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Abstract

In the early 2000s, the Republic of Turkey has initiated an ambitious reform 

program in her electricity market, which requires privatization, liberalization 

as well as a radical restructuring. The most controversial reason behind, or 

justification for, recent reforms has been the rapid electricity demand growth; 

that is to say, the whole reform process has been a part of the endeavors to 

avoid so-called “energy crisis”. Using cointegration analysis and ARIMA 

modeling, the present article focuses on this issue by both providing an 

electricity demand estimation and forecast, and comparing the results with 

official projections. The study concludes, first, that consumers’ respond to 

price and income changes is quite limited and therefore there is a need for 
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economic regulation in Turkish electricity market; and second, that the 

current official electricity demand projections highly overestimate the 

electricity demand, which may endanger the development of both a coherent 

energy policy in general and a healthy electricity market in particular. 

Keywords: Turkish electricity demand, cointegration, ARIMA modelling

1. Introduction

The Republic of Turkey (hereafter Turkey) has initiated a major reform 

program of her energy market. The reform program entails privatization, 

liberalization as well as a radical restructuring of the whole energy sector, 

especially electricity industry. Also, an autonomous regulatory body, Energy 

Market Regulatory Authority (EMRA), was created to set up and maintain a 

financially strong, stable, transparent and competitive energy market.

The most controversial reason behind, or justification for, recent reforms has 

been the endeavor to avoid so-called “energy crisis”. Therefore, the present 

article focuses on the electricity demand in Turkey by presenting an 

electricity demand estimation and forecast. Besides, the econometric 

analysis here contributes to extremely limited literature in Turkish energy 

studies.

The article is organized as follows. The next section presents a literature 

review in energy demand studies. Section three concentrates on the scope of 

the study. Section four specifies the study methodology. Section five provides 
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an overview of data used in the estimation and forecasting process. In 

section six, study results are presented; followed by evaluation of these 

results in section seven. The last section concludes.

2. Literature Review

The experiences of the 1970s and 1980s led to a blast in the number of 

energy demand studies, a trend that has been to some extent revitalized by 

the emergence of worries about the emissions of greenhouse gases from the 

combustion of fossil fuels. Therefore, since the early 1970s, various studies 

of energy demand have been undertaken using various estimation methods1. 

In most of these studies the purpose has been to measure the impact of 

economic activity and energy prices on energy demand, i.e. estimating 

income2 and price3 elasticities, which are of the utmost importance to 

forecasting energy demand. The evidence shows long-run income elasticities 

about unity, or slightly above, and the price elasticity is typically found to be 

rather small (Bentzen and Engsted, 1993).

In most cases, energy demand studies have adopted two different types of 

modeling; namely, “reduced form model” and “structural form model”. The 

former is a double-log linear demand model under which energy demand is 

assumed to be a direct linear function of energy price and real income. 

                                                
1 Since economic theory and a priori knowledge indicates that the demand for energy in 
general depends on price and income, most of the studies in this area have been 
concentrated on these two variables as the major determinants of energy demand.
2 The income elasticity of energy demand is defined as the percentage change in energy 
demand given a 1% change in income holding all else constant. This measure provides an 
indication of how demand will change as income changes.
3 The price elasticity of energy demand is defined as the percentage change in energy 
demand given a 1% change in price holding all else constant. This measure calculates the 
influence of energy price on energy demand.
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Kouris (1981), Drollas (1984) and Stewart (1991) have employed this model 

in their studies. Moreover, Dahl and Sterner (1991) report that more than 

sixty published studies applied the reduced form model. On the other hand, 

the second model is a disaggregated demand model based on the idea that 

the demand for energy is derived demand; that is, energy is not demanded 

for its own sake rather for the services it provides such as lighting, heating 

and power. It separates energy demand into several number of demand 

equations and treats it as an indirect, rather than direct, function of energy 

price and real income. Pindyck (1979) provides a detailed discussion of the 

structural form model. Although structural form model has various 

advantages over reduced form model from an economic point of view, its 

widespread utilization has been limited by the fact that it requires a large 

number of variables compared to the reduced form model.

Another model for energy demand estimation, namely “irreversibility and 

price decomposition model”, was first proposed by Wolffram (1971) and 

developed by Traill et al. (1978). Originally, it was based on the assumption 

that the response to price reductions would be less than that to price 

increases. This model was further improved by Dargay (1992) and Gately 

(1992), who introduced three-way price decomposition to isolate the effects 

on demand of price decrease, price increase below and above the historic 

maximum. Some of the work using this method includes that of Dargay and 

Gately (1995a, 1995b), Haas and Schipper (1998), Ryan and Plourde (2002), 

just to mention a few. However, it is important to note that most of the studies 

that applied this method could not find evidence of irreversibility.
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Despite the relative popularity of the above methods, the long time span 

covered by these studies raises serious concerns about the validity of the 

fixed coefficients assumption in the electricity demand equation employed by 

these methods. This assumption in a double-log functional form of demand 

simply implies constant elasticities for the entire sample period under study. 

This feature of the model is indeed questionable in light of the changes that 

could have taken place in the economy over such a long period of time 

affecting the demand for electricity4. Therefore, it is argued that if data is 

collected over a relatively long time period to estimate an electricity demand 

function, the possibility that the parameters in the regression may not be 

constant should be considered. Furthermore; previous methods, in general, 

utilize time series data to estimate energy demand but they do not analyze 

the data to establish its properties and therefore they implicitly assume the 

data to be stationary, meaning that their means and variances do not 

systematically vary over time. However, this attractive data feature is lacking 

in most cases. Engle and Granger (1987) have developed a technique, 

popularly known as “cointegration and error correction method” (ECM), for 

analyzing time series properties and estimating elasticities based on this 

analysis, which enables full analysis of the properties of the relevant data 

before actual estimation. In their study, Engle and Granger have devised a 

model estimation procedure and recommended a number of tests, among 

which the most notable and commonly used is the Augmented Dickey-Fuller 

(ADF) test. Subsequent improvements related to this approach have been in 

the form of inclusion of more specific energy-related variables in the model 

and the development of new methods to identify cointegrating relationships, 

                                                
4 See Hass and Schipper (1998) for further discussion of the issue.
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amongst which the Autoregressive Distributed Lag Model (ARDL) and the 

Johansen Maximum Likelihood Model (JML) – as outlined in Johansen 

(1988) – are especially popular.

Since the late 1980s, especially cointegration analysis has become the 

standard component of all studies of energy demand; and most scholars 

have done their data analysis based on cointegration. The popularity and 

widespread use of the cointegration originate from the fact that it justifies the 

use of data on non-stationary variables to estimate coefficients as long as the 

variables are cointegrated; that is, they have a long-run equilibrium 

relationship. Actually, this is also the basic reason for the use of cointegration 

technique in this study. The papers written in this area include that of Engle 

et al. (1989); Hunt and Manning (1989), Hunt and Lynk (1992), Bentzen and 

Engsted (1993, 2001), Fouquet et al. (1993), Hunt and Witt (1995); and 

Beenstock and Goldin (1999).

