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Abstract 
This paper considers the allocation of indivisible goods among members of a collective assuming that 
individuals are given the right to retain certain goods when some individuals alter the allocation problem. 
The assignment of rights is exhaustive in that, for every good x, either individual i can exercise a right 
over x against j or j against i. It is shown that the only Pareto efficient allocation rules satisfying these 
requirements are those having a hierarchy of diarchies. 
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1. Introduction 

 
Shapley and Scarf (1974) consider an allocation model, the Shapley-Scarf housing 
market, consisting of traders owning heterogeneous indivisible goods (houses) to offer 
in trade. This models has nice properties when preferences over the goods are strict. For 
instance, there is always a unique competitive equilibrium allocation, which can be 
identified using the top trading cycle algorithm. In addition, the strict core coincides 
with the set of competitive equilibrium allocations. See Kamijo and Kawasaki (2009, 
pp. 3-5) for a summary of basic results of this model and Pápai (2007) for a 
generalization of the model that allows individuals to be endowed with a set of goods. 
 
The same problem of allocating heterogeneous indivisible goods among individuals has 
been studied under the assumption that the individuals do not initially own the goods. 
The recurrent result in this literature is that the allocation can be understood as dictated 
by some hierarchical structure that establishes priorities to obtain the goods. Pápai 
(2000) characterizes a general class of hierarchical structures, of which the hierarchy of 
diarchies obtained by Ehlers (2002) and Ehlers and Klaus (2003), and the hierarchy of 
dictators obtained by Svensson (1999) and Ergin (2000), are particular cases. 
 
This paper follows a mixed approach: though individuals are assumed not to possess 
full property rights over the goods, they are attributed some sort of property rights over 
them. These rights are not absolute, as in the Shapley-Scarf housing market, because 
they can only be exercised against some individuals and only in certain circumstances. 
Specifically, for individual i and good x, a set Ii

x defines the set of individuals before 
whom i can exercise the right to retain x when one of those individuals changes his 
preference over the objects. In the Shapley-Scarf housing model, owning x means that 
Ii

x consists of the rest of individuals. In the present case, Ii
x may be any subset of the rest 

of individuals, even the empty set. 
 
In an attempt to make the concession of those rights general, it is assumed as well that 
the diffusion of such rights is maximized: for every good and two individuals i and j, 
one can tell whether it is i who has the right over j or vice versa. This assumption is also 
consistent with the view that, in a society, any type of right must be clearly defined: 
there should not be uncertainty as to who is entitled to exercise a right. In this respect, 
the definition of the sets Ii

x could be an expression of the collective will of constraining, 
by virtue of equity considerations, the way an unrestrained economic mechanism would 
dictate the allocation of objects. The sets Ii

x would capture the idea that the welfare of 
certain individuals has to be preserved in certain circumstances. 
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As an illustration, consider the case in which the custody of a child has to be assigned to 
someone. Imagine that the mother is granted the custody in any situation in which the 
father does not ask for it. Then, in general, no matter the opinion of third parties, it 
seems reasonable for the mother to retain the custody of the child. This concedes her a 
right over the custody with respect to any individual different from the father. But it is 
conceivable that, if the father asks for the custody, it may no longer be granted to the 
mother. In that case, the mother does not have a right over the custody with respect to 
the father. 
 
The third assumption made is a standard Pareto efficiency requirement: the resulting 
allocation cannot make it possible to increase the welfare of some individual without 
reducing the welfare of any other individual. It turns out that the only allocation rules 
satisfying Pareto efficiency and the complete specification of conditional property rights 
are those having a hierarchy of diarchies, a hierarchy in which, at each level, there are 
either one or two individuals having priority over the individuals below in the hierarchy. 
 
 
2. Definitions 
 
Two finite sets will be assumed given throughout: a set I whose n ≥ 2 members 
represent names for individuals and a set X whose m ≥ n members designate objects or 
anything that can be assigned to the individuals.  
 
Definition 2.1. A (strict) preference on X is sequence (x1, … , xm) of members of X such 
that X = {x1, … , xm}. The set of preferences on X is denoted by L and the set of 
preference profiles (the set of ways of assigning preferences to individuals) by Ln. 
 
