expressing this rule in terms of the state

factors separately is, therefore, not very appropriate. After some algebra, equation (3) can

also be written in terms of a forward looking Taylor-type rule. In this form, the real interest

rate reacts to the expected change in both the output gap and inflation, as well as to a mean

reverting term:

Etdρ (t) =−1.455
(0.307)

(ρ (t)− ρ∗s(t))dt,

ρ∗s = ρ∗+ 0.968 Et
�
dy(t)
dt

�
+ 1.013 Et

�
dπ(t)
dt

�
(0.308) (0.312)

.

(28)
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An expected increase in either the output gap or inflation triggers an expected increase in

the real interest rate. Interestingly, we find an expected real interest rate increase that is

approximately one-to-one with both expected output and inflation changes.

Finally, there is the third feature of the real interest rate rule, which is related to the

interest rate smoothing, i.e. to the mean reversion properties of the real interest rate to its

short-term target. We find a relatively strong mean reversion for the real interest rate, i.e. a

high value for κρρ. This results in a halving time of the deviation from the short-term target

(equation 28) equal to approximately half year. This mean reversion suggests that this policy

reaction factor exerts more influence on the short end of the term structure than on the long

end. In other words, the policy reaction factor represents a “slope” factor and not a “level”

factor for the term structure. This is in line with the conjecture of Knez et al. (1994), Evans

and Marshall (1998) and Wu (2000).

4 A macroeconomic interpretation of the yield curve

Based on the empirical estimates of the previous section, we now proceed to explain the term

structure from a macroeconomic perspective. As shown above, we use four macroeconomic

factors: the output gap, inflation, the real interest rate, and the long-run inflation expectation.

First, we explain the roles played by each of these variables in shaping the yield curve.

Subsequently, we compare the term structure fit to that of a latent factor, and, finally, we try

to relate the traditional latent factors to the estimated macro factors.

4.1 Decomposing the yield curve

Figure 3 depicts the factor loadings on each of the macroeconomic factors for the yield curve.

A first important observation is that, unlike the standard (latent factor) literature, we do not

find evidence of a direct macroeconomic level effect. Instead, we find evidence of two types of

factors driving the term structure. First, factors that primarily determine the range of small

maturities, being inflation, the real interest rate, and the output gap. The factor loadings of

these factors typically dampen quite fast and are relatively small for the longer end of the

term structure. The second type of factor is the long-run inflation expectation. This type of

factor primarily models the long end of the term structure while not affecting the short end.

Insert Figure 3

Even though this decomposition is quite different from the standard decomposition ob-

tained in the latent factor literature, the macro model performs reasonably well when com-

pared to a standard latent factor model. Table 3 gives some diagnostic statistics which allow

us to compare the performance of the macroeconomic model with the benchmark of a three-

factor latent model. Keeping in mind that the three-factor latent model is sufficiently flexible
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to model the term structure, we still find the macro model to be competitive. Looking at the

mean and autocorrelation of the fitting errors, the latent factor model seems to be modeling

better the short end of the term structure while the macro model seems to do better in the

range of longer maturities. The lack of flexibility of the macro model becomes clear by the size

and standard deviation of the measurement errors, which are especially large for the short end

of the yield curve. Nevertheless, when compared to the latent factor model the macro model

displays somewhat lower autocorrelation in the measurement errors for maturities above two

quarters. Figure 4 displays the fit of the macro model for the term structure of interest rates.

Table 3: Term structure fitting erros
Macro model 3-factor latent model

mean (%) std.dev. (%) autocorr. mean (%) std.dev. (%) autocorr.
yield1q 0.13 0.62 0.32 -0.0002 0.34 0.15
yield2q 0.21 0.67 0.35 0.14 0.32 0.25
yield1yr 0.18 0.64 0.38 0.17 0.29 0.45
yield2yr 0.15 0.53 0.37 0.15 0.28 0.44
yield5yr 0.09 0.35 0.31 0.10 0.20 0.41
yield10yr 0.07 0.26 0.31 0.08 0.17 0.46

autocorr. stands for one-lag autocorrelation.

