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simultaneously decide if they will join a contribution group or not. In the second stage, 
players in the contribution group simultaneously offer contribution schemes in order to 
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perfectly coalition-proof Nash equilibrium (Bernheim, Peleg and Whinston, 1987 JET), 
we show that the set of equilibrium outcomes is equivalent to an "intuitive" hybrid 
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necessarily achieve global efficiency. It is not necessarily true that an equilibrium lobby 
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1 Introduction

The menu auction theory developed by Bernheim and Whinston (1986) is widely used in

political economy models with lobbying, especially in the field of international trade (e.g.,

Grossman and Helpman, 1994). Lobbying for protection can be considered as a public good

provision for the industry in question. Since the provision of the public good affects all

players positively, they all have free-riding incentives. Thus, it is important to explicitly

model the stage of lobby formation to see if lobbying is effectively conducted. We construct

a two-stage game of public good provision, where in the first stage players decide if they

join a contribution group (a lobby). In the second stage, the participants of the contribution

group offer their contribution schedules (menus) to the government, and the government

decides how much it provides the public good given the offered contribution schedules and

the costs of public goods provision. In this context, we address following questions. How

serious is the free-riding problem? What types of players participate in the lobby? How

efficient are equilibrium outcomes?

The set of Nash equilibria of our second stage game (a common agency game or menu

auction game) studied by Bernheim and Whinston (1986) is very large and contains many

unreasonable equilibria. In order to refine it, Bernheim and Whinston (1986) define the

coalition-proof Nash equilibrium (CPNE), a communication-based equilibrium concept with

credible enforcement, and provide a nice characterization of CPNE. In fact, since public

goods provision involves a coordination problem among players, it clearly makes sense to

employ communication-based refinement of Nash equilibria in our game. To analyze our

two stage game, therefore, we employ perfectly coalition-proof Nash equilibrium (PCPNE),

which is a natural extension of CPNE to dynamic games (Bernheim, Peleg, and Whinston,

1987). This solution concept has some merits: (i) it allows players to propose a (coalitional)

deviation plan in which they coordinate in their strategies through the communication, and

(ii) it assures that no free-riding incentive remains in equilibrium by requiring credibility of

proposed deviation plans.1 The second merit may require some clarifications. Suppose that

1CPNE and PCPNE are strategy profiles that are immune to (recursively defined) credible group devia-
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a subset of players participate in public goods contributions. In public goods economies, it

is always possible to improve efficiency in the Pareto manner by inviting nonparticipants to

the contribution group. Once such invitations are made, however, some of participants may

have an incentive to leave the contribution group since public goods provision level may still

be high enough after they leave the group. By adopting PCPNE as the equilibrium concept,

we can eliminate all free-riding incentives in equilibrium since PCPNE requires all possible

deviations to be credible.

We characterize the PCPNEs of our game by a novel hybrid solution concept, utilizing

the core in cooperative game theory. It is not a surprise that there are connections between

menu auction outcomes and the core. Laussel and Le Breton (2001) show that in the class

of comonotonic games,2 the generated cooperative games are convex, and the equivalence

between CPNE and the core results. We add a lobby formation stage to Laussel and Le

Breton (2001), and characterize PCPNE in order to analyze a participation problem. A free-

riding-proof core allocation for coalition S (FRP-Core allocation for S ) is a core allocation

achieved by contribution group S in which no member i of S has an incentive to deviate

unilaterally expecting the public good provision to become at the efficient level for group

S\{i}. A free-riding-proof core for S (FRP-Core for S ) is the collection of all FRP-Core

allocations for S. That is, the FRP-Core for S is the collection of all internally stable

allocations (no lobby member free-rides given a surplus allocation scheme). Note that it is

possible to have an empty FRP-Core for S if S is a large coalition. The free-riding-proof

core (FRP-Core) is the Pareto-efficient frontier of the union of FRP-Cores for all S ⊆ N .

That is, the FRP-Core is a collection of internally stable allocations that are not Pareto-

dominated by any other internally stable allocations. We prove that PCPNE and FRP-Core

are equivalent (Theorem 1), utilizing the properties of the core in convex games (Shapley,

1971).

This equivalence theorem is useful in analyzing the PCPNE of our game. We examine

tions with their strategies coordinated. A credible deviation is a deviation that is immune to further nested
credible deviations.

2Preferences are comonotonic if for all pair of players i and j, and all pair of actions a and a0, if i prefers
a to a0, then j also prefers a to a0.
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the set of FRP-Core allocations of a simple example in which players differ only in their

willingness-to-pay for a public good, and show that (i) there can be many different equilib-

rium contribution groups, (ii) an equilibrium contribution group may not include the player

with the highest willingness-to-pay, and (iii) equilibrium contribution-group members may

not be consecutive in their willingness-to-pay.

Then, we analyze how equilibrium public goods provision is affected as the economy

becomes larger. Following Milleron’s (1972) notion of replicating a public goods economy,3

we prove that the equilibrium public good provision level converges to zero as the economy

grows (Theorem 2).

This paper is organized as follows. The next two subsections briefly discuss some related

literature. In Section 2, we set out our public goods provision game, and introduce PCPNE

as an equilibrium concept. We also describe how a version of “Protection for Sale" model

by Grossman and Helpman can be treated in our game. In Section 3, we define an intuitive

hybrid solution concept, the FRP-core, and prove the equivalence between PCPNE and the

FRP-core (Theorem 1). In Section 4, we provide an example to reveal some interesting

properties of the FRP-core. In Section 5, we consider a replica economy and show that the

public goods provision level shrinks to zero as the economy is replicated in a certain way

(Theorem 2). Section 6 concludes. Appendix A provides useful properties of the core of

convex games and an algorithm that finds a core allocation starting with an arbitrary utility

vector; Appendix B provides proofs of our results.

1.1 Related Literature on Public Goods Provision

It is well known that the public goods provision is subject to free-riding incentives. Al-

though Samuelson’s (1954) view of this problem was pessimistic, Groves and Ledyard (1977)

show that efficient public goods provision can be achieved in Nash equilibrium. Although

the Groves-Ledyard mechanism does not satisfy individual rationality, Hurwicz (1979) and

3Muench (1972), Milleron (1972) and Conley (1994) discuss the difficulty of replicating a public goods
economy and offer various possible methods. Milleron’s notion of replication is to split endowments with
replicates and adjust preferences so that agents’ concerns for the private good are relative to the size of their
endowments. This notion is employed by Healy (2007).

4



Walker (1981) show that the Lindahl mechanism is implementable. Subsequently, numerous

mechanisms have been proposed to improve the properties of mechanisms. They all assume,

however, that players have no freedom to make participation decisions about the mechanism,

i.e., players’ participation to the mechanism is always assumed.

Introducing outside opportunities by a “reversion function” (each outcome is mapped to

another outcome in the case of no participation), Jackson and Palfrey (2001) analyze the

implementation problem including participation of all players when players’ participation to

a mechanism is voluntary. They extend the Maskin monotonicity condition to accommodate

voluntary participation problem. Although their reversion function is very general, it assigns

the same outcome no matter who deviates from the original outcome. Thus, the method may

not be suitable for a public goods provision problem in which different players’ deviations

from participation may generate different outcomes. Taking this consideration into account,

Healy (2007) analyzes the implementation problem in a public goods economy demanding

all players’ participation in equilibrium (equilibrium participation). He shows that as the

economy is replicated in Milleron’s sense (1972), the set of outcomes of any mechanism that

satisfies the equilibrium participation condition converges to the endowment. Although we

also show that the equilibrium public goods provision level converges to zero as the economy

is replicated, we allow some players not to participate in the contribution group in equilibrium

(and efficiency of public good provision within the lobby group is achieved, unlike in Healy,

2007). Thus, Healy’s and our results are quite different from each other.

Closest to our work is the one by Saijo and Yamato (1999), who are the first to consider a

voluntary participation game with two stages in a public goods economy, without requiring

all players’ participation in equilibrium. They show a negative result on efficiency of public

goods provision, and then characterize subgame perfect equilibria in a symmetric Cobb-

Douglas utility case. In contrast, we fully characterize the PCPNE of a menu auction

(common agency) game with a participation decision allowing heterogeneous players that

have quasi-linear utility functions.4

4Shinohara (2003) derives the coalition-proof Nash equilibrium within the framework of Saijo and Yam-
ato’s (1999) voluntary participation game with the Lindahl mechanism in the second stage. He considers a
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Palfrey and Rosenthal (1984) show that in a binary public goods provision game where

symmetric players voluntarily make participation decisions, all pure strategy Nash equilibria

are efficient (if contributions are not refundable in case of no provision). With asymmetric

players, there are many Nash equilibria with different levels of cooperation. Maruta and

Okada (2005) refine those Nash equilibria by selecting the evolutionarily stable equilibria.

Shinohara (2007) examines a public goods provision problem with decreasing marginal bene-

fits, and shows in the case of homogeneous players that it becomes harder to support efficient

allocations as the efficient level of the public good rises and hence the number of partici-

pants needed to provide the public good increases. Our Theorem 2 has some similarity to

this result.5

Le Breton and Salaniè (2003) analyze a common agency problem with asymmetric in-

formation on agents’ preferences. They show that equilibria can be inefficient even in the

case where there is only one player in each interest group.6 If there are multiple players in

each interest group, failure to internalize the contribution benefits within the group reduces

contributions even more. Free-riding incentives under compulsory lobby participation exist

in the framework of Le Breton and Salaniè (2003), due to the failure of internalization. In

contrast, we analyze free-riding in a more obvious way by explicitly introducing participation

decisions.

case in which players are heterogeneous and shows that there can be multiple coalition-proof Nash equilibria
with different sets of players participating in the mechanism. One of our results has the same message but
with a common agency game in the second stage (thus, payoff allocation within lobby is flexible unlike in
Shinohara 2003).