The sequence (x1, … , xm) representing a preference is interpreted in the sense that xs is 
preferred to xt if and only if s < t. In this interpretation, no object is indifferent to 
another object. For preference p on X and r ∈ {1, … , m}, rp designates the rth element 
in the sequence p, so rp is the rth most preferred object according to p. 
 
Definition 2.2. An allocation over X is a mapping α : I → X such that, for all i ∈ I and j 
∈ I\{i}, α(i) ≠ α(j). The set of allocations over X is denoted by A. 
 
An allocation is a way of assigning an object to each individual with no object being 
assigned to two different individuals. If m > n, an allocation leaves m − n objects 
unassigned. 
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Definition 2.3. An allocation rule is a mapping f : Ln → A associating an allocation f(P) 
over X with every profile P of preferences on X. 
 
For preference profile P ∈ Ln and individual i ∈ I, Pi designates the preference 
corresponding to i in P and, for allocation rule f, fi(P) ∈ X designates the object that is 
assigned to individual i in allocation f(P). 
 
Definition 2.4. A diarchy1 in allocation rule f consists of a subset D1 ⊆ I of the set of 
individuals, having either one or two members, such that: (i) if D1 = {i}, then, for all P 
∈ Ln, fi(P) = 1Pi; and (ii) if D1 = {i, j}, then there is a partition {Xi, Xj} of the set of 
objects X such that Xi ≠ ∅ ≠ Xj and, for all P ∈ Ln: 
 

(a) if 1Pi ≠ 1Pj, then fi(P) = 1Pi and fj(P) = 1Pj; 
(b) if 1Pi = 1Pj ∈ Xi, then fi(P) = 1Pi and fj(P) = 2Pj; and 
(c) if 1Pi = 1Pj ∈ Xj, then fi(P) = 2Pi and fj(P) = 1Pj. 

 
A diarchy1 is a set of individuals, having either one or two members, satisfying the 
following. If the diarchy1 has one member i, then i is always assigned his most preferred 
object. If the diarchy1 has two members i and j, then both are assigned their most 
preferred objects when those objects are different and, in case of conflict, a partition 
{Xi, Xj} of the set X determines who has priority: when the object that both like most is 
in Xi, it is i who receives the object, with j getting his second most preferred object; 
when it is in Xj, the object is assigned to j and i obtains his second most preferred object.  
 
Given an allocation rule f, subset of individuals D ⊆ I and preference profile P ∈ Ln, 
define the set F(D, P) = {x ∈ X: for all i ∈ D, fi(P) ≠ x} to be the set of objects not 
assigned to members of D under P and f. Hence, F(D, P) is the set of objects free to be 
allocated among the members of I\D, given preference profile P and allocation rule f. 
For preference p on X and Y ⊆ X, p|Y is the restriction of preference p to the subset Y of 
objects. 
 
Definition 2.5. For r ≥ 2, a diarchyr in allocation rule f consists of a sequence (D1, … , 
Dr) of subsets of I such that, letting D = D1 ∪ … ∪ Dr−1: (i) D1 ∪ … ∪ Dr has at most n 
members; (ii) (D1, … , Dr−1) is a diarchyr−1; (iii) Dr has either one or two members; (iv) 
if Dr = {i}, then, for all P ∈ Ln, fi(P) = 1Pi⏐F(D,P); and (v) if D1 = {i, j}, then there is a 
partition {Xi, Xj} of the set of objects X such that Xi ≠ ∅ ≠ Xj and, for all P ∈ Ln: 
 

(a) if 1Pi⏐F(D,P) ≠ 1Pj⏐F(D,P), then fi(P) = 1Pi⏐F(D,P) and fj(P) = 1Pj⏐F(D,P); 
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(b) if 1Pi⏐F(D,P) = 1Pj⏐F(D,P) ∈ Xi, then fi(P) = 1Pi⏐F(D,P) and fj(P) = 2Pj⏐F(D,P); and 
(c) if 1Pi⏐F(D,P) = 1Pj⏐F(D,P) ∈ Xj, then fi(P) = 2Pi⏐F(D,P) and fj(P) = 1Pj⏐F(D,P). 

 
A diarchyr is a sequence of r subsets of individuals such that: (i) each subset has one or 
two members; (ii) members of a subset coming before members of other subsets have 
priority over objects not yet assigned; and (iii) in subsets with two members, each 
member has priority over the other member for some subset of objects.  
 