Insert Figure 4

An alternative method to test for the adequacy of the model is to run regressions of the

actual yields (or changes in yields) on the implied yields based on the macro model. Model

adequacy is then tested by the null hypothesis that the implied yields are unbiased predictors

of the actual yields. Running a regression in levels, we are not able to reject the null hypothesis

of unbiased implied yields (see Table A1 in the Appendix). For all maturities, more than 93%

of the variation of the yields is explained. So, in general, the macro model gives a reasonable

description of the yield curve. Performing the regression on yield changes, however, reveals

some biases. The regression coefficients tend to be significantly different from 1. Nevertheless,

the fit is still reasonable since for all maturities more than 60% of the variation in the yield

changes is explained. In short, on a general level we have a good macroeconomic description

of the yield curve. The restrictions imposed on the macro model by fitting the yield curve

only by means of macro factors do, however, restrict its flexibility which shows up in the fit

of the changes in the yield curve.

4.2 A macroeconomic interpretation of the latent factors

Even though the macroeconomic interpretation derived from the macro model is by definition

more informative than the results obtained from a standard latent factor model, it is important
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to find out the link between the two representations. This would allow us to give the latent

factors an economic interpretation beyond the standard “level”, “slope” and “curvature”

labels traditionally attached to them. Here we perform such an exercise and show that there

is a clear link between the latent and macro factors. A first analysis consists of performing a

standard projection of the macro factors on the latent factors. Table 4 shows the regression

results for each of the latent factors. Consistent with the above analysis, the macro model

is able to track the latent factors relatively well. Most importantly, the “level” factor is

fitted quite well with an R2 of 83%. This result stands in sharp contrast to the standard

macro models (e.g. Ang and Piazessi (2002)), that fail exactly to fit the “level” factor. The

success of our proposed model can be attributed almost completely to the introduction of the

long-run inflation expectation. The “slope” and “curvature” factors are fitted less accurately.

Nevertheless, the macro factors are able to explain around 55% of the variation of the latent

factors. However, based on the reported regressions, a clear macroeconomic interpretation of

the latent factors does not emerge immediately.

Table 4: Regression of latent factors upon macro factors
“Level” factor “Slope” factor “Curvature” factor

cte -0.0142 0.0042 0.0064
(0.0031) (0.0038) (0.0029)

y 0.0134 0.4583 -0.3820
(0.0590) (0.0715) (0.0559)

π -0.0397 0.4326 0.4543
(0.0498) (0.0604) (0.0472)

ρ -0.0074 0.0523 0.7066
(0.0579) (0.0702) (0.0549)

π∗ 1.8714 -0.6095 -0.9583
(0.1016) (0.1232) (0.0963)

R
2

0.832 0.564 0.548

The three latent factors are regressed upon the filtered factors of the
macro model presented above. Standard errors between brackets.

In order to get an idea of the macroeconomic meaning of the “slope” and “curvature”

factors, we perform an OLS regression on orthogonalized components of the macroeconomic

factors. This allows us to assess the contribution of the independent components of the

macroeconomic variables for each of the latent factors. We orthogonalize the macroeconomic

factors by means of a Cholesky factorization based on the following ordering: π∗, π−π∗, y, and
ρ−ρ∗. The regression results of the latent factors on the orthogonalized factors are displayed
in Table 5. Again, we find that the “level” factor is basically explained by the filtered long-run

inflation expectation. This variable explains about 84 % of the total variation of the “level”

factor. The “slope” factor is mainly explained by the second and third Cholesky factors,
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respectively inflation shocks orthogonal to long-run inflation expectations, and output gap

effects not attributable to inflation components. More than 96% of the explained variablity

of the “slope” factor is due to these two factors. Also, we find the inflation component

(cholfac2) to be more important than the (inflation-independent) output gap component

(cholfac3), in terms of R2 contribution. Finally, given the positive regression coefficients

for both the second and third Cholesky factors, we can interpret the “slope” factor as a

business cycle factor. That is, the “slope” factor tends to correlate positively with both

demand inflation shocks and the output gap, both indicating a clear link to the business

cycle. The third latent factor, the “curvature” factor, is mainly explained by the last Cholesky

factor. More than 99% of the total explained variation of this factor is due to the fourth

Cholesky factor. By construction, this factor represents real interest movements orthogonal

(independent from) all other macroeconomic variables. As such, this factor represents an

independent monetary policy factor that we label here as the “monetary stance” factor. The

Cholesky factor regression coefficient is positive, meaning that an increase in the “curvature”

is positively related to a tougher monetary policy stance.