5Although the model and mechanism are very different from ours, Nishimura and Shinohara (2007)
consider a multi-stage voluntary participation game in a discrete multi-unit public goods problem. They show
that Pareto-efficient allocations are achieved in subgame perfect Nash equilibrium through a mechanism that
determines public goods provision unit-by-unit. Their efficiency result depends crucially on the assumption
that a player who did not participate in the mechanism in early stages can participate in the public good
provision later.

6Laussel and Le Breton (1998) analyze the public good provision problem where each player must sign a
participation contract before knowing her own cost when all contribution schemes are proposed (then players’
costs are realized and the agent chooses an agenda). They show that all equilibria are efficient, and there is
no free-riding incentive.
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1.2 Related Literature on International Trade

A seminar paper by Grossman and Helpman (1994) applies a menu auction (common agency)

game defined by Bernheim and Whinston (1986) to an endogenous trade policy formation

problem, and analyzes the mechanism in which industries influence the government’s trade

policy through lobbying activities. In their model, principals (or players) are the lobbies that

represent industries while the agent is the government that values contributions provided by

lobbies as well as social welfare. Each lobby makes contributions in order to influence the

trade policy in its favor: it lobbies to raise the price for the good that it makes and to lower

the prices for other goods.7 One of their intriguing results is that in some case, lobbying

activities offset each other so that the government chooses free trade while collecting a large

amount of contributions from all the industries that have conflicting interests.

Mitra (1999) extends the Grossman-Helpman model to endogenize lobby participation.

In his model, participation decision is made at the industry level, abstracting from free-

riding incentive within the industry. He shows among others that Grossman and Helpman’s

(1994) aforementioned free-trade result still holds if the government cares about social welfare

strongly or if it cares about contributions heavily. In contrast, Bombardini (2007) and

Paltseva (2006) consider the cases in which firms in oligopolistic, import-competing industries

make participation decisions. Unlike Grossman and Helpman (1994) and Mitra (1999), firms

in the same industry have no conflict of interests over government policies as in the pure

public goods provision problem.

Bombardini (2007) constructs the model in which firms are different in the amount of

their specific capital and empirically investigates how protection levels differ across industries

depending on the distribution of firm sizes. She finds that industries with wide firm-size

dispersion obtain high levels of protection. Although her empirical result is very interesting,

she assumes that the most efficient lobby group is formed. Namely, she assumes that firms

enter the lobby in the descending order of their capital: the firmwith the largest capital enters

the lobby, then the firm with the second largest capital enters and so on, until the efficiency

7This is because lobbies representing industries are ultimately consumers.
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benefit of adding a firm becomes smaller than the firm’s individual cost of lobby participation.

Indeed, we show by giving an example that it is not necessary that the equilibrium lobby

includes the most efficient firm, nor is it necessary that the lobby members are consecutive

in their efficiencies.

Paltseva (2006) considers a lobby-participation game with symmetric firms to analyze

their free-riding incentives, and examines the symmetric Nash equilibrium outcomes of the

participants’ menu auction. Our paper is closest to Paltseva’s within the field of international

trade, but we allow asymmetric players and asymmetric contributions, and characterize all

PCPNEs. Due to transferable utilities, we need to employ a more sophisticated equilibrium

concept than Nash equilibrium in the participation stage if the symmetry assumption is

dropped. That is why we use PCPNE as our solution concept.

2 The Model

This section sets out the two-stage contribution game in which all players’ interests are in the

same direction, while the intensity of their interests can be heterogeneous. We first describe

the problem, then propose the FRP-core as a hybrid solution concept.

2.1 Public Goods Provision Problem

A stylized public goods model is defined as follows. There is a public good whose provision

level is denoted by a ∈ A = R+.8 Provision cost function C : A → R+ is continuous and

strictly increasing with C(0) = 0. The government provides the public good, and its cost is

regarded as the government’s disutility from the provision. That is, the government’s utility

from providing a units of the public good is vG(a) = −C(a). Player i’s utility function is

quasi-linear such that the net consumption x of the private goods enter the function linearly,

i.e., vi(a)−x, where vi : A→ R+ is a strictly increasing function with vi(0) = 0. In order to

guarantee the existence of a non-trivial solution, we assume that (i) there exists ã ∈ A such

8For our equivalence result (Theorem 1), we only need comonotonic preferences over abstract agenda
set A. The extension is straightforward. We focus on the one-dimensional public goods economy just for
simplicity.
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that vi(ã) − C(ã) > 0 for all i ∈ N , where N is the set of players, and (ii) there is â ∈ A

such that
P

i∈N vi(a)−C(a) < 0 for all a > â. The only new element to this standard public

goods provision game is that every player has a choice between participating in contributing

to the public goods provision and free-riding.

2.2 Voluntary Participation

We discuss the endogenous contribution-group formation and its consequences on the public

good provision. To this end, we do not only require the menu auction stage of public good

provision to be coalition-proof, but require the contribution-group formation itself to be

coalition-proof. To do so, we first need to define the first-stage group-formation game in an

appropriate manner, assuming that the outcome of each possible group S is a coalition-proof

Nash equilibrium of a common agency game played by S. As an extension of CPNE in the

strategic form games to the one in the extensive form games, Bernheim, Peleg, and Whinston

(1987) define the perfectly coalition-proof Nash equilibrium (PCPNE) as the coalition-proof

Nash equilibrium for multi-stage games.

The first-stage group-formation game is such that each player i ∈ N chooses her action

from the set Σ1i = {0, 1}, where 0 and 1 represent non-participation and participation,

respectively, i.e., player i announces her participation decision. Once action profile σ1 =

(σ11, ..., σ
1
n) ∈ Σ1 = Πj∈NΣ

1
j is selected, then the contribution game takes place in the second

stage with the set of active players S(σ1) = {i ∈ N : σ1i = 1}.9

The second-stage game is a menu auction game (or a common agency game) played by

participating principals S(σ1) (Bernheim and Whinston, 1986). The set N\S(σ1) is the set

of passive free-riders. Each player i ∈ S(σ1) simultaneously offers a contribution schedule

τ i : A → R+. Given the profile of contribution schedules τS(σ1), the government G (the

9In our model, there will be a single coalition lobbying for (or contributing to) the public goods provision.
In contrast, Ray and Vohra (2001) analyze a dynamic coalition bargaining of a public goods provision
problem with multiple resulting coalitions. For detailed surveys on coalition formation problems with multiple
coalitions (and externalities), see Bloch (1997) and Ray (2007). We do not allow multiple lobbying groups
to be faced with multiple agents (such as local governments), since the analysis would become exceedingly
complicated in such cases.
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agent) chooses a public goods provision level a ∈ A that maximizes its net payoff:

uG(a, (τ i(a))i∈S(σ1)) =
X

i∈S(σ1)

τ i(a) + vG(a)

=
X

i∈S(σ1)

τ i(a)− C(a),

where the first term on the right-hand side of the last equation is the total contribution and

the second term is the cost of public goods provision. If the government chooses a ∈ A, then

player i obtains her payoff

ui(a, τ i(a)) = vi(a)− τ i(a),

for i ∈ S(σ1), and

ui(a) = vi(a),

for i /∈ S(σ1). The government’s optimal choice is described by

a∗(S, τS(σ1)) ∈ argmax
a∈A

uG(a, (τ i(a))i∈S(σ1)).

In this game, the government is not a player; it is just an automaton that maximizes its payoff

given the contribution schedules.10 Let T be the set of all contribution plans τ : A → R+.

Player i’s second stage strategy σ2i is a mapping σ2i : 2
N\{∅} → T : i.e., a contribution

schedule is assigned to each subgame. Note that in subgame S ∈ 2N\{∅}, if i /∈ S, then

σ2i (S) : A→ R+ is irrelevant to the outcome. The set of player i’s second-stage strategies is

denoted by Σ2i .

2.2.1 Example: Grossman-Helpman Model with a Single Industry

Here, we show how the above game can be accommodated to a single-industry version of

the “Protection for Sale” model developed by Grossman and Helpman (1994). Suppose

that there is only one import competing industry with n firms in a small open country.

Firms with possibly different levels of specific capital produce a homogenous commodity;

the government may provide a tariff protection to the industry. The domestic price of the

10Strictly speaking, since the government may have multiple optimal policies, we need to introduce a tie-
breaking rule. However, it is easy to show that the set of truthful equilibria (see below) would not depend
on the choice of tie-breaking rules.
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commodity is p̃ = p + t, where p and t denote the world price and specific tariff rate for

the commodity, respectively. Each firm i has a (reduced-form) profit function πi(p̃), or the

rent to its specific capital, which is strictly increasing in p̃. The government cares about

contributions from the firms as well as social welfare (total surplus). Social welfare W (p, t)

is defined by

W (p, t) = CS(p+ t) +
X
i∈N

πi(p+ t) + t

Ã
D(p+ t)−

X
i∈N

qi(p+ t)

!
,

where CS(p̃) denotes a consumer surplus that is decreasing in p̃, and D(p̃) and qi(p̃) denote

consumer demands and firm i’s supply, respectively. The expression in the parentheses shows

the import level, and hence the last term represents the tariff revenue. Social welfare can be

rewritten as

W (p, t) =W (p, 0)− L(p, t),

where L(p, t) denotes the deadweight loss as Figure 1 illustrates. Note that W (p, 0) is a

constant since the world price p is fixed for this small open economy. Thus, the government’s

payoff function can be reduced further to vG(t) = −L(p, t) with the normalizationW (p, 0) =

0. Similarly, firm i’s payoff function can be written as vi(t) = πi(p + t) − πi(p) as p is a

constant.