Definition 2.6. An allocation rule f has a hierarchy of diarchies if there is a diarchyr (D1, 
… , Dr) in f such that D1 ∪ … ∪ Dr = I. 
 
 
3. Assumptions 
 
PAR. Pareto efficiency. For all P ∈ Ln, i ∈ I and α ∈ A, if i prefers α(i) to fi(P) 
according to Pi, then there is j ∈ I who prefers fj(P) to α(j) according to Pj. 
 
PAR requires that, for every preference profile P, the corresponding allocation f(P) must 
be such that, to make some individual better off, some other must be worse off. 
 
CPR. Conditional property rights over objects. For every i ∈ I and x ∈ X there is Ii

x ⊆ 
I\{i} such that, for all P ∈ Ln, j ∈ Ii

x and Qj ∈ L, if fi(P) = x, then it is not the case that i 
prefers x to fi(P−j, Qj) according to Pi. 
 
CPR is a condition attributing individuals a non-absolute property right over objects. 
Specifically, for every individual i and object x, a subset Ii

x ⊆ I\{i} is defined that 
satisfies the following: if i is assigned x when preferences are P, then, when some 
member j of Ii

x changes his preference in P, i is entitled to receive an object at least as 
preferred as x. This suggests that i is allowed to retain x when any member of Ii

x 
modifies his preference. The set Ii

x identifies those individuals over which i can exercise 
the right to retain x. This right is not absolute: CPR does not assert that i could secure x 
for himself in case that i is not assigned x. Instead, it asserts that, once i receives x, he 
can protect himself against a possible welfare loss caused by a preference change of 
some individuals: those in Ii

x. 
 
NLL. No legal loophole. If f satisfies CPR, then, for all i ∈ I, j ∈ I\{i} and x ∈ X, either 
i ∈ Ij

x or j ∈ Ii
x. 
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NLL complements CPR by making the attribution of property rights exhaustive: for 
every object x and for all individuals i and j, either i has the right to retain x over j or j 
has the right over i. NLL seems reasonable when individuals want property rights to be 
clearly defined in order to avoid uncertainty as to who has a right over a given object. In 
this sense, NLL expresses a condition of legal security: all conditional property rights 
have been clearly defined and assigned. 
 
 
4. Result 
 
For i ∈ I, j ∈ I\{i} and x ∈ X, define the binary relation →x on I as follows: i →x j if and 
only if i ∈ Ij

x. Hence, i →x j can be interpreted as stating that, when j receives x, he has 
the right to retain x despite a change in i’s preference. Informally, if i →x j, then i has 
“less power” than j when trying to keep object x.  
 
For P ∈ Ln, Q ∈ Ln and non-empty J ⊂ I, both (P−J, QJ) and (QJ, P−J) designate the 
member R of Ln such that: (i) for all i ∈ J, Ri = Qi; and (ii) for all i ∈ I\J, Ri = Pi. 
Similarly, (P−(J∪{i}), QJ, Si) designates the member R of Ln such that: (i) Ri = Si; (ii) for 
all j ∈ J, Rj = Qj; and (iii) for all j ∈ I\(J ∪ {i}), Rj = Pj. In both cases, when J = {j}, “j” 
is written instead of “{j}”. 
  
Lemma 4.1. PAR and CPR imply that, for all x ∈ X, →x is transitive. 
 
Proof. Choose x ∈ X. There is nothing to prove if I has two members, because NLL 
implies that →x is asymmetric. Hence, assume that I at least three members, so m ≥ 3. 
Suppose k →x j →x i →x k. The proof amounts to reaching a contradiction. Let y ∈ 
X\{x}, z ∈ X\{x, y} and X\{x, y, z} = {x4, … , xm}. With I\{i, j, k} = {i4, … , in}, choose 
any P ∈ Ln such that: (i) 1Pi = z; (ii) 1Pj = y; (iii) 1Pk = x; (iv) for all r ∈ {i, j, k} and s ∈ 
{1, 2, 3}, sPr ∈ {x, y, z}; and (v) for all r ∈ {4, … , n},1Pir = xr. By PAR, fk(P) = x. Let 
Qi ∈ L be obtained from Pi by moving x to the first position, so 1Qi = x. As i →x k, by 
CPR, fk(P−i, Qi) = x. 
 