As for the history of energy demand projection in Turkey; although some 

efforts for the application of mathematical modeling to simulate the Turkish 

energy system were made during the late 1970s, the official use of such 

methods in energy planning and national policy making by the Ministry of 

Energy and Natural Resources (MENR) was realized only after 1984. The 

forecasts made before 1984 were simply based on various best fit curves 

developed by the State Planning Organization (SPO) and MENR. The year 

1984 has been a milestone for energy planning and estimation of future 

energy demands in Turkey since, in that year, the World Bank recommended 
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MENR use the simulation model MAED5 (Model for Analysis of Energy 

Demand) and WASP III (Wicn Automatic System Planning), which were orig-

inally developed by the IAEA (International Atomic Energy Agency) for 

determination of the general energy and electricity demands respectively. 

Besides, the energy demand model called EFOM-12 C Mark I that was 

developed by the Commission of the European Communities in 1984 was 

applied to Turkey. Furthermore, Kouris' correlation models were also applied 

for forecasting the primary and secondary energy demands in Turkey.

Moreover, the BALANCE and IMPACT models were used in the context of 

ENPEP (Energy and Power Evaluation Program) for the long term supply 

and demand projections. Finally, State Institute of Statistics (SIS) and SPO 

have developed some mathematical models (Ediger and Tatlidil, 2002).

Since 1984, the Ministry (MENR) prepares energy production and demand 

projections in accordance with the growth targets given by SPO. Projections 

are made taking into account various factors including development, 

industrialization, urbanization, technology, conservation and so on. The 

figures are revised each year in the light of the performance over the past

year (Ceylan and Ozturk, 2004). Unfortunately, the official forecasts have 

consistently predicted much higher values than the consumption actually 

occurred.

                                                
5 The MAED is a detailed simulation model for evaluating the energy demand implications (in 
the medium and long term) of a scenario describing a hypothesized evolution of the 
economic activities and of the lifestyle of the population. It requires a number of data inputs 
from various sectors to simulate the energy demand for the desired years.
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3. Scope of Study

One of the objectives of this article is to estimate a model of electricity 

demand in Turkey with a view to obtaining short and long run estimates of 

price and income elasticities. Also, an electricity demand forecast constitutes 

another aim of the article. 

The model to be employed in demand estimation is a dynamic version of 

reduced form model, namely “partial adjustment model”. Also, a cointegration 

analysis is carried out to analyze the properties of the data. Furthermore, an 

annual electricity demand forecast is developed and presented based on 

autoregressive integrated moving average (ARIMA) modelling.

4. Theoretical and Methodological Framework

4.1. Cointegration Analysis

4.1.1. Stationarity and Unit Root Problem

Time series data consists of observations, which are considered as 

realizations of random variables that can be described by some stochastic 

process. The concept of “stationarity” is related with the properties of this 

stochastic process. In this paper, the concept of “weak stationary” is adopted; 

meaning that the data is assumed to be stationary if the means, variances 

and covariances of the series are independent of time, rather than the entire 

distribution.
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Nonstationarity can originate from various sources but the most important 

one is the presence of so-called “unit roots”. Consider the AR(1) process 

below:

t t 1 tY Y     (1)

where t denotes a serially uncorrelated white noise error term with a mean 

of zero and a constant variance. If 1  , equation (1) becomes a random 

walk without drift model. If  is in fact 1, we face what is known as the unit 

root problem, that is, a situation of nonstationarity. The name ”unit root”6 is 

due to the fact that 1  . If, however, I I 1  , then the time series Yt is 

stationary. The stationarity of time series is so important because correlation 

could persist in nonstationary time series even if the sample is very large and 

may result in what is called spurious (or nonsense) regression, as showed by 

Yule (1926). Granger and Newbold (1974) argue that it is a good rule of 

thumb to suspect that the estimated regression is spurious if R2 is greater 

than Durbin-Watson d value; that is R2>d.

As easily be concluded from equation (1), the unit root problem can be 

solved, or stationarity can be achieved, by differencing and this can be 

indicative of the order of integration in the series. The basic idea behind 

cointegration is that if a linear combination of nonstationary (1) variables is 

stationary; that is (0 ) , then the variables are said to be cointegrated. So to 

speak, the linear combination cancels out the stochastic trends in the two 

(1) series and, as a result, the regression would be meaningful; that is, not 

                                                
6 The terms ‘nonstationarity’, ‘random walk’, and ‘unit root’ can be treated as synonymous. 
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spurious7. As Granger (1986, p 226) notes, “A test for cointegration can thus 

be thought of as a pre-test to avoid ‘spurious regression' situations”. 

Therefore, it is vital to specify whether each variable in the model is 

stationary or not in order to examine a possible cointegrating relationship 

between them. The established way to do so is to apply a formal unit root test 

in each series. 

4.1.2. The Augmented Dickey-Fuller (ADF) Test

We know that if 1  ; that is, in the case of unit root, the equation (1)

becomes a random walk model without drift, which we know is a 

nonstationary process. The basic idea behind the unit root test of stationary 

is to simply regress Yt on its (one-period) lagged value Yt-1 and find out if the 

estimated  is statically equal to 1 or not.

For theoretical reasons, equation (1) is manipulated by subtracting Yt-1 from 

both sides to obtain:

t t 1 t 1 tY Y ( 1)Y       (2)

which can be written as:

t t 1 tY Y      (3)

where ( 1)    and  , as usual, is the first difference operator. So, in 

practice, instead of estimating equation (2), we estimate equation (3) and test 

the null hypothesis that 0  . If 0  , then 1  , meaning that we have a 

                                                
7 As mentioned before, a regression of (1) variables that are not cointegrated produces 

spurious regression, and the results obtained have no interpretation.
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unit root problem and time series under consideration is nonstationary. The 

only question is which test to use to find out whether the estimated coefficient 

of Yt-1 in equation (3) is zero or not. Unfortunately, under the null hypothesis 

that 0  (i.e., 1  ), the t value of the estimated coefficient of Yt-1 does not 

follow t distribution even in large samples; that is, it does not have an 

asymptotic normal distribution. Dickey and Fuller (1979) have shown that 

under the null hypothesis that 0  , the estimated t value of the coefficient of 

Yt-1 in equation (3) follows the  (tau) statistic. These authors have also 

computed the critical values of the  (tau) statistic. In literature tau statistic or 

test is known as the Dickey-Fuller (DF) test, in honor of its discoverers.

In conducting DF test, it is assumed that the error term t is uncorrelated. 

However, in practice the error term in DF test usually shows evidence of 

serial correlation. To solve this problem, Dickey and Fuller have developed a 

test, known as the augmented Dickey-Fuller (ADF) test. In ADF test, the lags 

of the first difference are included in the regression in order to make the error 

term t white noise and, therefore, the regression is presented in the 

following form:

m

t t 1 i t i t
i 1

Y Y Y 


        (4)

To be more specific, we may also include an intercept and a time trend t, 

after which our model becomes:

m

t 1 2 t 1 i t i t
i 1

Y t Y Y 


            (5)
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The DF and ADF tests are similar since they have the same asymptotic 

distribution. In literature, although there exist numerous unit root tests, the 

most notable and commonly used one is ADF test and, therefore, it is used in 

this study. 