Now we are ready to map the “protection for sale” model to our public goods provision

framework. Let S be the set of contribution-group participants in the set of firms N , and

others be free-riders. The contribution schedule for firm i ∈ S is τ i : T → R+, where T = R

is the set of possible tariff rates. Then the government’s payoff function can be written as

uG(t, (τ i(t))i∈S) =
X
i∈S

τ i(t) + vG(t)

=
X
i∈S

τ i(t)− L(p, t),

while firm i’s payoff function is

ui(t, τ i(t)) = vi(t)− τ i(t)

= πi(p+ t)− πi(p)− τ i(t),
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for i ∈ S, and

ui(t) = vi(t),

for i /∈ S. Thus, the “Protection for Sale” model with a single industry is described by our

public goods provision model with t = a, L(p, t) = C(a), and πi(p+ t)− πi(p) = vi(a).

We endogenize firms’ lobby participation decision in our game. Paltseva (2007) considers

a symmetric-firm version of this extended “protection for sale” game with symmetric contri-

bution schedules. Although Bombardini (2007) does not model firms’ participation decision

as a game, the rest is the same as the above lobbying game except that she assumes that

the lobby participation is costly.11

2.3 Perfectly Coalition-Proof Nash Equilibrium in the Contribution-
Group Participation Game

Now, we define PCPNE for our two-stage game, following Bernheim, Peleg, and Whinston

(1987). Player i’s strategy σi = (σ
1
i , σ

2
i ) ∈ Σi = Σ1i × Σ2i is such that σ

1
i ∈ Σ1i denotes i’s

lobby participation choice, and σ2i ∈ Σ2i is a function σ2i : 2
N\{∅} → T , where T is the set

of all functions τ : A→ R+.12 Each player’s payoff function is ui : Σ→ R, which is given in

the contribution game when contribution group S is determined by S(σ1).

For T ⊆ N , we consider a reduced game Γ(T, σ−T ) in which only players in T are active

while players in N \ T are passive such that they always choose σ−T . We also consider

subgames for every σ1 ∈ Σ1, and reduced subgames Γ(T, σ1, σ2−T ) in similar ways. A perfectly

coalition-proof Nash equilibrium (PCPNE) (σ∗, a∗) = ((σ1∗i , σ
2∗
i )i∈N , a

∗) is defined recursively

as follows.13

(a) In a single-player, single-stage subgame Γ({i}, σ1, σ2−{i}), the strategy σ2∗i (S(σ
1)) ∈ T

11Our Theorem 1 holds even in the existence of individual lobby participation costs.
12For notational simplicity, we include outsiders’ second-stage strategies in the strategy profile. Of course,

such a non-participant’s second-stage strategies are absolutely irrelevant to the outcome since the government
does not receive contributions from them.
13Note that in Bernheim, Peleg, and Whinston (1987), the definition of PCPNE is based on strictly

improving coalitional deviations. However, we adopt a definition based on weakly improving coalitional
deviations, since the theorem on menu auction in Bernheim and Whinston (1986) uses CPNE based on
weakly improving deviation. For details on these two definitions, see Konishi, Le Breton, and Weber (1999).
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and the agenda a∗ chosen by the agent is PCPNE if σ2∗i maximizes ui through the

choice of a∗.

(b) Let (n, t) be the pair of the number of players and the number of stages of the reduced

(sub-) game, where t ∈ {1, 2}. Pick any pair of positive integers (m, r) ≤ (n, t) with

(m, r) 6= (n, t). For all T ⊆ N with |T | ≤ m, assume that PCPNE has been defined

for all reduced games Γ(T, σ−T ) and for their subgames Γ(T, σ1, σ2−T ) (if r = 1, then

only for all reduced subgames Γ(T, σ1, σ2−T )). Then,

(i) for all reduced games Γ(S, σ−S) and for their subgames Γ(S, σ1, σ2−S) with |S| = n,

(σ∗, a∗) ∈ Σ×A is perfectly self-enforcing if for all T ⊂ S we have that (σ∗T , a
∗) is

PCPNE of the reduced game Γ(T, σ∗S\T , σ−S), and σ2∗T is PCPNE of the reduced

subgame Γ(T, σ1, σ2∗S\T , σ
2
−S),

and

(ii) for all S ⊆ N with |S| = n, (σ∗S, a
∗) is a PCPNE of the reduced game Γ(S, σ−S)

if (σ∗S, a
∗) is perfectly self-enforcing in reduced game Γ(S, σ−S), and there is no

other perfectly self-enforcing σ0S such that ui (σ
0
S, σ−S) ≥ ui (σ

∗
S, σ−S) for every

i ∈ S with at least one strict inequality.

For any T ⊆ N and any strategy profile σ, let PCPNE(Γ(T, σ−T )) denote the set of

PCPNE strategy profiles for T in the game Γ(T, σ−T ). For any strategy profile (σ, a), a strate-

gic coalitional deviation (T, σ0T , a
0) from (σ, a) is credible if (σ0T , a

0) ∈ PCPNE(Γ(T, σ−T )).

A PCPNE is a strategy profile that is immune to any credible coalitional deviation. An

outcome allocation for (σ∗, a∗) is a list (S, a∗, u, uG) ∈ 2N ×A×RN × R, where S = S(σ1∗)

and (u, uG) is the resulting utility allocation for players.

There are two remarks to be made on PCPNE.

First, if a coalition T wants to deviate in the first stage within the reduced game Γ(T, σ−T )

(thus keeping the outsiders’ strategy profile fixed), it can orchestrate the whole plan of the

13



deviation by assigning a new CPNE to each subgame so that the target allocation (by the

deviation) would be attained as PCPNE of the reduced game Γ(T, σ−T ).

Second, the definition of PCPNE coincides with the coalition-proof Nash equilibrium

(CPNE) in the (static) second stage. Thus, a CPNE needs to be assigned to each subgame.

There are useful characterizations of CPNE of a menu auction (common agency) game in

the literature. Consider subgame S. Let us denote player i’s strategy in this subgame

σ2i (S) : A → R+ by τ i : A → R+. Bernheim and Whinston (1986) introduce a concept

of truthful strategies, where τ i is truthful relative to ā if and only if for all a ∈ A either

vi(a) − τ i(a) = vi(ā) − τ i(ā), or vi(a) − τ i(a) < vi(ā) − τ i(ā) with τ i(a) = 0. A truthful

Nash equilibrium (τ ∗S, a
∗) is a Nash equilibrium such that τ ∗i is truthful relative to a∗ ∈ A

for all i ∈ S. Bernheim and Whinston (1986) show that (i) every truthful equilibrium is

a CPNE, and (ii) the set of truthful equilibria and that of CPNE in the utility space are

equivalent, and provide a nice characterization of CPNE in the utility space. Laussel and Le

Breton (2001) further analyze CPNE in utility space. One of many results in Laussel and

Le Breton (2001) provides a characterization of CPNE under a special (yet useful) property,

comonotonic payoff property: ui(a) ≥ ui(a
0) if and only if uj(a) ≥ uj(a

0) for all i, j ∈ S and

all a, a0 ∈ A. Obviously, this property is satisfied in our public good provision problem.

Fact. (Laussel and Le Breton 2001) Consider a menu auction (common agency) problem

Γ = (S,A, (T , vi)i∈S, C) played by the set S of the principals and the agent G with a

comonotonic payoff property. Then, in all CPNEs of the menu auction game, agentG obtains

uG = maxa∈A−C(a) (no rent property), and the set of CPNE in utility space is equivalent

to the core of the characteristic function game (Ṽ (T ))T⊆S, where Ṽ (T ) = V (T ) − uG =

maxa∈A
¡P

i∈T vi(a)− C(a)
¢
− uG.14

14In the public goods provision problem, uG = −C(0) = 0, thus Ṽ (T ) = V (T ) for all T ⊆ S. A payoff
vector uS = (ui)i∈S is in the core if and only if

P
i∈S ui = V (S), and

P
i∈T ui ≥ V (T ) for all T ⊂ S.
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3 The Main Result

Now, we characterize PCPNE. To do so, we first define an intuitive hybrid solution concept,

free-riding-proof core (FRP-core), which is the set of the Foley-core allocations that are

immune to free-riding incentives and are Pareto-optimal in a constrained sense.15 The FRP-

core is always nonempty in the public good provision problem.

The public good provision problem determines two things: (i) which group provides

public goods and how much, and (ii) how to allocate the benefits from the public good

among the members of the group (or how to share the cost). For S ⊆ N with S 6= ∅, let

V (S) ≡ max
a∈A

"X
i∈S

vi(a)− C(a)

#
,

and

a∗(S) ≡ argmax
a∈A

"X
i∈S

vi(a)− C(a)

#
.

An allocation for S is (S, a, u) such that u ∈ RN
+ ,
P

i∈S ui ≤
P

i∈S vi(a)−C(a), and uj = vj(a)

for all j /∈ S (utility allocation). An efficient allocation for S is an allocation (S, a, u) such

that
P

i∈S ui = V (S) with a = a∗(S). Note that N\S are passive free-riders, and they do not

contribute at all. Given that S is the contribution group, a natural way to allocate utility

among the members is to use the core (Foley 1970). A core allocation for S, (S, a∗(S), u), is

an efficient allocation for S such that
P

i∈T ui ≥ V (T ) holds for all T ⊆ S.