Let Qj ∈ L be obtained from Pj by moving x to the first position, so 1Qj = x. With R = 
(P−{i, j}, Q{i, j}), by PAR, x ∈ {fi(R), fj(R), fk(R)}. Case 1: fi(R) = x. Since j →x i, by CPR, 
fi(P−{i, j}, Q{i, j}) = x implies fi(P−i, Qi) = x, contradicting fk(P−i, Qi) = x. Case 2: fj(R) = x. 
With Sk = Pi, by PAR, fi(P−{i, k}, Qi, Sk) = x. As j →x i, by CPR, fi(P−{i, k}, Qi, Sk) = x 
implies fi(P−{i, j, k}, Q{i, j}, Sk) = x. Given k →x j, by CPR, fj(R) = x implies fj(R−k, Sk) = x. 
But (P−{i, j, k}, Q{i, j}, Sk) = (R−k, Sk): contradiction. Case 3: fk(R) = x. Let Tk = Pj. By PAR, 
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fj(P−{j, k}, Qj, Tk) = x. Since k →x j, by CPR, fj(P−{j, k}, Qj, Tk) = x yields fj(P−j, Qj) = x. As 
i →x k, by CPR, fk(R) = x implies fk(R−i, Pi) = x. But (P−j, Qj) = (R−i, Pi): contradiction.  
 
Remark 4.2. PAR, CPR and NLL imply that, for all x ∈ X, →x is a linear order: by 
definition, →x is irreflexive; NLL implies that →x is asymmetric; and, by Lemma 4.1, 
→x is transitive. 
 
Lemma 4.3. PAR, CPR and NLL imply that, for all x ∈ X, i ∈ I, j ∈ I\{i} and k ∈ I\{i, 
j}, if i →x j →x k, then, for all y ∈ X\{x}, i →y k. 
 
Proof. Suppose i →x j →x k. By NLL, either k →y i or i →y k. It suffices to reach a 
contradiction from k →y i. Let z ∈ X\{x, y}, X\{x, y, z} = {x4, … , xm} and I\{i, j, k} = 
{i4, … , in}. Choose any P ∈ Ln such that: (i) 1Pi = y, 2Pi = x and 3Pi = z; (ii) 1Pj = x and 
2Pj = z; (iii) Pk = Pi; and (iv) for all r ∈ {4, … , n},1Pir = xr. Let Rk ∈ L satisfy 1Rk = z. 
By PAR, fi(P−k, Rk) = y. Since k →y i, by CPR, fi(P−k, Rk) = y implies fi(P) = y. Let Ri ∈ 
L satisfy 1Ri = z. By PAR, fj(P−i, Ri) = x. Since i →x j, by CPR, fi(P−i, Ri) = x implies fj(P) 
= x. By PAR, it follows from fi(P) = y and fj(P) = x that fk(P) = z. To contradict fk(P) = z, 
let Rj ∈ L satisfy 1Rj = z and 2Rj = x. Define Qk = Pj. By PAR, fi(P−{j, k}, Rj, Qk) = y. As k 
→y i, by CPR, fi(P−{j, k}, Rj, Qk) = y implies fi(P−j, Rj) = y. Given this, by PAR, fk(P−j, Rj) 
= x. As j →x k, by CPR, fk(P−j, Rj) = x implies fk(P) ∈ {x, y}: contradiction.  
 
Lemma 4.4. PAR, CPR and NLL imply that, for all x ∈ X, y ∈ X\{x}, i ∈ I and j ∈ 
I\{i}, if i ∈ Ij

y and j ∈ Ii
x, then Ii

x\{j} = Ij
x\{i} = Ii

y\{j} = Ij
y\{i}. 