Table 5: Regression of latent factors upon ortogonalized macro factors
“Level” factor “Slope” factor “Curvature” factor

coefficient R
2

∆R
2

coefficient R
2

∆R
2

coefficient R
2

∆R
2

cte -0.0142 0.0044 0.0091
(0.0031) (0.0038) (0.0030)

cholfac1 1.8265 0.835 0.835 -0.2408 0.019 0.019 -0.1449 0.009 0.009
(0.0694) (0.0841) (0.0657)

cholfac2 -0.0340 0.835 0.000 0.4464 0.394 0.375 0.0022 0.001 -0.008
(0.0336) (0.0407) (0.0318)

cholfac3 0.0102 0.834 -0.001 0.4806 0.565 0.171 -0.0806 0.002 0.001
(0.0536) (0.0650) (0.0508)

cholfac4 -0.0074 0.832 -0.002 0.0523 0.564 -0.001 0.7066 0.548 0.546
(0.0579) (0.0702) (0.0549)

The three latent factors are regressed upon orthogonalized macro factors. The Cholesky decomposition was
done with the macro factors in the following order: π∗,π − π∗, y − y∗, ρ − ρ∗. Standard errors between
brackets.

In summary, we find, within the limitations of the fit for the latent “slope” and “curvature”

factors, a clear interpretation of the latent factors in macroeconomic terms. The standard

“level” factor is a macroeconomic expectations effect, clearly related to long-run inflation

expectations. The “slope” factor represents business cycle conditions while the “curvature”

factor is related to the monetary policy stance held by the central bank. In order to track the

responses across the yield curve of the respective Cholesky factors, we transform the obtained

loadings on the macro factors to those relevant for the Cholesky factors. The following
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transformation is used:

B�chol = B
�Z−1L�, with L�L = ZE (f (t) f � (t))Z�

(π∗ (t) ,π (t)− π∗ (t) , y (t) , ρ (t)− ρ∗ (t))� = Zf (t) .
(29)

Figure 5 presents the factor loadings Bchol. As can be seen, the first Cholesky factor, i.e. π∗

exerts an important effect throughout the yield curve. Although we still do not recover a full

“level” factor, it comes close. A shock to inflation expectations is transmitted through the

entire yield curve. Note also that there is not a one-to-one relation. Interestingly, we find that

interest rates respond more than one-to-one to long-run inflation expectations. We recover

a sensitivity of the short-term interest rates to long-run inflation expectations equal to 1.44,

which is close to the 1.5 often posited in the Taylor-rule related literature. The second and

third factors, i.e. the business cycle conditions, are basically important for the short end of

the term structure, as expected from temporary effects. The fourth Cholesky factor loadings

show a much smaller mean reversion and also exerts some effect on the longer maturities.

This is exactly what makes it a “curvature” factor. Consistent with the above interpretation,

we find that a tougher monetary stance increases short and intermediate interest rate levels.

Figures 6 to 8 give a graphical display of the latent factors together with the fit of the

retained Cholesky factors. As can be observed, the fit is especially relevant for the first latent

factor, in terms of π∗. Note also that the second latent factor has a strong business cycle
component and that the fit based on the second and third Cholesky factors do track these

cycles pretty well. Finally, we assess the third latent factor which we interpret as a monetary

stance variable. Note that according to this interpretation the stance of monetary policy was

rather loose in the seventies and then abruptely changed in the beginning of the eighties when

the monetary stance became particularly strong. This interpretation of the latent factor in

terms of toughness of the monetary policy stance is corroborated by the historical switches

in inflation fighting policies.

Insert Figures 5 to 8

5 Cross-validation of long-run inflation expectations

The introduction of long-run inflation expectations plays a crucial role in the above analysis.

Notwithstanding the fact that these inflation expectations are formally modeled as stochastic

trends, and thus form consistent long-run attractors, and the fact that in the statistical

analysis significant mean reversion towards these long-run expectations was found, the series

itself still remains a filtered representation of long-run inflation expectations. In order to

assess the plausibility of this filtered expectation series, we conduct two experiments. First,

we relate the filtered inflation expectations to survey data for long-run inflation expectations.
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We then relate them to long-run inflation expectations obtained from a univariate structural

break analysis, as proposed by Kozicki and Tinsley (2001).

Figure 9 contrasts the filtered long-run inflation series (more specifically the ten-year

average inflation forecast implied by the model) with the market long-run inflation expectation

as recorded in the Survey of Professional Forecasters provided by the Federal Reserve Bank of

Philadelphia. This figure provides supporting evidence for the filtered long-run expectations

as the two series are highly correlated. In fact, regression results provided in Appendix C do

not allow us to reject the one-to-one relation between the survey and the filtered expectation.