4.1.3. Cointegration Tests

On the basis of the theory that (1) variables may have a cointegrating 

relationship; it is crucial to test for the existence of such a relationship. This 

article considers two most commonly used tests of cointegration; namely 

Augmented Engle-Granger (AEG) test and cointegrating regression Durbin-

Watson (CRDW) test.

4.1.3.1. Augmented Engle-Granger (AEG) Test

We have warned that the regression of a nonstationary time series on other 

nonstationary time series may produce a spurious regression. If we subject 

our time series data individually to unit root analysis and find that they are all 

(1) ; that is, they contain a unit root; there is a possibility that our regression 

can still be meaningful (i.e., not spurious) provided that the variables are 

cointegrated. In order to find out whether they are cointegrated or not, we 

simply carry out our original regression and subject our error term to unit root 

analysis. If it is stationary; that is, (0 ) , it means that our variables are 

cointegrated and have a long-term, or equilibrium, relationship between 

them. In short, provided that the residuals from our regression are (0 ) or 



13

stationary, the conventional regression methodology is applicable to data 

involving nonstationary time series.

Augmented Engle-Granger test (or, AEG test) is based on the idea described 

above. We simply estimate our original regression, obtain the residuals and 

carry out the ADF test. In literature, such a regression is called “cointegrating 

regression” and the parameters are known as “cointegrating parameters”. 

However, since the estimated residuals are based on the estimated 

cointegrating parameters, the ADF critical values are not appropriate. Engle 

and Granger (1987) have calculated appropriate values and therefore the 

ADF test in the present context is known as Augmented Engle-Granger test. 

4.1.3.2. Cointegrating Regression Durbin-Watson (CRDW) Test

An alternative method of testing for cointegration is the CRDW test, whose 

critical values were first provided by Sargan and Bhargava (1983). In CRDW, 

the Durbin-Watson statistic d obtained from the cointegrating regression is 

used; but here the null hypothesis8 is that d=0, rather than the standard d=2. 

The 1 percent critical value to test the hypothesis that the true d=0 is 0.511. 

Thus, if the computed d value is smaller than 0.511, we reject the null 

hypothesis of cointegration at the 1% level. Otherwise, we fail to reject the 

null, meaning that the variables in the model are cointegrated and there is a 

long-term, or equilibrium, relationship between the variables.

                                                
8 We know that ˆd 2(1 )   , so if there is to be a unit root, the estimated  is about 1, which 

implies that d is about zero.
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4.2. Partial Adjustment Model

In line with economic theory and a priori knowledge, this study starts with a 

single equation demand model expressed in linear logarithmic form linking 

the quantity of per capita electricity demand to real energy price and real 

income per capita.

The simplest model can be written as:

t 1 t 2 t tlnE lnP lnY u       (6)

where Et is per capita demand for electricity, Pt is the real price of electricity, 

Yt is real income per capita, ut is the error term, the subscript t represents 

time,  is intercept term; and finally 1 and 2 are the estimators of the price 

and income elasticities of demand respectively.

This simple “static” model (6) does not make a distinction between short and 

long run elasticities. Therefore, instead of this static one, a dynamic version 

of reduced form model, called “partial adjustment model”, is used in this 

study to capture short-run and long run reactions separately. The partial 

adjustment model assumes that electricity demand cannot immediately 

respond to the change in electricity price and real income; but gradually 

converges toward the long run equilibrium. Suppose that E't is the desired or 

equilibrium electricity demand that is not observable directly but given by:

t 1 t 2 t tlnE lnP lnY u        (7)
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and the adjustment to the equilibrium demand level is assumed to be in the 

form of

t t 1 t t 1lnE lnE (lnE lnE )     (8)

where  indicates the speed of adjustment ( 0  ). Substituting equation (7)

into equation (8) gives:

t t 1 1 t 2 t t t 1

t 1 t 2 t t t 1 t 1

lnE lnE ( lnP lnY u lnE )

lnE lnP lnY u lnE lnE
 

 

         

          

t 1 t 2 t t 1 tlnE lnP lnY (1 )lnE u           (9)

where 1 and 2 are the short-run price and income elasticities 

respectively. The long-run price and income elasticities are given by 1 and 

2 correspondingly. Since the error term tu is serially uncorrelated, 

consistent estimates of  , 1 , 2 and  can be obtained by OLS (Ordinary 

Least Squares).

4.3. Autoregressive Integrated Moving Average Modelling

The publication authored by Box and Jenkins (1978) ushered in a new 

generation of forecasting tools, technically known as the ARIMA 

methodology9, which emphasizes on analyzing the probabilistic, or 

stochastic, properties of economic time series on their own rather than 

constructing single or simultaneous equation models. ARIMA models allow 

                                                
9 For a detailed discussion of ARIMA modelling, see Chapter 22 of Gujarati (2004, p 835).
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each variable to be explained by its own past, or lagged, values and 

stochastic error terms.

If we have to difference a time series d times to make it stationary and apply 

the ARMA(p,q) model to it, we say the original time series is ARIMA(p,d,q). 

The important point to note in ARIMA modelling is that we must have either a 

stationary time series or a time series that becomes stationary after one or 

more differencing to be able to use it.

ARIMA methodology consists of four steps; namely, identification, estimation, 

diagnostic checking and, of course, forecasting. First of all, in the first step, 

we need to identify appropriate values of our model; that is, p, d and q. The 

chief tools in identification are the autocorrelation function (ACF), the partial 

autocorrelation function (PACF), and the resulting correlogram, which is 

simply the plots of ACF and PACF against the lag length. 

The ACF at lag k, denoted by k , is defined as

k
k

0


 


(10)

where k is the covariance at lag k, 0 is the variance. Since both covariance 

and variance are measured in the same units, k is a unitless, or pure, 

number; and lies between -1 and +1. 

In time series data the main reason of correlation between Yt and Yt-k 

originates from the correlations they have with intervening lags; that is, Yt-1, 
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Yt-2, … , Yt-k+1. The partial correlation measures the correlation between 

observations that are k time periods apart after controlling for correlations at 

intermediate lags; that is, it removes the influence of these intervening 

variables. In other words, partial autocorrelation is the correlation between Yt

and Yt-k after removing the effect of intermediate Y’s.

If we find out, as a result of visual inspection of correlogram and/or formal 

unit root tests, that our data is nonstationary; we need to make it stationary 

by differencing until nonstationary fades away. Then, based on the stationary 

data after differencing and its correlogram, we identify the appropriate values 

of our model; that is, p, d and q.

In the second step; that is, estimation, the model based on the results from 

the first step is constructed and estimated, which is followed by diagnostic 

checking in the third step. To check whether the model is a reasonable fit to 

the data or not, we collect residuals from the estimation in previous step and 

check whether any of the autocorrelations and partial correlations of the 

residuals is individually statistically significant or not. If they are not 

statistically significant, then it means that the residuals are purely random 

and there is no need to look for another ARIMA model. In the final step, 

forecasting is carried out based on the constructed and checked ARIMA 

model.
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5. Overview of Data

The data used in the estimation process is quarterly time series data on real 

electricity prices, real GDP per capita and net electricity consumption per 

capita for the period 1984-2004, a total of 84 observations. The data is 

obtained from the “International Energy Agency” (IEA), the “Organisation for 

Economic Co-operation and Development” (OECD), the “International 

Monetary Fund” (IMF) and some national institutions of Turkey; namely, the 

“State Institute of Statistics” (SIS), the “Turkish Electricity Transmission 

Company” (TEIAS), Undersecretariat of Treasury and State Planning 

Organization (SPO).