 
Proof. Step 1: if i →y j, then, for all k ∈ I\{i, j}, k →x i implies k →x j. Suppose not: i →y 
j and k →x i but not k →x j. By NLL, j →x k. Therefore, j →x k →x i. By Lemma 4.3, j 
→y i. As a result, j →y i and i →y j, contradicting NLL. Step 2: if j →x i →y j, then Ii

x\{j} 
= Ij

x\{i} = Ii
y\{j} = Ij

y\{i}. By step 1, i →y j implies Ii
x\{j} ⊆ Ij

x\{i} and j →x i implies 
Ij

y\{i} ⊆ Ii
y\{j}. By Lemma 4.1, →x is transitive and, consequently, j →x i implies Ij

x ⊆ 
Ii

x. Similarly, as →y is transitive, i →y j implies Ii
y ⊆ Ij

y.  
 
For i ∈ I and x ∈ X, define i to be a dictator for x if, for all j ∈ I\{i}, j →x i. 
 
Lemma 4.5. If allocation rule f satisfies PAR, CPR and NLL, then f has a diarchy1. 
 
Proof. Choose x ∈ X. By Remark 4.2, →x is a linear order. Therefore, some i ∈ I is a 
dictator for x. Case 1: there are y ∈ X and j ∈ I\{i} such that j is a dictator for y. By 
Lemma 4.3, there cannot be a third dictator. Accordingly, there is a partition {Xi, Xj} of 
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X such that: (i) Xi ≠ ∅ and, for all z ∈ Xi, i is a dictator for z; and (ii) Xj ≠ ∅ and, for all 
z ∈ Xj, j is a dictator for z. Choose P ∈ Ln. Case 1a: 1Pi ≠ 1Pj. It must be shown that fi(P) 
= 1Pi and fj(P) = 1Pj. Let v = 1Pi and w = 1Pj. Since both i and j are dictators for some 
member of X, by Lemma 4.4, 
 

for all k ∈ I\{i, j}, k ∈ Ii
v and k ∈ Ij

w.     (1) 
 
With X\{v, w} = {x3, … , xm} and I\{i, j} = {i3, … , in}, choose any Q ∈ Ln such that, for 
all r ∈ {3, … , n},1Qir = xr. By PAR, fi(P{i, j}, Q−{i, j}) = v and fj(P{i, j}, Q−{i, j}) = w. Given 
(1), it follows from fi(P{i, j}, Q−{i, j}) = v and CPR that v = fi(P{i, j, i1}, Q−{i, j, i1}) = fi(P{i, j, i1, 

i2}, Q−{i, j, i1, i2}) = … = fi(P−in, Qin) = fi(P). Similarly, given (1), fj(P{i, j}, Q−{i, j}) = w and 
CPR imply w = fj(P{i, j, i1}, Q−{i, j, i1}) = fj(P{i, j, i1, i2}, Q−{i, j, i1, i2}) = … = fj(P−in, Qin) = fj(P). 
 
Case 1b: 1Pi = 1Pj. Without loss of generality, suppose that 1Pi ∈ Xi (the proof of the 
case 1Pj ∈ Xj is obtained by permuting i and j). Let v = 1Pi and w = 2Pj. With X\{v, w} = 
{x3, … , xm} and I\{i, j} = {i3, … , in}, choose any Q ∈ Ln such that 1Qj = w and, for all r 
∈ {3, … , n},1Qir = xr. By PAR, fi(Pi, Q−i) = v and fj(Pi, Q−i) = w. As both i and j are 
dictators for some member of X, by Lemma 4.4, (1) holds. By (1) and CPR, fi(Pi, Q−i) = 
v implies fi(P{i, j}, Q−{i, j}) = v. Given this, by PAR, fj(P{i, j}, Q−{i, j}) = w. It then follows 
from fi(P{i, j}, Q−{i, j}) = v, (1) and CPR that v = fi(P{i, j, i1}, Q−{i, j, i1}) = fi(P{i, j, i1, i2}, Q−{i, j, i1, 

i2}) = … = fi(P−in, Qin) = fi(P). Similarly, it follows from fj(P{i, j}, Q−{i, j}) = w, (1) and 
CPR that w = fj(P{i, j, i1}, Q−{i, j, i1}) = fj(P{i, j, i1, i2}, Q−{i, j, i1, i2}) = … = fj(P−in, Qin) = fj(P). 
 