Note that these results are particularly strong since the survey inflation expectation series

was not used whatsoever in the filtering procedure.

Insert Figure 9

A second method to assess the plausibility of the filtered long-run inflation expectation

consists of a break analysis for the long-run endpoints, as proposed by Kozicki and Tinsley

(2001a)12. In order to construct a market inflation expectation, we follow Kozicki and Tinsley

in assuming that expectations are an average of heterogenous inflation expectations built on

an information lag that agents use to update their long-run expectations:

πM =
N[
i=1

ωi πM,i (30)

where πM denotes the market long-run expectation, ωi is the fraction of agents using an

i year updating lag in their structural analysis, and πM,i denotes the long-run expectation

of agents with an i year updating lag. More details can be found in Kozicki and Tinsley

(2001a) and Bai and Perron (1998). Figure 10 shows the results from the structural break

analysis for an agent with zero updating lag. We find evidence of three major break points in

structural (long-run inflation). In a second step, we calculate the inferred structural inflation

estimates for an agent with an i year information lag, where we allow i=1,...,10. The weights

on each of the information lags is then obtained by a standard GMM procedure imposing

positivity (ωi ≥ 0) of our filtered long-run inflation on the alternative structural inflation

endpoints πM,i. Figure 11 presents the optimal fit based on the mean squared error (MSE)

criteria. As can be seen from this figure, the fit is reasonable, implying that also from this

structural break point of view we can account for the filtered inflation expectation. Figure

12 finally gives the weights attached to each information lag. As can be inferred from this

figure, one interpretation of our filtered long-run inflation expectation is that it is an average

of individual market expectations (i.e. different information lags) which is rather diffuse. A

substantial part of the agents adapts structural inflation expectations quite rapidly, i.e. they

12Unlike these authors, we use the methodology proposed by Bai and Perron (1998).
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use a relatively small information lag, say one to four years. Nevertheless, the regression

results also indicate that a substantial part of the agents is only willing to adjust structural

inflation expectations after a sufficient amount of strong and protracted information indicates

this, i.e those classes of agents that use long information lags. Our results are again in line

with Kozicki and Tinsley (2001).

Insert Figures 10 to 12

6 Conclusions

In this paper we have proposed a macro model that consistently and simultaneously models

the rate of inflation, the output gap and the term structure of interest rates. This approach

extends and corroborates the research by Kozicki and Tinsley (2001a), which shows the im-

portance of long-run inflation expectations in the modelling of the yield curve. We extend

their approach by focussing on a consistent model and by including time-varying prices of

risk specifications. This allows us to avoid the two-step approach employed by these authors

and to replace it by a fully consistent and relatively powerful one-step approach based on the

standard Kalman filter technique.

Our results reinforce the basic message that inflation expectations are important in model-

ing the term structure dynamics from a macroeconomic point of view. The proposed technique

for filtering long-run inflation expectations is based on both macroeconomic as well as term

structure information. This technique delivers quite plausible estimates of these expectations.

First, we obtain statistical evidence that the filtered inflation expectation serves as a stochas-

tic trend both for the term structure and inflation. Second, the filtered inflation expectations

conform well both to survey expectations and to some aggregated inflation expectation re-

covered from a structural break technique.

We find, moreover, that four macroeconomic factors model both the term structure as well

as the macroeconomic dynamics rather well. While inflation expectations play a crucial role

for the long-term maturities, actual macro variables such as inflation, output gap and the real

interest rate are of primary importance for the short-term maturities. This macroeconomic

decomposition allows us to interpret the standard “level”, “slope” and “curvature” effect fac-

tors typically found in the standard finance literature. We find the “level” factor to be closely

linked to the long-run inflation expectation, the “slope” factor to be an aggregate series for

the business cycle condition, and the “curvature” factor to be related to the monetary stance

of the central bank. As such, we have an interesting, although incomplete, macroeconomic

interpretation of the standard latent factors.

Next to filtering long-run inflation expectations, we also allow for time-varying prices

of risk. The time variability is assumed to be captured by the macroeconomic variables.
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An interesting result is that long-run inflation expectations determine to a large extent the

level of the prices of risk of all sources of risk. For instance, the price of risk attached to

business cycle conditions changes with the level of the long-run inflation expectation. Long-

run inflation expectations are, therefore, also a prime determinant of the level of risk premia.