Since the data on net electricity consumption, population and GDP is not 

available quarterly, the annual series on these data are converted into 

quarterly data by linear interpolation so as to make use of them together with 

quarterly data on electricity prices. Specification of data and their sources are 

summarized in Appendix A.

Since one of the main aims of this study is to get elasticities of electricity 

demand, the series were transformed into natural logarithms so that direct 

estimates of elasticities can be obtained10. Graphs below show time series 

plots of natural logarithms of real electricity prices (LP), real GDP per capita 

(LY) and real net electricity consumption per capita (LE).

                                                
10 The use of log-log specification only provides us with constant elasticities; however, 
elasticities may also be estimated from linear functions (or other specifications) that are not 
constant.
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[ “image1.bmp” goes here ]

Figure 1. Time Series Plots of Natural Logarithms of LP, LY and LE

A close look at the graphs reveals that there are trends in the variables with 

the exception of LP, which fluctuates within an interval. Visual inspection of 

the plotted data also indicates that LY and LE have non-constant means and 

non-constant variances; that is, they seem to be non-stationary.

6. Presentation of Study Results

6.1. Partial Adjustment Model

Using quarterly data discussed in the previous section, the reduced form 

model is estimated11. Equation (6) is estimated as follows:

t t tlnE 5.12 1.17lnP 1.18lnY    (11)

In this model, p-values of  , 1 and 2 are all within acceptable range and 

the null hypothesis that one of these coefficients is zero can be rejected at 

the 2% significance level. As for “goodness-of-fit” measures, “R-squared” and 

“Adjusted R-squared” values are about 0.38 and 0.36 respectively; which 

cannot be regarded as high enough for an appropriate model.

                                                
11 Unless otherwise stated, all estimation throughout the study is carried out by EViews 5.1, 
the Windows-based forecasting and econometric analysis package.
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As to serial correlation, Durbin-Watson statistic in our estimation output is 

very close to 0.14, indicating the existence of serial correlation in the 

residuals. The p-value of the F-statistics is almost zero; so we can reject the 

null hypothesis that all slope coefficients in the regression are zero.

Although the coefficients of price and income have correct signs12, 

econometric indicators imply that this equation may be misspecified. 

Therefore, the lagged dependent variable, lnEt-1, is added in the right-hand-

side of the equation (6) so as to obtain partial adjustment model in equation 

(9), estimation of which gives the following result.

t t t t 1lnE 0.04 0.01lnP 0.01lnY 0.99lnE      (12)

This new model is clearly better than the first one. First of all, the coefficients 

of price and income have still correct signs. Second, p-values of all 

coefficients, with the exception of intercept term, are within acceptable range 

and they are significant at 2% significance level13. Third, “R-squared” and 

“Adjusted R-squared” measures in this model are about 1, meaning that the 

regression fits almost perfectly. Finally, p-value of the F-statistics is still zero.

Based on this model, the estimated short-run and long-run elasticities of 

demand are as follows14:

                                                
12 The economic theory states that there is an inverse relationship between demand and 
price; and a positive relation exists between demand and income.
13 However, the p-value of the intercept term (0.44) is so high that we cannot reject the zero 
null hypotheses even at the 40% significance level!
14 Relying on the notation in equation (9), estimated parameters are as follows:
     0.041010      1 0.012257      2 0.014779     (1 ) 0.986500  
   From above, it is obvious that 0.0135  and, therefore,  1 -0.9079 and  2 1.0947 .
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Table 1. Elasticities of Demand for Electricity in Turkey, based on 
Conventional Partial Adjustment Model

Short-
run

Long-run

Price Elasticity -0.0123 -0.9079

Income Elasticity 0.0148 1.0947

There seems to be a substantial difference between short-run and long-run 

elasticities of demand because, in this model, the speed of adjustment to the 

long-run equilibrium demand level is so close to 0 (  0.0135 ). The other, 

and probably more striking, outcome from this model is the fact that although 

short-run elasticities are extremely low, less than 0.02; the long-run response 

to both price and income changes is exceptionally high. For instance, 

according to this model, if real income doubles (or, increases by 100%) in 

Turkey, the demand for electricity increases by 109% in the long run. 

Similarly, if real price of electricity declines by 100%, the demand increases 

by 91% in the long run.

There is, however, a possibility that the OLS results may be misleading due 

to inappropriate standard errors because of the presence of 

heteroskedasticity. In order to test whether error terms are heteroskedastic or 

not, White heteroskedasticity test (without cross terms) is carried out. The 

probability value of 0.146 in this test indicates that they are not jointly 

significant even at 10% significance level; meaning that error terms are not 

heteroskedastic in our model.

We need also to test for serial correlation. Breusch-Godfrey Serial 

Correlation LM Test is applied. The (effectively) zero probability value in this 



22

test strongly indicates the presence of serial correlation in the residuals. In 

the presence of serial correlation, the OLS estimators are still unbiased as 

well as consistent and asymptotically normally distributed, but they are no 

longer efficient, meaning that standard errors are estimated in the wrong way 

and, therefore, usual confidence intervals and hypotheses tests are 

unreliable. Moreover, usually, the finding of autocorrelation is also an 

indication that the model is misspecified. Newey and West (1987) proposed a 

general covariance estimator that is consistent in the presence of both 

heteroskedasticity and autocorrelation. Thanks to Newey-West procedure15, 

we can still use OLS but correct the standard errors for autocorrelation. 

However, when we correct the standard errors for autocorrelation, p-values 

of all coefficients become insignificant even at 10% significance level, 

supporting the previous indication that the model is misspecified. 

Since it is obvious that conventional partial adjustment model is not the 

appropriate one in our case; after experimenting with various functional 

forms, the model below is specified and estimated.

t 0 1 t 2 t 3 t 2 4 5 t 2 tlnE lnP lnY lnP t lnE               (13)

where lnEt-2 and lnPt-2 are the second lag of natural logarithms of demand 

and real price respectively; and t is a trend that increases by one for each 

observation16. 

                                                
15 It is important to point out that the Newey-West procedure is strictly speaking valid in large 
samples and may not be appropriate in small ones. Since we have 84 observations, our 
sample may be regarded as reasonably large.
16 The base period for the trend is the 29th observation, the 1st quarter of 1991; which has the 
lowest figure for real electricity price for the period 1984-1998. The trend in our model starts 
from -180 for the 1th quarter of 1984, then increases by one in each period; and at the end, 
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This last model is obviously the best one. The coefficients of price and 

income have correct signs. P-values of all coefficients, without exception, are 

significant at 5% significance level. “R-squared” and “Adjusted R-squared” 

measures indicate that the regression fits almost perfectly. P-value of the F-

statistics is zero. White heteroskedasticity test (without cross terms) and 

Breusch-Godfrey Serial Correlation LM Test are carried out once more for 

the new model and the results indicate that we have no heteroskedasticity in 

our model but there exists serial correlation in the residuals. In order to 

correct the standard errors for autocorrelation, the model is re-estimated by 

OLS with Newey-West procedure and it is seen that all coefficients are still 

significant at 5% significance level.