However, a core allocation for S may not be immune to free-riding incentives by the mem-

bers of S. So we define a hybrid solution concept of cooperative and noncooperative games.

A FRP-core allocation for S (FRP-core allocation for S ) is a core allocation (S, a∗(S), u)

for S such that

ui ≥ vi(a
∗(S\{i})) for any i ∈ S.

An FRP-core allocation for S is immune to unilateral deviations by the members of S. Note

that, given the nature of the public goods provision problem, we can allow a coalitional devi-

ation from S at no cost (since one-person deviation is the most profitable). Let CoreFRP (S)
15The Foley core of our public good economy is the standard core concept assuming that deviating coali-

tions have to provide public goods by themselves. That is, it assumes that there is no spillover of public
goods across the groups.
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be the set of all FRP-core allocations for S. For a large group S, CoreFRP (S) may be

empty, whereas for small groups it is nonempty (especially, for singleton groups it is always

nonempty). We collect FRP-core allocations for all S, and take their Pareto frontiers. The

set of FRP-core is defined as

CoreFRP

=
©
(S, a∗(S), u) ∈ ∪S0∈2NCoreFRP (S0) : ∀T ∈ 2N , ∀u0 ∈ CoreFRP (T ), ∃i ∈ N with ui > u0i

ª
.

That is, an element of CoreFRP is a FRP-core allocation for some S that is not weakly

dominated by any other FRP-core allocation for any T . Note that CoreFRP , only achieving

constrained efficiency due to free-riding incentives, is not a subsolution of Core(N). Contrary

to the fact that CoreFRP (N) is often empty, there always exists a FRP-core allocation, since

CoreFRP (S) is nonempty for all singleton sets S = {i}.

Proposition 1. CoreFRP 6= ∅.

Now, we will characterize PCPNE by the FRP-core. In the public goods provision prob-

lem, the above Fact (Laussel and Le Breton 2001) implies that the second-stage CPNE

outcomes coincide with the set of all core allocations of a characteristic function form game

for S with (V (T ))T⊆S where V (T ) = maxa∈A
¡P

i∈T vi(a)− C(a)
¢
.16 This is nothing but

Foley’s core in a public goods economy for S (Foley, 1970). This observation gives us some

insight in our two-stage noncooperative game. First, for each subgame characterized by

S0 = S(σ10), the utility outcome uS0 must be in the core of (V (T ))T⊆S0. Second, given the

setup of our group-formation game in the first stage, if a CPNE outcome u in a subgame

S can be realized as the equilibrium outcome (on-equilibrium path), it is necessary that

u ∈ CoreFRP (S), since otherwise some member of S would deviate in the first stage obtain-

ing a secured free-riding payoff. This observation is useful in our analysis of the equivalence

theorem. With some constructions, we can show the following:

16Indeed, CPNE and strong Nash equilibrium (Aumann 1959) with weakly improving deviations are
equivalent in a menu auction (common agency) game with no-rent property. See Konishi, Le Breton, and
Weber (1999).

16



Proposition 2. If an allocation (S, a∗(S), u) is in the FRP-core, then there is a PCPNE σ

whose outcome is (S, a∗(S), u).

We relegate the proof of Proposition 2 to the Appendix B (with some preliminary analyses

in the Appendix A). Here, we only describe how to construct PCPNE σ. First, in defining

σ, we need to assign a CPNE utility profile to every subgame that corresponds to a coalition

S ⊆ N . Since the second-stage strategy profile is described by utility allocations assigned to

each subgame, we partition the set of subgames S = {S ∈ 2N : S 6= ∅} into three categories:

(i) S1 = {S∗} on the equilibrium path, which is the contribution group formed in equilibrium,

(ii) S2 = {S ∈ S : S ∩ S∗ = ∅}, and (iii) S3 = {S ∈ S\S1 : S ∩ S∗ 6= ∅}. As Laussel and Le

Breton (2001) show, a CPNE outcome in a subgame S0 corresponds to a core allocation for

S0. To support the equilibrium path (S∗, a∗(S∗), u∗) ∈ CoreFRP by a PCPNE, we need to

show that there is no credible deviation in the first stage. This requires careful assignments

of core allocations to all subgames.

We prove Proposition 2 by contradiction. Suppose to the contrary that there is a

credible deviation T from S∗, which leads to the formation of lobby S0 after the devia-

tion. Then, for all members of T , both profitability of deviation and free-riding-proofness

must be satisfied. Thus, for every player i ∈ T , the post deviation payoff u0i must satisfy

u0i ≥ ūi = max{u∗i , vi(S0\{i})}. The case where S0 ∩ S∗ 6= ∅ is most subtle. We show

that even in such cases, if there were such a deviation, there would exist an allocation

(S0, a∗(S0), u0) ∈ CoreFRP (S0) that Pareto-dominates (S∗, a∗(S∗), u∗). This contradicts the

assumption that (S∗, a∗(S∗), u∗) ∈ CoreFRP . We show Pareto-domination by using the fact

that the utility allocation assigned to subgame S0 under σ is a core allocation, and construct

a core allocation by the algorithm that is provided in Appendix A.

Once this direction of the relationship between the FRP-core and PCPNE is estab-

lished, the converse is trivial. The PCPNE requires free-riding-proofness. Thus, every

PCPNE must be a FRP-core allocation for some S. Since CoreFRP is the Pareto-frontier

of ∪S⊆NCoreFRP (S), Proposition 2 indeed implies that any Pareto-dominated FRP-core

allocation for S can be defeated by a FRP-core allocation.
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Theorem 1. An allocation (S, a∗(S), u) is in the FRP-core if and only if there is a PCPNE

σ whose outcome is (S, a∗(S), u).

Proof. We prove the converse of the relationship described in Proposition 2, i.e., we show

that every PCPNE σ generates a FRP-core allocation as its outcome. It is easy to see that the

outcome (S, a∗(S), u) of a PCPNE σ is a FRP-core allocation (and not just core allocation)

for S, since otherwise a player would have an incentive to free-ride in the first stage of

the extension game and hence the resulting allocation will not be a subgame perfect Nash

equilibrium. Thus, (S, a∗(S), u) ∈ CoreFRP (S). Now, suppose that u /∈ CoreFRP . Then,

there is a FRP-core allocation (S0, a∗(S0), u0) ∈ CoreFRP with u0 > u. Proposition 2 further

implies that a deviation by the grand coalition N can attain u0 with a PCPNE σ0. This

means that there is a credible coalitional deviation from σ, which leads to a contradiction.

Thus, every PCPNE achieves a FRP-core allocation. ¤

This result crucially depends on the “comonotonicity of preferences” (Laussel and Le

Breton, 2003), and perfectly nonexcludable public goods (free riders can fully enjoy public

goods). Without these assumptions, the above equivalence may not hold.

Although the FRP-core is much easier to grasp than PCPNE, it may still not be clear

how the FRP-core looks like. A simple example in the next section illustrates the properties

of FRP-core allocations and thus the outcome of PCPNE.

4 An Example: Linear Utility and Quadratic Cost

Let vi(a) = θia for any i ∈ N and C(a) = a2/2, where θi > 0 is a preference parameter.

Here in this section, we identify players by their preference parameters, i.e., θi = i for any

i ∈ N . Then, the optimal level of the public good for group S is determined by the first-order

condition
P

i∈S θi − a = 0, i.e.,

a∗(S) =
X
i∈S

θi.
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Consequently, the value of S is written as

V (S) =
X
i∈S

θi

ÃX
i∈S

θi

!
− 1
2

ÃX
i∈S

θi

!2

=

¡P
i∈S θi

¢2
2

.

For an outsider j ∈ N\S, the payoff is

vj(a
∗(S)) = θj

ÃX
i∈S

θi

!
.

Consider the following example.

Example 1. Let N = {11, 5, 3, 1}, where θi = i for each i ∈ N .

First we check if the grand coalition S = N is supportable. When S = N , we have

a∗(N) =
P

i∈N i = 20, and V (N) = 202/2 = 200. For the allocation to be free-riding-proof,

each player must obtain the following payoff at the very least:

v11(a
∗(N\{11})) = (20− 11)× 11 = 99,

v5(a
∗(N\{5})) = (20− 5)× 5 = 75,

v3(a
∗(N\{3})) = (20− 3)× 3 = 51,

v1(a
∗(N\{1})) = (20− 1)× 1 = 19.

The sum of all these values exceeds the value of the grand coalition V (N). As a result, we

can conclude CoreFRP (N) = ∅.

• The FRP-core for the grand coalition N may be empty. Thus, the FRP-core may be

suboptimal.

Next, consider S = {11, 5}. Then, a∗(S) = 16, and V (S) = 128. In order to check if the

FRP-core for S is nonempty, we first check again the free-riding incentives.

v(a∗(S\{11})) = (16− 11)× 11 = 55,

v(a∗(S\{5})) = (16− 5)× 5 = 55.
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Thus, if there is a FRP-core allocation for S, u = (u11, u5) must satisfy

u11 + u5 = 128,

u11 ≥ 55,

u5 ≥ 55,

u11 ≥
11× 11
2

= 60.5,

u5 ≥
5× 5
2

= 12.5,

where the last two conditions are obtained by the core requirement. That is, we have17

Core({11, 5})

= {u ∈ R5+ : u11 + u5 = 128, u11 ≥ 60.5, u5 ≥ 12.5, u3 = 48, u2 = 32, u1 = 16},

and

CoreFRP ({11, 5})

= {u ∈ R5+ : u11 + u5 = 128, u11 ≥ 60.5, u5 ≥ 55, u3 = 48, u2 = 32, u1 = 16}.