Case 2: there is no y ∈ X and no j ∈ I\{i} such that j is a dictator for y. As a 
consequence, for all y ∈ X, i is a dictator for y. It must be shown that fi(P) = 1Pi. Letting 
v = 1Pi, X\{v} = {x2, … , xm} and I\{i} = {i2, … , in}, choose any Q ∈ Ln such that, for 
all r ∈ {2, … , n},1Qir = xr. By PAR, fi(Pi, Q−i) = v. As i is a dictator for all the members 
of X, it follows that, for all k ∈ I\{i}, k ∈ Ii

v. Given this and CPR, fi(Pi, Q−i) = v implies 
v = fi(P{i, i1}, Q−{i, i1}) = fi(P{i, i1, i2}, Q−{i, i1, i2}) = … = fi(P−in, Qin) = fi(P).  
 
Proposition 4.6. An allocation rule f satisfies PAR, CPR and NLL if and only if f has a 
hierarchy of diarchies. 
 
Proof. “⇒” Taking Lemma 4.5 as the base case of an induction argument, suppose that 
(D1, … , Dr) is a diarchyr in f, with D = D1 ∪ … ∪ Dr having d < n members. It must be 
shown that, for some Dr+1, (D1, … , Dr, Dr+1) is a diarchyr+1 in f. If d = n − 1, then Dr+1 
consists of the remaining individual. If d < n − 1, then the proof is analogous to that of 
Lemma 4.5. For i ∈ I\D and x ∈ X, define i to be a dictatorD for x (a dictator for x 
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conditional on D) if, for all j ∈ I\(D ∪ {i}), j →x i. Choose x ∈ X. By Remark 4.2, →x is 
a linear order. Therefore, some i ∈ I is a dictatorD for x. 
 
Case 1: there are y ∈ X and j ∈ I\{i} such that j is a dictatorD for y. By Lemma 4.3, there 
cannot be a third dictatorD. Accordingly, there is a partition {Xi, Xj} of X such that: (i) Xi 
≠ ∅ and, for all z ∈ Xi, i is a dictatorD for z; and (ii) Xj ≠ ∅ and, for all z ∈ Xj, j is a 
dictatorD for z. Choose P ∈ Ln. Let Y ⊂ X be the set of m − d objects not received by the 
members of D in f(P); that is, Y = {z ∈ X: for all k ∈ D, z ≠ fk(P)}. 
 
Case 1a: 1Pi|Y ≠ 1Pj|Y. It must be shown that fi(P) = 1Pi|Y and fj(P) = 1Pj|Y. Let v = 1Pi|Y and 
w = 1Pj|Y. Since each individual in {i, j} is a dictatorD for some member of X, by Lemma 
4.4, 
 

for all k ∈ I\(D ∪ {i, j}), k ∈ Ii
v and k ∈ Ij

w.         (2) 
 
With Y\{v, w} = {xd+3, … , xm} and I\(D ∪ {i, j}) = {id+3, … , in}, choose, for all r ∈ {d 
+ 3, … , n}, any Qir ∈ L such that 1Qir = xr. Define J = D ∪ {i, j}. By the induction 
hypothesis, for all k ∈ D, fk(PJ, Q−J) = fk(P). Given this, by PAR, fi(PJ, Q−J) = v and fj(PJ, 
Q−J) = w. By (2), it follows from fi(PJ, Q−J) = v, CPR and the induction hypothesis that v 
= fi(PJ∪{id+3}, Q−(J∪{id+3})) = fi(PJ∪{id+3, d+4}, Q−(J∪{id+3, d+4})) = … = fi(P−in, Qin) = fi(P). 
Similarly, by (2), it follows from fj(P{i, j}, Q−{i, j}) = w, CPR and the induction hypothesis 
that w = fj(PJ∪{id+3}, Q−(J∪{id+3})) = fj(PJ∪{id+3, d+4}, Q−(J∪{id+3, d+4})) = … = fj(P−in, Qin) = fj(P). 
 
Case 1b: 1Pi|Y = 1Pj|Y. Without loss of generality, suppose that 1Pi|Y ∈ Xi (the proof of the 
case 1Pj|Y ∈ Xj is obtained by permuting i and j). Let v = 1Pi|Y and w = 2Pj|Y.  
 