Although all econometric indicators support the appropriateness of this 

model, a formal test for functional form, namely Ramsey’s RESET test, is 

also carried out to make sure that our specification is correct. This test does 

not indicate a specification problem in our model at the 5% level of 

significance. That is, the model appears to be free from misspecification.

Based on these results, it seems that we need to respecify reduced form 

model for Turkish case. First of all, we need to readjust the desired or 

equilibrium electricity demand level (E't) in partial adjustment model as 

follows: 

t 1 t 2 t 3 t 2 4 tlnE lnP lnY lnP t u           (14)

                                                                                                                                         
4th quarter of 2004, becomes -97. The time trend introduced here may be regarded as a 
proxy for technical progress.
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Second, based on the model represented by equation (13), it is clear that 

partial adjustment process in Turkey operates as follows:

t t 2 t t 2lnE lnE (lnE lnE )     (15)

Substituting equation (14) into equation (15) and rearranging gives:

t 1 t 2 t 3 t 2 4 t 2 tlnE lnP lnY lnP t (1 )lnE u                (16)

In order to simplify notation, equation (16) can be rewritten as:

t 0 1 t 2 t 3 t 2 4 5 t 2 tlnE lnP lnY lnP t lnE               (17)

where 0   , 1 1   , 2 2   , 3 3   , 4 4   , 5 (1 )    and 

t tu   . In equation (17)17, 1 and 2 are the short-run price and income 

elasticities respectively. The long-run price and income elasticities are given 

by 1 and 2 correspondingly. Therefore, based on our estimation results 

given below, the short-run and long-run elasticities of demand for electricity in 

Turkey are as follows18: 

         t t t t 2 t 2lnE 0.653-0.041lnP 0.057lnY 0.017lnP 0.002t 0.862lnE      (18)

                                                
17 Please note that equations (17) and (13) are identical.
18 Relying on the notation in equation (17), elasticities are obtained as follows:
                     1 1 -0.041       2 2 0.057       (1 ) 0.862  
   From above, it is obvious that   0.138 and, therefore,  1 -0.297 and  2 0.414 .
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Table 2. Elasticities of Demand for Electricity in Turkey, based on 
Readjusted Partial Adjustment Model

Short-
run

Long-run

Price Elasticity -0.041 -0.297

Income Elasticity 0.057 0.414

Now, there seems to be less difference between short-run and long-run 

elasticities of demand because, in this new model, the speed of adjustment 

to the long-run equilibrium demand level ( 0.138  ) is much higher, meaning 

that now it takes demand less time to reach long run equilibrium. 

Furthermore, it is clear that the long run demand is relatively elastic 

compared to short run demand. Moreover, the level of income has more 

effect on demand than that of prices. As also suggested by economic theory, 

the demand is most responsive to income changes in the long run. According 

to this model, in Turkey, if real income increases by 100%, electricity demand 

increases by 41% in the long-run.

6.2. Cointegration Analysis

As indicated before, since it is critical to find out whether the results obtained 

from our model are meaningful (i.e., not spurious) or not, let me apply formal 

unit root tests in each series to test the reliability of our estimates.

6.2.1. The Augmented Dickey-Fuller (ADF) Test

The established standard procedure for cointegration analysis is to start with 

unit root tests on the time series data being analyzed. The augmented 
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Dickey-Fuller (ADF) test is used to test for the presence of unit roots and 

establish the order of integration of the variables in the model. The table 

below shows the results of the unit root tests19 from estimation of  equation 

(5). The null hypothesis of the test is that there is a unit root against the 

alternative one that there is no unit root in the variables.

Table 3. Summary of ADF Tests for Unit Roots in the Variables (in level form 
with a trend and intercept)

Variable ADF Test Statistic Results

LNE -1.008983 Fail to reject the null

LNP -2.627504 Fail to reject the null

LNY -2.614160 Fail to reject the null

Note: The ADF statistic at 5% significance is -3.466248.

The ADF statistics for the natural logarithms of electricity demand (LNE), real 

electricity prices (LNP) and real income (LNY) are all insignificant at 5 

percent level of significance, which leads to non-rejection of the null 

hypothesis that there is a unit root problem in the variables. Based on ADF 

test, it is obvious that the variables are non-stationary. 

As mentioned previously, differencing has the effect of making the variables 

stationary. The table below summarizes the results of unit root tests for the 

differenced variables.

                                                
19 Since equation (17) implies that the electricity demand in time t is affected by the second 
lag of the variables; two lags have been used in ADF unit root tests.
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Table 4. Summary of ADF Tests for Unit Roots in the Variables 
(in 1st difference form with a trend and intercept)

Variable ADF Test Statistic Results

 LNE -4.569026 Reject the null

 LNP -13.98314 Reject the null

 LNY -38.88917 Reject the null

Note: The ADF statistic at 5% significance is -3.466966.

The ADF statistics for the first difference variables are all significant at 5 

percent level of significance, which leads to rejection of the null hypothesis 

that there is a unit root problem in the variables. Based on ADF test, it is 

apparent that the first difference variables are stationary, which implies that 

the variables are integrated of order one, (1) .

6.2.2. Cointegration Tests

6.2.2.1. Augmented Engle-Granger (AEG) Test

The residuals from the estimation of equation (17) were used to test for the 

existence of cointegrating relationship between the variables. The null 

hypothesis is that the residuals have a unit root problem against the 

alternative that the variables cointegrate. The result of AEG test20 is 

presented in the table below.

                                                
20 The test is carried out by Microfit 4.1.
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Table 5. Summary of AEG Test Output for Equation (17)

Variable ADF Test Statistic Result

Residuals -5.3643 Reject the null

Note: 95% critical value for the Dickey-Fuller statistic is -4.9387.

It is clear that absolute value of ADF test statistic is more than the critical 

value, meaning that the null hypothesis is rejected. To reject the null 

hypothesis implies that the residuals have not a unit root problem; i.e., they 

are stationary. It can therefore be concluded that, based on the AEG method, 

the variables are cointegrated. 

6.2.2.2. Cointegrating Regression Durbin-Watson Test

Since cointegration is very crucial to the reliability of estimated parameters, a 

second test, namely CRDW test, was carried out to make sure that the 

variables in this study are definitely cointegrated. The Durbin-Watson statistic 

for the regression represented by equation (17) is 0.559, which is above the 

1% critical value of 0.511. Therefore, we fail to reject the null hypothesis of 

cointegration at the 1% level, which reinforces the finding on the basis of the 

AEG test. 

To sum up, our conclusion based on both the AEG and CRDW tests is that 

the variables LNE, LNP and LNY are cointegrated. Although they individually 

exhibit random walks, there seems to be a stable long-run relationship 

between them; they do not wander away from each other in the long-run. 
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Based on these results, we may conclude that the appropriate model for 

Turkish electricity demand is the one represented in equation (17) and that 

our estimates are reliable; that is, not spurious.