It is readily seen that CoreFRP ({11, 5}) 6= ∅, but it is a smaller set than Core({11, 5}).

• Free-riding-proof constraints may narrow the set of attainable core allocations for a

coalition.

Note that in this case, only the free-riding incentive constraint for player 5 is binding. It is

better for player 11 to provide public goods alone than free-riding on player 5. ¤

Now, let us analyze the FRP-core. Since the FRP-core requires Pareto-efficiency on the

union of FRP-cores over all subsets S of the players, we first need to find the FRP-core for

each S. In general, even a minimal task of checking the nonemptiness of the FRP-core for S

is not easy, since the FRP-core for S demands two almost unrelated requirements: immunity

to coalitional deviation attempts and to free-riding incentives. However, it is easy to narrow

17For notational simplicity, we abuse notations by dropping irrelevant arguments of allocations. Thus, in
this subsection, allocations are utility allocations.
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down the candidates by using a necessary condition for the nonemptiness of the FRP-core

for S.

Proposition 3. In the case of linear utility and quadratic cost, if the FRP-core for S is

nonempty, then S satisfies the following aggregate “no free-riding condition.”

Φ(S) ≡ V (S)−
X
i∈S

θia
∗(S\{i})

=
X
i∈S

θia
∗(S)− 1

2
(a∗(S))2 −

X
i∈S

θia
∗(S\{i}) ≥ 0,

which is equivalent to X
i∈S

θ2i ≥
1

2

ÃX
i∈S

θi

!2
.

The proof is straightforward and hence omitted. By utilizing this proposition, we can char-

acterize the FRP-core of the public goods economy in Example 1.

Example 1. (continued) The FRP-core allocations are attained by groups {11, 5, 1},

{11, 3, 1}, {11, 5}, {11, 3}, and {5, 3}.

First, by applying Proposition 3, we find that there are 12 contribution groups that satisfy

the necessary condition for the nonempty FRP-core for S: {11, 5, 1}, {11, 3, 1}, {11, 5},

{11, 3}, {11, 1}, {5, 3}, {5, 1}, {3, 1}, {11}, {5}, {3}, and {1}.

The FRP-core for S = {11, 5, 3} is empty, for example. For S = {11, 5, 3}, we have

a∗(S) = 19 and V (S) = 180.5. Since 11v(a∗(S\{11})) = 88, 5v(a∗(S\{5}) = 70, 3v(a∗(S\{3})) =

48, and 88+70+48 > 180.5, the necessary condition for S = {11, 5, 3} to give a FRP-core al-

location is violated. As we see, however, CoreFRP ({11, 5, 1}) is not empty. Thus {11, 5, 1} is

the group that achieves the highest level of public good while having a nonempty FRP-core.18

This analysis provides an interesting observation.

• (Even the largest) group that achieves a FRP-core allocation may not be consecutive.19

18As shown below, group {11, 5, 1} supports some allocations in CoreFRP .
19Although the context and approach are very different, in political science and sociology, the formation

of such non-consecutive coalitions is of tremendous interest. For a game-theoretical treatment of this line of
literature (known and “Gamson’s law”), see Le Breton et al. (2007).
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The intuition behind this result is simple. Suppose Φ(S) is positive (say, S = {11, 5}).

Now, we try to find S0 ⊃ S that still satisfies Φ(S0) ≥ 0. If the value of Φ(S) is positive yet

not too large, then adding a player with high θ (say, player 3) may make Φ(S0) < 0, since

adding such a player may greatly increase a∗(S0), making the free-riding problem severer.

On the contrary, adding a player with low θ (say, player 1) does not make the free-rider

problem too severe, so Φ(S0) ≥ 0 may be satisfied relatively easily.

Among the above 12 groups, it is easy to see that groups {5, 1}, {3, 1}, {11}, {5}, {3},

and {1} do not survive the test of Pareto-domination. For example, consider S0 = {11, 5}

and u0 = (73, 55, 48, 16) ∈ CoreFRP ({11, 5}). This is the best allocation for player 11 in

CoreFRP ({11, 5}) as the characterization of CoreFRP ({11, 5}) in the above indicates. Players

other than 11 and 5 are free-riders, and their payoffs are directly generated from a∗({11, 5}) =

16. Now it is straightforward to see that the allocation u0 dominates all allocations for the

above six groups; public good provision levels of those groups are insufficient compared with

a∗({11, 5}) = 16.

On the contrary, {5, 3} is not dominated by any FRP-core allocations for any contribution

group. We can show that player 11 can obtain at most 73 in a FRP-core allocation for any

S 3 11, whereas she obtains 88 by free-riding on {5, 3}. Thus, player 11 would not join a

deviation. Without player 11’s cooperation, no free-riding core allocation that dominates

those of {5, 3} can be realized.

Similarly, FRP-core allocations for S = {11, 1} are dominated by the one for S0 = {11, 5}.

Under S = {11, 1}, player 5 obtains 60, but S0 can attain u0 = (63, 65, 48, 16). Free-riding-

proof core allocations for {11, 3, 1} and {11, 3} cannot be beaten, however, by the ones for

S0 = {11, 5}; player 5, for example, gets 70 even under {11, 3} while she would obtain at

most 67.5 under S0 = {11, 5} as we can see from CoreFRP ({11, 5}) derived in the above.

Finally, consider S = {11, 5}, {11, 3}. The FRP-core allocations for S = {11, 5} are

characterized by u11 + u5 = 128, u11 ≥ 60.5 and u5 ≥ 55, with u3 = 48 and u1 = 16. Now,

consider S0 = {11, 5, 1}, for which the FRP-core allocations are characterized by u011 + u05 +

u01 = 144.5, u
0
11 + u05 ≥ 128, u011 ≥ 66, u05 ≥ 60, and u01 ≥ 16, with u03 = 51. (u

0
5 + u01 ≥ 18
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and u011+u01 ≥ 72 are satisfied because u011 ≥ 66, u05 ≥ 60, and u01 ≥ 16.) Here, S0 can attain

u011+u
0
5 = 144.5−16 = 128.5 as long as u011 ≥ 66 and u05 ≥ 60. Thus, if u ∈ CoreFRP ({11, 5})

satisfies u11+u5 = 128, 60.5 ≤ u11 ≤ 68.5, and 55 ≤ u5 ≤ 62.5, then u is improved upon by an

allocation in CoreFRP ({11, 5, 1}). However, if u ∈ CoreFRP ({11, 5}) satisfies u11+u5 = 128,

u11 > 68.5, or u5 > 62.5, then u cannot be improved upon by group {11, 5, 1}. The FRP-

core allocations for S = {11, 3} have a similar property with possible deviations by group

S0 = {11, 3, 1}. This phenomenon illustrates another interesting observation:

• An expansion of a group definitely increases the total value of the group, while it gives

less flexibility in allocating the benefits among the group members since free-riding

incentives increase as the level of the public good provision rises. As a result, some

unequal FRP-core allocations for the original group may not be improved upon by the

group expansion.

In summary, the FRP-core is the union of the following sets of allocations attained by

the five different groups.

1. S = {11, 5, 1}; a∗(S) = 17 and all FRP-core allocations for S are included:

CoreFRP ({11, 5, 1})

= {u ∈ R5+ : u11 + u5 + u1 = 144.5, u3 = 51, u11 ≥ 66, u5 ≥ 60, u1 ≥ 16.}

2. S = {11, 3, 1}; a∗(S) = 15 and all FRP-core allocations for S are included:

CoreFRP ({11, 3, 1})

= {u ∈ R5+ : u11 + u3 + u1 = 112.5, u5 = 75, u11 ≥ 60.5, u3 ≥ 36, u1 ≥ 14}.

3. S = {11, 5}; a∗(S) = 16 and only a subset of FRP-core allocations for S is included:

©
u ∈ CoreFRP ({11, 5}) : u11 > 68.5 or u5 > 62.5

ª
= {u ∈ R5+ : u11 + u5 = 128, u3 = 48, ũ1 = 16, 68.5 < u11 ≤ 73or 62.5 < u5 ≤ 67.5}
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4. S = {11, 3}; a∗(S) = 14 and only a subset of FRP-core allocations for S is included:

©
u ∈ CoreFRP ({11, 3}) : u11 > 62.5

ª
= {u ∈ R5+ : u11 + u3 = 98, u5 = 70, u1 = 14, 62.5 < u11 ≤ 65}

5. S = {5, 3}; a∗(S) = 8 and all FRP-core allocations for S are included:

CoreFRP ({5, 3})

= {u ∈ R5+ : u5 + u3 = 32, u11 = 88, ũ1 = 8, u5 ≥ 15, u3 ≥ 15}

¤

Before closing this section, let us compare the FRP-core allocations with a Nash equilib-

rium of a simultaneous move voluntary public goods provision game studied by Bergstrom,

Blume, and Varian (1986). Each player i chooses her monetary contributionmi ≥ 0 to finance

a public good. The public good provision level is given by a(m) =
p
2
P

i∈N mi reflecting

the cost function of public goods production C(a) = a2/2. Consider player i. Given that

others contributeM−i in total, player i chooses mi so as to maximize θi
p
2 (mi +M−i)−mi.