The macroeconomic framework presented here allows for many extensions and applica-

tions. First, as we have incorporated a Taylor rule, the framework could be used to assess

the implications of alternative (linear) feedback rules for both the macroeconomic as well as

the bond market stabilization. Second, there is a vast literature on the information content

of the term structure with respect to the future macroeconomic developments. Our approach

gives a direct way to infer where the information content with respect to a macroeconomic

variable is maximal. Finally, a straightforward extension is to include additional long-term

expectations, such as for instance the structural real growth rate of the economy. In the

current paper, we used the output gap obtained via HP filtering. The alternative is then to

add one more stochastic factor for structural GDP and to replace the output gap by a direct

measure of the production level. These issues are left for future research.
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Appendix A: Term structure fit

Table A1: Regression of yield data on model implied yields.
Levels First differences

cte. coef. R
2

cte. coef. R
2

yield1q 0.002545 0.9813 0.945 0.000026 0.7717 0.665
(0.001390) (0.0202) (0.000582) (0.0465)

yield2q 0.002267 0.9973 0.937 0.000014 0.7728 0.609
(0.001553) (0.0220) (0.000639) (0.0526)

yield1yr 0.002191 0.9944 0.940 0.000012 0.7770 0.623
(0.001548) (0.0213) (0.000589) (0.0513)

yield2yr 0.002360 0.9878 0.956 0.000003 0.7866 0.667
(0.001359) (0.0181) (0.000492) (0.0472)

yield5yr 0.002138 0.9836 0.979 -0.000003 0.7957 0.744
(0.000969) (0.0123) (0.000336) (0.0397)

yield10yr 0.001544 0.9890 0.987 -0.000001 0.8354 0.781
(0.000772) (0.0096) (0.000257) (0.0377)

Regression of yield data on model implied yields and a constant, both
in levels and in first differences. Standard errors between brackets.
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Appendix B: Latent factor model

Table B1: Estimated parameters for 3-factor latent model (1958:Q1-1998:Q4)

“Level” “Slope” “Curvature”
factor factor factor

κ 0.0120 0.8030 0.1907
(0.0035) (0.0911) (0.0415)

θ 0.1755
(0.0640)

σ2 0.000107 0.000436 0.000216
(0.000024) (0.000110) (0.000052)

λ· -23.3985 2.4643
(8.9120) (12.1550)

R1q 0.0000
R2q -4.0713 0.2954
R1yr -11.3335 -2.5857 0.4815
R2yr -12.4916 -4.3614 0.0000 1.3896
R5yr -10.6210 -4.7770 -1.0166 0.2521 0.0753
R10yr -9.0145 -4.2164 -1.1756 0.0422 -0.3231 0.0000

ML estimates with standard errors underneath. The values in the measurement error
covariance matrix (R) are multiplied by 106. Total likelihood is equal to 5483.12 or
33.4337 on average (excluding constant in the likelihood).
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Appendix C: Inflation forecasting

In this appendix, we present the results from OLS regressions of the ten-year average inflation

forecasts provided by the Survey of Professional Forecasters on the forecasts computed based

on our model and a constant.

Table C1: Inflation forecast regressions
average 10-year inflation forecast

constant -0.0058
(0.0029)

coefficient 1.0487
(0.0584)

R
2

0.809
correlation 0.901
no.obs. 77

Note: The null hypothesis of no cointegration between
the variables is rejected at the 1% confidence level. The
regression in levels, as it is done, is therefore appropriate.
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Figures

Figure 1: Data on output gap, inflation, and the term structure of interest rates (1964:Q1-
1998:Q4).
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Figure 2: Macro variables and their estimated central tendencies.
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Figure 3: Estimated factor loadings.
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Figure 4: Model fit (model errors) of the term structure of interest rates.
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Figure 5: Transformed factor loadings.
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Figure 6: Latent “level” effect factor.
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Figure 7: Latent “slope” effect factor.
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Figure 8: Latent “curvature” effect factor.
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Figure 9: Comparison of average 10-year inflation forecast - Model vs. Survey of Professional
Forecasters.
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Figure 10: Break points in long-run inflation expectation.
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Figure 11: Inferred long-run inflation expectation.
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Figure 12: Distribution of weights attached to each information lag.
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