6.3. Electricity Demand Forecast for Turkey: 2005-2014

6.3.1. Data and Methodology

Before starting the forecast, it is important to make some points clear. First of 

all, data used here is annual data covering the period 192321-2004, a total of 

82 observations. Also, unlike previous section, the data here is not converted 

into natural logarithms and, therefore, the unit is GWh.

In literature, there are five main approaches to economic forecasting based 

on time series data; namely, (1) exponential smoothing methods, (2) single-

equation regression models, (3) simultaneous-equation regression models, 

(4) autoregressive integrated moving average models (ARIMA), and (5) 

vector autoregression. Although still used in some areas, the first group of 

models is now supplanted by the other four methods; therefore, we don’t use 

them in this study. Taking into account rather low estimates of elasticities 

obtained in previous section22, it seems better not to include price and 

income variables in the forecasting process and “let the demand data speak 

for itself”, which is the main philosophy behind ARIMA modelling. Since the 

second, third and the fifth group of models require the inclusion of price, 

                                                
21 The Republic of Turkey was founded in 1923.
22 Low elasticities imply that responsiveness of demand to price and income changes is 
rather limited, meaning that a forecast linking price and income to consumption may not 
produce healthy results.
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income and some other variables in the forecasting process; they are also 

not used here. In short, this section develops an electricity demand forecast 

for Turkey based on ARIMA modelling.

6.3.2. Development of the Model

As mentioned before, ARIMA modelling consists of four steps. In the first 

step, namely identification step, we need to identify the appropriate 

parameters in our model, that is, ARIMA(p,d,q). The figure below provides us 

with the correlogram up to 40 lags, or the plots of ACF and PACF against the 

lag length of 40. 

[ “image2.bmp” goes here ]

Figure 2. The Correlogram of Turkish Electricity 

Consumption Data up to 40 lags

The column labeled AC and PAC are the sample autocorrelation function and 

the sample partial autocorrelation function respectively. Also the diagrams of 

AC and PAC are provided on the left. The solid and dashed vertical lines in 

the diagram represent the zero axis and 95% confidence interval 

respectively. From this figure, two facts stand out: First, the autocorrelation 

coefficient starts at a very high value at lag 1 (0.937) and declines very 

slowly; and ACF up to 16 lags are individually statistically significant different 

from zero as they are all outside the 95% confidence bounds. Second, after 

the first lag, the PACF drops dramatically, and all PACFs after lag 1 are 
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statistically insignificant. These two facts strongly support the idea that the 

electricity consumption time series is nonstationary. It may be nonstationary 

in mean or variance, or both.

Since the data is nonstationary, we have to make it stationary. The figures 

below show the correlograms of the first and second differenced data up to 

40 lags. 

[ “image3.bmp” goes here ]

Figure 3. The Correlogram of the First-Differenced Data up to 40 lags

[ “image4.bmp” goes here ]

Figure 4. The Correlogram of the Second-Differenced Data up to 40 lags

We still observe a trend in the first-differenced consumption time series but 

this trend disappears in the second-differenced one, perhaps suggesting that 

the second-differenced data is stationary. A formal application of the ADF 

unit root test shows that that is indeed the case. 

In Figure 4, we have a much different pattern of ACF and PACF. The ACFs 

at lags 1, 3 and 4; and PACFs at 1, 2, 4, 6 and 13 seem statistically different 

from zero. But at all other lags, they are not statistically different from zero. If 

the partial correlation coefficient were significant only at lag 1, we could have 
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identified this as an AR(1) model. Let us therefore assume that the process 

that generated the second-differenced consumption is at most an AR(13) 

process. Since from the partial correlogram we know that only the AR terms 

at lag 1, 2, 4, 6 and 13 are significant, we only need to include these AR 

terms in our model. Therefore at the end of the first step we may conclude 

that the original time series is ARIMA(13,2,0); that is, the second differenced 

stationary data can be modeled as an ARMA(13,0) process.

The second step in ARIMA modelling is estimation. Let *
tE denote the 

second-differenced data. Then, in line with the conclusion in the first step, our 

model is:

                * * * * * *
t 1 t 1 2 t 2 4 t 4 6 t 6 13 t 13 tE E E E E E u (19)

Using EViews, we obtained the following estimates:

* * * * * *
t t 1 t 2 t 4 t 6 t 13E 275.93 0.56E 0.44E 0.62E 0.56E 0.54E          (20)

In the third step; that is, diagnostic checking, we obtain residuals from (20)

and get the ACF and PACF of these residuals up to lag 40 in order to check 

that the model represented by equation (20) is a reasonable fit to the data. 

The estimated ACF and PACF are shown below.

[ “image5.bmp” goes here ]

Figure 5. The Correlogram of the Residuals from Equation (20)
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As can be seen in Figure 5, none of the autocorrelations and partial 

correlations is individually statistically significant. In other words, the 

correlograms of both autocorrelation and partial autocorrelation give the 

impression that the residuals estimated from regression (20) are purely 

random. Hence, there is not any need to look for another ARIMA model. 

The final step is forecasting. However, we need to integrate the second-

differenced series to obtain the forecast of consumption rather than its 

changes. We know that the following formula integrates data from second-

differenced form into level form.

   *
t t t 1 t 2E E 2E E (21)

If we transform all variables in equation (19) based on this formula and 

rearrange it, our model becomes:

Et    =               1 t 1 2 1 t 2 1 2 t 3(2 )E ( 2 1)E ( 2 )E

              2 4 t 4 4 t 5 4 6 t 6 6 t 7( )E 2 E ( )E 2 E (22)

          6 t 8 13 t 13 13 t 14 13 t 15 tE E 2 E E u

The values of  , 1, 2 , 4 , 6 and 13 are already known from the 

estimated regression (20) and ut is assumed to be zero, which enables us to 

convert equation (22) into equation (23). Using equation (23), we may easily 

obtain the forecast values for the period 2005-2014.

Et    =       t 1 t 2 t 3 t 4275.93 1.44E 0.32E 0.32E 1.06E

      t 5 t 6 t 7 t 81.23E 1.17E 1.11E 0.56E (23)

    t 13 t 14 t 150.54E 1.08E 0.54E



34

6.3.3. Validation

Before presenting the results, it is useful to validate the present model with 

observed data. In order to do this, electricity demand is calculated by 

equation (23) supposing that present year is 1999; that is, five years 

observed data is used for validation. As can be seen in the table below, the 

results from ARIMA model deviates from the observed data 2.2% on 

average, which may definitely be regarded as within the acceptable range.