The best response for player i is m∗
i = max

©
(θ2i /2)−M−i, 0

ª
. It is easy to see that in our

example, only player 11 contributes, so the public goods provision level is 11. Thus, by

forming a contribution group in the first stage, it is possible to increase the equilibrium level

of the public good provision. But it is also possible that the level of public good provision is

lower than the Nash equilibrium provision level of the standard voluntary contribution game,

as we have found that group {5, 3} achieves some FRP-core allocations in our example.

• There may be FRP-core allocations that achieve lower public goods provision levels

than the Nash equilibrium outcome of a simple voluntary contribution game studied by

Bergstrom, Blume, and Varian (1986).

This occurs because in our setup, player 11 can commit to being an outsider in the first

stage, which cannot happen in a simultaneous-move voluntary contribution game. Finally,

needless to say, we have:
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• The FRP-core may be a highly nonconvex set as different allocations may be realized

by different contribution groups.

5 Replicated Economies

In this section, we analyze whether or not public goods provision and the participation rate

decrease as an economy is replicated. There is a tricky issue in replicating a (pure) public

goods economy. If the set of consumers is simply replicated, the amount of resources in the

economy grows to infinity, while maintaining the same cost function for public good produc-

tion. Following Milleron’s (1972) method, Healy (2007) makes each consumer’s endowment

shrink proportionally to the population as the economy is replicated to overcome this prob-

lem; consumers’ preferences are also modified in the replication process.20 We adopt the

same preference modification in the replication of a quasi-linear economy. We shrink each

consumer’s willingness-to-pay function (and thus utility function) proportionally as the econ-

omy is replicated. This way of replication is natural for a quasi-linear economy, since the

aggregate willingness-to-pay and cost functions stay the same in the replication process.

The original economy is a list E = (N, (vi)i∈N , C). Let r = 1, 2, 3, ... be a natural number.

The rth replica of E is a list Er = (N r, (vriq)i∈N,q=1,...,r, C), where N r = ∪i∈N{i1, ..., ir} and

vriq(a) = vri (a) =
1
r
vi(a) for all q = 1, .., r.21 Let a characteristic function form game generated

from Er be V r.

Each PCPNE of a contribution-group participation game generated from Er has a corre-

sponding FRP-core allocation (S, a∗(S), u∗) of the characteristic function form game V r.

Note that for any r, and for any S ⊆ N r, the public good provision level a = a∗(S)

is determined so that the sum of willingness-to-pay across all members of S equal the

marginal cost of public good provision, i.e.,
P

iq∈S v
r0
iq(a) = C 0(a). Furthermore, we need

20Conley (1994) uses a different definition of replicated economy, and investigates the convergence of the
core.
21Let x and a denote the consumption level of a private good and the level of a public good, and let ºi

and ºr
i be preference relations in the original and rth replica economy, respectively. According to Milleron’s

(1972) preference modification, relation ºr
i is generated such that (x, a) ºr

i (x
0, a0) if (rx, a) ºi (rx

0, a0). In
the quasi-linear economy where ºi is described by the utility function x+vi(a), this implies vri (a) = vi(a)/r.
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P
iq∈S

³
vriq(a

∗(S))− vriq(a
∗(S\{iq})

´
≥ C(a∗(S)) in order to satisfy the free-riding-proofness,

where the terms in the parentheses on the left-hand side indicate how much each player can

pay without sacrificing the free-riding-proofness. Let mi(S) ∈ {0, · · · , r} denote the number

of type i players in S. Then, the above necessary condition for free-riding-proofness can be

rewritten as X
i∈N

mi(S) (v
r
i (a

∗(S))− vri (a
∗(S\{iq}))) ≥ C(a∗(S)),

where it should be understood that S \{iq} denote the set of all players but one type i player

in S. Or equivalently,

X
i∈N

mi(S)

r
[vi(a

∗(S))− vi(a
∗(S\{iq}))] ≥ C(a∗(S)). (1)

Now, consider the kth replication, where k = 1, 2, · · · , of this rth replica of the original

economy, which implies that each player in the rth replica of the original economy is divided

into k players. Let Sk be a coalition in this k × rth replica economy that contains all k

replica players of all members of S in rth replica economy. Obviously, a∗(S) in rth replica

economy equals a∗(Sk) in k×rth replica economy. However, although the coefficients satisfy

mi(S)/r = mi(S
k)/(kr), a∗(Sk\{i}) converges to a∗(Sk) = a∗(S) as k goes to infinity. Thus,

the k× rth replica economy’s counterpart of inequality (1) would be violated at some point.

Formally, we have the following result.

Proposition 4. Suppose that C and vi are twice continuously differentiable for any i ∈ N

with (i) C(0) = 0, C 0(a) > 0, C 00(a) > 0, and lima→0C
0(a) = 0, and (ii) v0i(a) > 0 and

v00i (a) ≤ 0 for all i ∈ N . Then, for any ā > 0, there exists a natural number r̄(ā) such that

for any r ≥ r̄(a), a∗(S∗) < ā holds for any (S∗, a∗(S∗), u∗) ∈ CoreFRP (V r) .

The proof is given in the Appendix B. Together with Theorem 1, Proposition 4 immediately

implies the following theorem.

Theorem 2. Suppose that C and vi are twice continuously differentiable for any i ∈ N with

(i) C(0) = 0, C 0(a) > 0, C 00(a) > 0, and lima→0C
0(a) = 0, and (ii) v0i(a) > 0 and v00i (a) ≤ 0
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for all i ∈ N . Then, the PCPNE public good provision levels shrink to zero as the economy

is replicated.

Although this result has some similarity to the main result of Healy (2007), the mod-

els and the objectives are very different; unlike our model, Healy requires that all players

(voluntarily) participate in equilibrium. Note also that unlike Theorem 1, Theorem 2 (and

Proposition 4) relies on concavity and convexity of utility and cost functions, respectively,

as well as differentiability of them.

6 Summary

This paper has added players’ participation decisions to common agency games. The solu-

tion concept we use is the perfectly coalition-proof Nash equilibrium (PCPNE), which is a

natural extension of coalition-proof Nash equilibrium to a dynamic game. We have consid-

ered a special class of common agency games: an environment without conflict of interests

(comonotonic preferences), e.g., public goods economies. We have shown that PCPNE is

equivalent to the FRP-core, which is the Pareto-frontier of a union of all core allocations

for the subset of players that are immune to unilateral free-riding incentives; the FRP-core

serves as an intuitive hybrid solution in transferable utility case. With a simple example, we

have found that the equilibrium contribution group may not be consecutive (with respect to

the willingness-to-pay), and the public good may be underprovided than in voluntary con-

tribution game in Bergstrom, Blume and Varian (1986). Furthermore, public good provision

relative to the size of economy goes down to zero, as the participants of the economy are

replicated to large numbers.

Appendix A: Preliminary Analysis on the Core of Con-
vex Games

In this appendix, we list a few useful preliminary results on the core of convex games. In

our public goods domain, the characteristic-function game generated from a (public goods)
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economy is convex. Let V : 2N → R with V (∅) = 0 be a characteristic-function form game.

Game V is convex if V (S ∪T )+V (S ∩T ) ≥ V (S)+V (T ) for all pairs of subsets S and T of

N . The core of game V is Core(N, V ) = {u ∈ RN :
P

i∈N ui = V (N) and
P

i∈S ui ≥ V (S)

for all S ⊂ N}. Shapley (1971) analyzes the properties of the core of convex games in detail.

One of his results useful for us is the following.

Property 1. (Shapley, 1971) Let ω : {1, · · · , |N |} → N be an arbitrary bijection, and

let uω(1) = V ({ω(1)}), uω(2) = V ({ω(1), ω(2)}) − V ({ω(1)}),..., and uω(|N |) = V (N) −

V (N\{ω(|N |)}). Then, u = (ui)i∈N ∈ Core(N, V ), and the set of all such allocations forms

the set of vertices of Core(N,V ).

Now, we consider a reduced game, in which outsiders always join coalitions and walk away

with the payoffs they could obtain by forming their own coalition. Let T be a proper subset

of N . A reduced game of V on T is ṼT : 2T → R such that ṼT (S) = V (S∪(N\T ))−V (N\T )

for all S ⊆ T . We have the following result.

Property 2. Suppose that V : N → R is a convex game. Let uN\T = (ui)i∈N\T be a core

allocation of a game V : N\T → R. Then, uT ∈ Core(T, ṼT ) if and only if (uT , uN\T ) ∈

Core(N,V ).

Proof. First, we show that uT ∈ Core(T, ṼT ) if (uT , uN\T ) ∈ Core(N,V ). Since (uT , uN\T ) ∈

Core(N,V ),
P

i∈S∪(N\T ) ui ≥ V (S ∪ (N\T )) holds for all S ⊂ T . Rewriting this, we

have
P

i∈S ui ≥ V (S ∪ (N\T )) −
P

i∈N\T ui = V (S ∪ (N\T )) − V (N\T ) = ṼT (S). Thus,

uT ∈ Core(T, Ṽ ).

Second, we show that uT ∈ Core(T, ṼT ) implies (uT , uN\T ) ∈ Core(N,V ). Suppose this

is not the case. Then, there is S ⊂ N such that

V (S) >
X
i∈S

ui =
X
i∈S∩T

ui +
X

i∈S∩(N\T )

ui. (2)

Since uT ∈ Core(T, Ṽ ) and V is a convex game, we have
P

i∈S∩T ui ≥ V (S ∪ (N\T )) −

V (N\T ) ≥ V (S) − V (S ∩ (N\T )). Substituting this inequality into (2), we have V (S) >
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V (S)−V (S∩(N\T ))+
P

i∈S∩(N\T ) ui, which leads to a contradiction since uN\T ∈ Core(N\T, V )

implies
P

i∈S∩(N\T ) ui ≥ V (S ∩ (N\T )). ¤

Now, we rewrite the core. Let u = (ui)i∈N be an arbitrary utility vector. Let

Q+(u) = {S ∈ 2N :
X
j∈S

uj > V (S)},

Q0(u) = {S ∈ 2N :
X
j∈S

uj = V (S)},

Q−(u) = {S ∈ 2N :
X
j∈S

uj < V (S)}.