With Y\{v, w} = {xd+3, … , xm} and I\(D ∪ {i, j}) = {id+3, … , in}, choose any Q ∈ Ln 
such that 1Qj|Y = w and, for all r ∈ {d + 3, … , n}, 1Qir = xr. Define J = D ∪ {i, j} and H 
= D ∪ {i}. By the induction hypothesis, for all k ∈ D, fk(PH, Q−H) = fk(P). Given this, by 
PAR, fi(PH, Q−H) = v and fj(PH, Q−H) = w. Since each individual in {i, j} is a dictatorD for 
some member of X, by Lemma 4.4, (2) holds. By (2), CPR and the induction hypothesis, 
fi(PH, Q−H) = v implies fi(PJ, Q−J) = v. In view of this, by PAR, fj(PH, Q−H) = w. Given 
that fi(PJ, Q−J) = v, by (2), CPR and the induction hypothesis, v = fi(PJ∪{id+3}, Q−(J∪{id+3})) 
= fi(PJ∪{id+3, id+4}, Q−(J∪{id+3, id+4})) = … = fi(P−in, Qin) = fi(P). In a similar vein, it follows 
from fj(PJ, Q−J) = w, (2), CPR and the induction hypothesis that w = fj(PJ∪{id+3}, 
Q−(J∪{id+3})) = fj(PJ∪{id+3, id+4}, Q−(J∪{id+3, id+4})) = … = fj(P−in, Qin) = fj(P). 
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Case 2: for no y ∈ X and no j ∈ I\{i}, j is a dictatorD for y. As a result, for all y ∈ X, i is 
a dictatorD for y. It must be shown that fi(P) = 1Pi|Y. Letting v = 1Pi|Y, Y\{v} = {xd+2, … , 
xm} and I\(D ∪ {i}) = {id+2, … , in}, choose any Q ∈ Ln such that, for all r ∈ {d + 2, … , 
n},1Qir = xr. Let H = D ∪ {i}. By the induction hypothesis, for all k ∈ D, fk(PH, Q−H) = 
fk(P). Given this, by PAR, fi(PH, Q−H) = v. Being i a dictatorD for each member of X, for 
all k ∈ I\H, k ∈ Ii

v. Given this, CPR and the induction hypothesis, fi(PH, Q−H) = v yields 
v = fi(PH∪{id+2}, Q−(H∪{id+2})) = fi(PH∪{id+2, id+3}, Q−(H∪{id+2, id+3})) = … = fi(P−in, Qin) = fi(P). 
 
“⇐” Let f have a hierarchy of diarchies (D1, … , Dr). PAR holds because, interpreting 
that the allocation proceeds sequentially according to the hierarchy of diarchies, some 
individual always receives his most preferred object among those not yet allocated. 
With respect to CPR and NLL, both hold with sets Ii

x defined as follows. First, for all x 
∈ X and i ∈ Dr, Ii

x = ∅. Second, for all s ∈ {1, … , r − 1}, if Ds has only one member i, 
then, for all x ∈ X, Ii

x = Ds+1 ∪ … ∪ Dr. And third, for all x ∈ X and s ∈ {1, … , r − 1}, 
if Ds has two members, i and j, and i has priority over j when x is allocated, then Ij

x = 
Ds+1 ∪ … ∪ Dr and Ii

x = {j} ∪ Ij
x.  

 
 
References 

 
Ehlers, L. (2002): “Coalitional strategy-proof house allocation”, Journal of Economic 

Theory 105, 298−317. 
Ehlers, L. and B. Klaus (2003): “Resource-monotonicity for house allocation 

problems”, International Journal of Game Theory 32, 545−560. 
Ergin, H. İ. (2000): “Consistency in house allocation problems”, Journal of 

Mathematical Economics 34, 77−97. 
Kamijo, Y. and R. Kawasaki (2009): “Dynamics, stability, and foresight in the Shapley-

Scarf housing market”, Fondazione Enrico Mattei Working Paper 312. 
Pápai, S. (2000): “Strategyproof assignment by hierarchical exchange”, Econometrica 

68, 1403−1433. 
Pápai, S. (2007): “Exchange in a general market of indivisible goods”, Journal of 

Economic Theory 132, 208−235. 
Shapley, L. and H. Scarf (1974): “On cores and indivisibility”, Journal of Mathematical 

Economics 1, 23−37. 
Svensson, L.-G. (1999): “Strategy-proof allocation of indivisible goods”, Social Choice 

and Welfare 16, 556−567. 