Table 6. Validation of ARIMA Modelling

Year

Forecasted Net 
Electricity 

Consumption 
(GWh)

Annual 
% 

Change

Index 
(1999=100)

Actual Net 
Electricity 

Consumption 
(GWh)

Annual 
% 

Change

Index 
(1999=100)

Absolute 
Value of 

Deviation

Deviation as a 
Percentage of 

Actual 
Consumption

2000 98,788 8.3 108 98,296 7.8 108 492 0.5
2001 101,167 2.4 111 97,070 -1.2 106 4,097 4.2
2002 105,143 3.9 115 102,948 6.1 113 2,195 2.1
2003 111,053 5.6 122 111,766 8.6 123 713 0.6
2004 112,466 1.3 123 116,561 4.3 128 4,095 3.5

Note: Average deviation as a % of actual consumption is 2.2

6.3.4. Presentation of the Results

By using equation (23), net electricity demand forecasts are obtained for 

Turkey up to the year 2014. As given below, the results from ARIMA 

modelling clearly indicate that average annual percentage increase in 

electricity consumption will be 3.3% during the following decade.
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Table 7. Demand Forecast for Turkey, 2005-2014

Year

Forecasted Net 
Electricity 

Consumption 
(GWh)

Annual 
% 

Change

Index 
(2004=100)

2005 129,311 10.9 111
2006 132,631 2.6 114
2007 138,134 4.1 119
2008 146,365 6.0 126
2009 145,144 -0.8 125
2010 155,667 7.3 134
2011 156,010 0.2 134
2012 158,150 1.4 136
2013 169,210 7.0 145
2014 160,090 -5.4 137

Note: Average annual % change is 3.3

7. Evaluation of Study Results

As a result of estimation and forecasting procedure outlined above, the 

results given in Table 2 and Table 7 are obtained. Having obtained both the 

elasticities of electricity demand in Turkey and forecasted values for this 

demand, let me interpret the results and compare them with the official 

estimates that are available from TEIAS (2005c).

The estimated elasticities indicate that the price and income elasticities of 

electricity demand in Turkey are quite low, meaning that there is definitely a 

need for economic regulation in Turkish electricity market. Otherwise, since 

consumers do not react much especially to price increases, the firms with 

monopoly power (or those in oligopolistic market structure) may abuse their 

power to extract “monopoly rent”. 
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As to forecasted net electricity consumption values, it is obvious that there 

exists an electricity demand growth in Turkey; and in the following decade 

(i.e., 2005-2014), based on ARIMA modelling, we may argue that the 

demand will continue to increase at an annual average rate of 3.3% and will 

turn out to be 160,090 GWh in 2014, corresponding to a 37% increase 

compared to 2004 demand level.

As for comparison of our results with official demand projections, the official 

projections are available from TEIAS (2005c) and provided below. However, 

the official forecasts are for gross demand; and, therefore, they need to be 

converted into net consumption for a meaningful comparison. The details of 

this conversion are provided in Appendix B and the result is presented in the 

table below. Also, official estimates are based on two different scenarios and 

therefore formulated in two different ways. Average annual percentage 

increase in net electricity consumption is 8.2% in Scenario 1; and 6.3% in 

Scenario 2. 

Table 8. Official Projections for Electricity Demand

Year

Official Projections for 
Gross Electricity 

Consumption (GWh)

Average Total Int. 
Cons. and Net. 

Losses as a % of 
Gross Cons.

Official Projections for 
Net Electricity 

Consumption (GWh)

Annual % Change in 
Net Electricity 
Consumption

Index 
(2004=100)

Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2

2005 159,650 159,650 22.3 124,048 124,048 6.4 6.4 106 106
2006 176,401 169,517 22.3 137,064 131,715 10.5 6.2 118 113
2007 190,700 180,248 22.3 148,174 140,053 8.1 6.3 127 120
2008 206,400 191,677 22.3 160,373 148,933 8.2 6.3 138 128
2009 223,500 203,827 22.3 173,660 158,374 8.3 6.3 149 136
2010 242,021 216,747 22.3 188,050 168,412 8.3 6.3 161 144
2011 262,000 230,399 22.3 203,574 179,020 8.3 6.3 175 154
2012 283,501 244,951 22.3 220,280 190,327 8.2 6.3 189 163
2013 306,100 260,401 22.3 237,840 202,332 8.0 6.3 204 174
2014 330,301 276,799 22.3 256,644 215,073 7.9 6.3 220 185

Note: Average annual % change in net electricity consumption is 8.2 for Scenario 1; and 6.3 for Scenario 2
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The table below compares the results from ARIMA modelling with official 

projections based on two different scenarios.

Table 9. The Comparison of ARIMA Results with Official Projections

Year

Official Projections for 
Net Electricity 

Consumption (GWh)

Forecasted Net 
Elec. Cons. 

based on ARIMA 
Modelling (GWh)

Difference
Difference as a % of 
Forecasts based on 

ARIMA Modelling

Scenario 1 Scenario 2 Scenario 1 Scenario 2 Scenario 1 Scenario 2

2005 124,048 124,048 129,311 -5,263 -5,263 4 4
2006 137,064 131,715 132,631 4,433 -916 3 1
2007 148,174 140,053 138,134 10,040 1,919 7 1
2008 160,373 148,933 146,365 14,008 2,568 10 2
2009 173,660 158,374 145,144 28,516 13,230 20 9
2010 188,050 168,412 155,667 32,383 12,745 21 8
2011 203,574 179,020 156,010 47,564 23,010 30 15
2012 220,280 190,327 158,150 62,130 32,177 39 20
2013 237,840 202,332 169,210 68,630 33,122 41 20
2014 256,644 215,073 160,090 96,554 54,983 60 34

The most outstanding outcome from the comparison is the fact that there is a 

substantial difference between official projections and forecasts based on 

ARIMA modelling. If we suppose that ARIMA results are valid; for 2014,

Scenario 1 and 2 inflate electricity demand by 60% and 34% respectively. To 

put it in a different way, if we take electricity demand in 2004 as 100 units; 

ARIMA modelling suggests that the demand will turn out to be 137 units in 

2014, while official projections imply that it will turn out to be either 220 or 

185 units depending on the scenario adopted.

There exist two important points to keep in mind while evaluating (and 

perhaps using) these results. First of all, forecasting, especially in energy 

demand, is considered more an art than a science; therefore, some 
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variations are to be expected depending on the model’s underlying 

assumption(s). Like all other models, ARIMA modelling is based on some 

assumption(s) and, of course, there is a direct link between the accuracy of 

the forecast and the validity of the underlying assumption(s). The main 

assumption behind ARIMA modelling is that the already existing trends in 

electricity consumption will more or less repeat themselves in the future. 

Despite the fact that this is a widely used, essential and reasonable 

assumption; some unanticipated events may also occur and it is always very 

difficult, if not impossible, to foresee such "unexpected" events that have a 

potential to completely change the electricity demand trend in Turkey 

reducing the precision of the forecasts presented here. Second, due to 

nature of ARIMA modelling and the low elasticities obtained, present study 

has only employed net total consumption data for forecasting. There is an 

apparent need for further work with more variables that will examine the 

demand of different sectors (e.g., industry, households etc.) separately, 

which is not only essential for policy formulation in Turkey but also will make 

more detailed and accurate understanding of the trends possible.