That is, setsQ+(u) andQ−(u) denote the collections of coalitions in which players as a whole

are satisfied and unsatisfied (in the strict sense) with the utility vector u, respectively. The set

Q0(u) is the collection of coalitions in which players are just indifferent collectively between

deviating and not deviating. Obviously, a utility vector u is in the core, i.e., u ∈ Core(N, V ),

if and only if Q−(u) = ∅ (or S ∈ Q+(u) ∪ Q0(u) for all S ∈ 2N) and N ∈ Q0(u). Let

η(S, u) ≡ [V (S)−
P

i∈S ui]/ |S| be the (per capita) shortage of payoff for coalition S for any

S ∈ Q−(u). Let

Q−max(u) ≡ {S ∈ Q−(u) : η(S, u) ≥ η(S0, u) for all S0 ∈ Q−(u)},

and

Q−max(u) = ∪S∈Q−max(u)S.

Using the above definitions, we now construct an algorithm that starts from an arbitrary

utility vector u and terminates with a core allocation û.

Algorithm. Let u ∈ RN and let V : N → R be a convex game. Let u(t) be the utility

vector at stage t ∈ R+, and u(0) = u (the initial value).

(a) Suppose Q−(u) = ∅. Then, 2N\{∅} = Q0(u) ∪ Q+(u). If N ∈ Q0(u(0)), then the

algorithm terminates immediately. Otherwise,
P

i∈N ui > V (N) holds, and we reduce
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each ui for i ∈ N\(∪S∈Q0(u)S) continuously at a common speed as t increases.22 Since

all elements in Q0(u) continue to be in Q0(u(t)), while some of elements of Q+(u(t))

switch toQ0(u(t)) in the process, Q0(u(t))monotonically expands as t increases. Thus,

N ∈ Q0(u(t̂)) occurs at some stage t̂. Then we terminate the process. The final

outcome is û = u(t̂).

(b) Suppose Q−(u) 6= ∅. There are two phases, starting with Phase 1.

i. Phase 1: Start with u(0) = u. For all i ∈ Q−max(u(t)), increase ui continuously at

a common speed. Terminate this phase of the algorithm when Q−max(u(t)) = ∅ (or

Q−(u(t)) = ∅), and call such t as t̃.23

ii. Phase 2: Now, Q−(u(t̃)) = ∅. Then, we go to the procedure in (a), and we reach

a final outcome û = u(t̂) when N ∈ Q0(u(t̂)) occurs. ¤

Let Q0(u) ≡ ∪S∈Q0(u)S, and define

W ≡ {i ∈ N : ∃t ≥ 0 with i ∈ Q−max(u(t)) in phase 1 of case (b)},

I ≡ {i ∈ N : i ∈ Q0(u(0)) in case (a), or i ∈ Q0(u(t̃))\W in case (b)},

L ≡ {i ∈ N : i /∈ Q0(u(0)) in case (a), or i /∈ Q0(u(t̃)) in case (b)}.

These sets will be shown to be collections of players who gain, remain indifferent, and lose

in the above algorithm relative to the initial value u, respectively. By the construction of

the algorithm, the following Lemma is straightforward.

Lemma 1. Set N is partitioned into W , I, and L: ûi > ui for all i ∈ W , ûi = ui for all

i ∈ I, and ûi < ui for all i ∈ L.

22It follows from the definition of a convex game that ∪Q∈Q0(u)Q = N implies N ∈ Q0(u). To prove this
claim, it suffices to show that if T, T 0 ∈ Q0(u), then T ∪T 0 ∈ Q0(u) when Q−(u) = ∅ as is assumed. We have
from the definition of a convex game that V (T ∪T 0)+V (T ∩T 0) ≥ V (T )+V (T 0) =

P
i∈T∪T 0 ui+

P
i∈T∩T 0 ui.

Since T ∩ T 0 ∈ Q0(u) ∪Q+(u),
P

i∈T∩T 0 ui ≥ V (T ∩ T 0). Together with the above inequality, this implies
V (T ∪ T 0) ≥

P
i∈T∪T 0 ui. Since Q−(u) = ∅, T ∪ T 0 ∈ Q0(u).

23This process guarantees that every player i ∈ Q−max(u(t)) at some stage t ∈ [0, t̃] must belong to some
S0 ∈ Q0(u(t̃)) at the end of phase 1.
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Proof. Note that the payoff for any player in W does not change in phase 2 of case (b) as

W ⊆ ∪S∈Q0(u(t̃))S. Thus, for all i ∈W , ûi > ui. Given this, the rest is obvious. ¤

This lemma says that the winners, unaffected players, and losers of the algorithm are iden-

tified by sets W , I, and L, respectively.

Lemma 2. Consider the above algorithm. In phase 1 of case (b), Q−max(u(t)) monotonically

expands as t increases for t ∈ [0, t̃). This phase terminates with Q−(u(t̃)) = ∅. Moreover,

W = limt→t̃Q
−
max(u(t)) ∈ Q0(u(t̃)), and W ∈ Q0(u(t̂)).

Proof. As t increases, the payoffs of all members of Q−max(u(t)) increase at the same speed;

thus for any S ∈ Q−max(u(t)), η(S, u(t)) decreases at the same speed. Note that for all other

coalitions T /∈ Q−max(u(t)), η(T, u(t)) decreases at a slower pace (if T ∩ Q−max(u(t)) 6= ∅) or

stays constant (if T ∩ Q−max(u(t)) = ∅). Therefore, Q−max(u(t)) monotonically expands as t

increases. This monotonic utility-raising process continues until Q−(u(t)) = ∅ realizes at

t = t̃. Since Q−max(u(t)) monotonically expands, W = limt→t̃Q
−
max(u(t)) holds.

Now, we will show Q−max(u) = ∪S∈Q−max(u)S ∈ Q
−
max(u), which proves W ∈ Q0(u(t̃))

and W ∈ Q0(u(t̂)) (in phase 2 of case (b), payoffs of players in W are not affected). Let

S1, S2 ∈ Q−max(u) with S1 6= S2. Let

η̄ ≡
V (S1)−

P
i∈S1 ui

|S1|
=

V (S2)−
P

i∈S2 ui

|S2|
.

By convexity, it follows that

V (S1 ∪ S2) + V (S1 ∩ S2) ≥ V (S1) + V (S2)

= η̄ (|S1|+ |S2|) +
X
i∈S1

ui +
X
i∈S2

ui.

Since
V (S1 ∩ S2)−

P
i∈S1∩S2 ui

|S1 ∩ S2|
≤ η̄,

we have

V (S1 ∪ S2) ≥ η̄ (|S1|+ |S2|) +
X
i∈S1

ui +
X
i∈S2

ui − V (S1 ∩ S2)

≥ η̄ (|S1|+ |S2|− |S1 ∩ S2|) +
X
i∈S1

ui +
X
i∈S2

ui −
X

i∈S1∩S2

ui,
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or
V (S1 ∪ S2)−

P
i∈S1∪S2 ui

|S1 ∪ S2|
≥ η̄.

Thus, S1 ∪ S2 ∈ Q−max(u). Repeated application of the same argument proves Q−max(u) ∈

Q−max(u). ¤

Lemma 3. Starting from any initial value u ∈ RN , this algorithm terminates with a core

allocation û ∈ Core(N,V ).

Proof. First, we show that case (a) terminates with a core allocation. To this end, we

need only show that ∪S∈Q0(u)S 6= N whenever
P

i∈N ui > V (N) (otherwise, the algorithm

terminates with an infeasible u). Suppose to the contrary that
P

i∈N ui > V (N), while

∪S∈Q0(u)S = N in case (a). Let S1, S2, ..., SK ∈ Q0(u) be distinct subsets of N with ∪Kk=1Sk =

N . Then, we have
P

i∈S1 ui = V (S1) and
P

i∈S2 ui = V (S2). By convexity, V (S1 ∪ S2) +

V (S1 ∩ S2) ≥ V (S1) + V (S2) =
P

i∈S1 ui +
P

i∈S2 ui holds. By the construction of the

algorithm, S1 ∩ S2 ∈ Q0(u) or S1 ∩ S2 ∈ Q+(u), i.e., V (S1 ∩ S2) ≤
P

i∈S1∩S2 ui holds. Thus,

we have V (S1 ∪ S2) ≥
P

i∈S1∪S2 ui. Applying the same argument to S1 ∪ S2 and S3, we

have V (S1 ∪ S2 ∪ S3) ≥
P

i∈S1∪S2∪S3 ui, since (S1 ∪ S2) ∩ S3 ⊂ S3 implies (S1 ∪ S2) ∩ S3 ∈

Q0(u) or (S1 ∪ S2) ∩ S3 ∈ Q+(u). Repeated application of the same argument generates

V (N) = V (∪Kk=1Sk) ≥
P

i∈∪Kk=1Sk
ui =

P
i∈N ui. This is a contradiction. Thus, in case

(a), the algorithm terminates with a feasible allocation. Since u(t) changes continuously,

N ∈ Q0(û) holds, and û ∈ Core(N,V ).