Ozturk et al. (2005) conclude that official total electricity demand projection 

for the period of 1996–2001 overestimated demand by 36% either due to 

inappropriateness of the model used or in order to justify the construction of 

new electric power plants to use excess amount of natural gas. In line with 

this conclusion; in this study, we find that the official net electricity 

consumption projection for 2014 again overestimates demand at least by 

34% compared to the forecasted values based on ARIMA modelling.
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8. Conclusion

The main objectives of this article have been, first, to estimate short and long 

run price and income elasticities of electricity demand in Turkey; and, 

second, to forecast future growth in this demand using ARIMA modelling and 

compare the results with official projections.

In the course of study, elasticities are obtained and it is found out that they 

are quite low, implying that consumers’ respond to price and income changes 

is quite limited; and, therefore, there is a need for economic regulation in 

Turkish electricity market. Then, an ARIMA model is developed and used to 

forecast future net electricity consumption in Turkey. Based on forecasts 

obtained, it is clear that the current official projections highly overestimate the 

electricity demand in Turkey. 

Developing countries like Turkey should plan very carefully about their 

energy demand for critical periods, such as economic crises that frequently

hit them. For instance, economic crisis hit Turkey three times in the last 

decade, once in 1994 and the others in 2000 and 2001. During these 

periods, energy consumption shows fluctuations and presents a decreasing 

trend. After the economic crises, the energy consumption recovers and 

shows about the same trend as before the economic crises. Therefore, 

official energy projections should be formulated in such a way that possible 

crises are taken into account. Moreover, all related bodies in Turkey should 

take necessary steps to find out the reasons for apparently misleading 

demand forecasts in electricity market; and develop accurate demand 
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projections. In this context; the market regulator, EMRA, is especially 

responsible for development of healthy forecasts, which is one of the most 

important determinants in the success of recent energy market reforms in 

Turkey. Future energy consumption in Turkey have consistently been 

predicted much higher values than actually occurred. It should be kept in 

mind that it is almost impossible to create a well-functioning electricity market 

under these conditions. In addition; while developing forecasts, the emphasis 

should be on the development and use of appropriate data and econometric 

techniques which are open to debate, rather than some computer packages 

for demand estimation provided by various international organizations or, 

even worse, the methods in which the demand is determined as a result of a 

bargaining process among various public bodies.

It is believed that the elasticities, forecasts and the comments presented in 

this paper would be helpful to policy makers in Turkey for future energy policy 

planning.
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Appendices

Appendix A: Specification of Data

Real Electricity Prices

The quarterly data on electricity prices for industry and households is 
collected from IEA (2005). All prices are electricity end-use prices in New 
Turkish Lira (YTL) per kilowatt hour (kWh). The annual data on electricity 
consumption by industry and households is taken from IEA (2002) for 1984-
2000 and IEA (2004) for 2001-2002. Moreover, the data for the period from 
the first quarter of 2003 to the last quarter of 2004 is collected from SIS
(2005a). The data from SIS is in GWh; however, the original data from IEA is 
measured in ktoe. To get a single unit, the data from IEA is converted into 
GWh using the simple equality 1 ktoe = 11.63 GWh. Finally, the data on 
annual percentage change in inflation is taken from IMF (2005).

A single time series data on real electricity prices in Turkey is not directly 
obtainable. Therefore, it is calculated using available data. First of all a 
weighted average price is computed using the existing data on electricity 
prices for industry/households and electricity consumption by 
industry/households. Then, an inflation index is also computed using the data 
on annual percentage change in inflation assuming 2004 as the base year; 
that is 2004=1. Finally, real electricity prices are obtained by dividing 
weighted average price for each period by inflation index for the related year.

Real Income

A single time series data on real income (or real GDP per capita) is also not 
directly available. Therefore, it is calculated by using available data on 
population, GDP per capita at current prices and annual percentage change 
in inflation. The annual time series data on Turkish population is collected 
from SIS (2005b). It is measured in thousand people. In Turkey, censuses 
are carried out once in every five years. The figures for years without a 
census are official estimates by SIS. The annual time series data on Turkish 
gross domestic product (GDP) per capita at current prices in YTL is obtained 
from the Undersecretariat of Treasury (2005) for 1984-2003 and from SPO
(2005) for 2004.

To get real income, GDP per capita at current prices is calculated and the 
figures are converted into real prices by using the inflation index computed in 
the previous step. At the end, real GDP per capita at 2004 prices is obtained 
in YTL.

Electricity Demand

Electricity demand (or net electricity consumption per capita) is not directly 
accessible, so once more the data is worked out. The annual data on net 
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electricity consumption23 is collected from TEIAS (2005a) for 1984-2003 and 
from SIS (2005c) for 2004. All figures are measured in GWh. These figures 
are converted into kWh and then divided by population figures to get net 
electricity consumption per capita in kWh.

In forecasting section, besides annual net electricity consumption data from 
TEIAS (2005a), additional data from TEIAS (2005b) is also used. 
Furthermore, the data to be used in this section is annual data for 1923-2004 
period, rather than quarterly data from 1984 to 2004.

Appendix B: The Process of Conversion of Official Electricity Gross Demand 
Projections into Net Electricity Consumption Figures

The relationship between various technical terms used to express electricity 
demand is shown below. Please note that network losses include both 
transmission and distribution losses; and internal consumption refers to 
electricity consumed by power plants for the purposes of heating, pumping, 
traction, lighting and so on.

Internal Import-
Consumption Export

Import- Internal
Export Consumption

Gross
Net Gross Net Demand Gross Net

Consumption Consumption Supply = Generation Generation
Gross
Supply

Network
Losses

The table below shows the data on gross demand, internal consumption and 
network losses for the latest available 10-year period (i.e., 1994-2003); and, 
as can be seen in the table, during this period, internal consumption and 
network losses accounted for 22.3% of gross demand on average.

                                                
23 Net electricity consumption is calculated by subtracting network loses from total supply.
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Table 10. The data on gross demand, internal consumption and network 
losses for 1994-2003

Gross Internal Internal Cons. Network Network Losses The Total

Demand Consumption as a % of Losses as a % of Total as a % of

(GWh) (GWh) Gross Demand (GWh) Gross Demand (GWh) Gross Demand

(a) (b) (c) (d=b+c)

1994 77,783.0 4,539.1 5.8 11,843.0 15.2 16,382.1 21.1
1995 85,551.5 4,388.8 5.1 13,768.8 16.1 18,157.6 21.2
1996 94,788.6 4,777.3 5.0 15,854.8 16.7 20,632.1 21.8
1997 105,517.1 5,050.2 4.8 18,581.9 17.6 23,632.1 22.4
1998 114,022.7 5,523.2 4.8 20,794.9 18.2 26,318.1 23.1
1999 118,484.9 5,738.0 4.8 21,545.0 18.2 27,283.0 23.0
2000 128,275.6 6,224.0 4.9 23,755.9 18.5 29,979.9 23.4
2001 126,871.3 6,472.6 5.1 23,328.7 18.4 29,801.3 23.5
2002 132,552.6 5,672.7 4.3 23,931.9 18.1 29,604.6 22.3
2003 141,150.9 5,332.2 3.8 24,052.7 17.0 29,384.9 20.8

Annual Average: 4.8 17.4 22.3

Source: TEIAS (2005a,d)

Assuming that internal consumption and network losses continue to account 
for 22.3% of gross demand on average during the period 2005-2014, Table 8 
is prepared.
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