Now, it follows from Lemma 2 that phase 1 of case (b) terminates with Q−(ũ) = ∅. Thus,

the same argument as in case (a) applies to phase 2 of case (b), leading to the conclusion

that û ∈ Core(N,V ) also in case (b). ¤
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Appendix B: Proofs

Proof of Proposition 2.

First, we construct a strategy profile σ, which will be shown to support (S∗, a∗(S∗), u∗),

where u∗ ∈ CoreFRP (S∗), as a PCPNE. In defining σ, we assign a CPNE utility profile to

every subgame S0. Then, we show by way of contradiction that there is no credible and

profitable deviation from σ.

A strategy profile in the second stage σ2 is generated from utility allocations assigned in

each subgame (we utilize truthful strategies that support utility outcomes). We partition the

set of subgames S = {S0 ∈ 2N : S0 6= ∅} into three categories: S1 = {S∗} on the equilibrium

path, S2 = {S0 ∈ S : S0 ∩ S∗ = ∅}, and S3 = {S0 ∈ S\S1 : S0 ∩ S∗ 6= ∅}. As Laussel and Le

Breton (2001) show, a CPNE outcome in a subgame S0 corresponds to a core allocation for

S0. In order to support the equilibrium path (S∗, a∗(S∗), u∗), we need to show that there is

no credible deviation in the first stage. Since a credible deviation requires both free-riding-

proofness and profitability, utility level ūi = max{u∗i , vi(S0\{i})} plays an important role as

to whether or not player i joins a coalitional deviation.

We construct a core allocation for subgame S0 with the algorithm described in the Ap-

pendix A, starting with the initial value ū. Then we show that if there exists a credi-

ble deviation by coalition T , which induces (S0, a∗(S0), u0) from (S∗, a∗(S∗), u∗), then (S \

S∗, a∗(S \ S∗), (u0i)i∈S0\S∗, (vj(a∗(S0 \S∗)))j 6∈S0\S∗) ∈ CoreFRP (S0 \ S∗) and Pareto-dominates

(S∗, a∗(S∗), u∗). This is a contradiction to the presumption that (S∗, a∗(S∗), u∗) ∈ CoreFRP .

Thus, we will conclude that there is no credible deviation from (S∗, a∗(S∗), u∗).

The construction of the core allocation for each subgame is as follows.

1. We assign (S∗, a∗(S∗), u∗) ∈ CoreFRP to the on-equilibrium subgame S∗.

2. For any S0 with S0 ∩ S∗ = ∅, we assign an extreme point of the core for S0 of a

convex game. For an arbitrarily selected order ω over S0, we assign payoff vector

uω(1) = V ({ω(1)})− V (∅), uω(2) = V ({ω(1), ω(2)})− V ({ω(1)}), and so on, following

Shapley (1971). Call this allocation ûS0 ∈ Core(S0, V ) (see Property 1 in the Appendix
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A).

3. For any S0 with S0 ∩ S∗ 6= ∅, we assign a core allocation in the following man-

ner. It requires a few steps. First, we deal with the outsiders S0 \ S∗. Let ω :

{1, · · · , |S0\S∗|}→ S0\S∗ be an arbitrary bijection, and let ûω(1) = V ({ω(1)}), ûω(2) =

V ({ω(1), ω(2)}) − V ({ω(1)}), · · · , ûω(|S0\S∗|) = V (S0\S∗) − V ((S0\S∗)\{ω(|S0\S∗|)}).

Such a core allocation minimizes the total payoffs for S0\S∗ (Shapley, 1971). The

rest V (S0) − V (S0\S∗) goes to S0 ∩ S∗. Consider a reduced game of (S0, V ) on

S0 ∩ S∗ with uS0\S∗ as given above and ṼS0∩S∗ : 2
S0∩S∗ → R such that ṼS0∩S∗(Q) =

V (Q∪ (S0\S∗))−
P

j∈S0\S∗ uj = V (Q∪ (S0\S∗))− V (S0\S∗). By Property 2, we know

that uS0∩S∗ ∈ Core(S0 ∩ S∗, ṼS0∩S∗) if and only if (uS0∩S∗, uS0\S∗) ∈ Core(S0, V ). For

each i ∈ S0 ∩ S∗, let ūi = max{u∗i , vi(S0\{i})}. By the algorithm in Appendix A, we

construct a core allocation ûS0∩S∗ from vector ūS0∩S∗ = (ūi)i∈S0∩S∗ for the reduced game

ṼS0∩S∗ of game V : 2S
0 → R.

We support these core allocations by truthful strategies. Let σ1i = 1 for i ∈ S∗, and σ1i = 0

for i /∈ S∗. Let σ2i [S
∗] be a truthful strategy relative to a∗(S∗) such that σ2i [S

∗](a∗(S∗)) =

vi(a
∗(S∗)) − u∗i for all i ∈ S∗, and let σ2i [S

0] be a truthful strategy relative to a∗(S0) with

σ2i [S
0](a∗(S0)) = vi(a

∗(S0)) − ûi(S
0) for all i ∈ S0. Since a core allocation with truthful

strategies is assigned to every subgame, it is a CPNE. If there is a deviation from σ, therefore,

it must happen in the first stage.

Suppose to the contrary that there exists a coalition T that profitably and credibly

deviates from the equilibrium σ. Note that in the reduced game played by T , it must be a

PCPNE deviation with σ0T for given σ−T . In the original equilibrium, S
∗ is the contribution

group. This implies that every i ∈ (N\S∗)\T plays σ1i = 0, i.e., free-riding, in the first stage,

while every i ∈ S∗\T plays σ1i = 1 in the first stage and engages in the same strategy, i.e.,

the prescribed menu σ2i (S
0) contingent to group S0, in the second stage. Any i ∈ T\S∗ has

chosen σ1i = 0 but chooses σ
10
i = 1 upon deviation in the first stage. Whereas i ∈ T ∩S∗ may

or may not choose σ10i = 1. Some may choose to free-ride by switching to 0, while others

stay in the contribution group, adjusting their strategies in the second stage. To summarize,
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let S0 be the contribution group formed as a result of T ’s deviation, i.e., S0 = S(σ1−T , σ
10
T ).

Then, there are five groups of players to be considered (see Figure 2).

(i) the members of S∗\S0 ⊂ T that switch to free-riding after the deviation,

(ii) the members of S0\S∗ ⊂ T that join the contribution group upon deviation,

(iii) the members of (S∗ ∩ S0)\T ⊂ S0 that still participate in the contribution group after

the deviation, with the same prescribed menu in the second stage,

(iv) the members of (S∗ ∩ S0) ∩ T ⊂ S0 that change their strategies in the second stage,

(v) the members of N\(S0 ∪ S∗) that are outsiders both before and after the deviation.

Let the resulting allocation be (S0, a∗(S0), u0). Since the deviation is profitable and credi-

ble, the members of T , i.e., those who are categorized in (i), (ii), and (iv) are better off after

the deviation. That is,

vi(a
∗(S0)) ≥ u∗i for all i ∈ S∗\S0,

u0i ≥ ūi for all i ∈ S0\S∗,

u0i ≥ ūi for all i ∈ (S∗ ∩ S0) ∩ T ,

where ūi = max{u∗i , vi(a∗(S0\{i})}.

Given our supposition, the following claims must be true.

First we claim that members of (ii) exist and that a∗(S0) > a∗(S∗) as they are better off

after the deviation. The set of players in (ii) is nonempty, since otherwise S0 ⊂ S∗ and a

coalitional deviation by T cannot be profitable as (S∗, a∗(S∗), u∗) is a core allocation.

Claim 1. S0\S∗ 6= ∅ and a∗(S0) > a∗(S∗).

Since all players use truthful strategies in the strategy profile σ even after T ’s deviation,

the members in (iii) (outsiders of T ) obtain the same payoff vector û(S∗∩S0)\T (S0) as in the

original subgame CPNE for S0. It is because in subgame S0 (even after deviation), a∗(S0)

must be provided as a CPNE (core) must be assigned to the subgame. Thus, we have the

following for group (iii).
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Claim 2. After the deviation by T , every i ∈ (S∗ ∩ S0)\T ⊂ S0 receives exactly u0i = ûi.

Since u0 needs to be a CPNE payoff vector in the second stage of the reduced game by

T , we have
P

i∈S0\S∗ u
0
i ≥ V (S0\S∗) for uS0 to be in Core(S0, V ). By the construction of ûS0,

on the other hand, we have
P

i∈S0\S∗ ûi = V (S0\S∗). Thus, we have the following for group

(ii).

Claim 3.
P

i∈S0\S∗ u
0
i ≥ V (S0\S∗) =

P
i∈S0\S∗ ûi.

The next claim shows that the counterpart of Claim 3 holds for group (iv).

Claim 4.
P

i∈S0∩S∗∩T u
0
i =

P
i∈S0∩S∗∩T ûi

Proof of Claim 4. Group (iv) consists of members of W , I, and L. Note that u0i ≥ ūi for

any i ∈ S0 ∩ S∗ ∩ T since otherwise they would have no incentive to join the deviation.

First consider the set W of winners in group (iv); we have ûi ≥ ūi by the definition of

W . The contribution group S0 must be immune to a coalitional deviation by W , so we have

X
i∈W

u0i ≥ Ṽ (W ) =
X
i∈W

ûi,

where the equality holds by Lemma 2. As for players in I, we have ûi = ūi by definition.

Thus, it follows from u0i ≥ ūi that u0i ≥ ûi for any i ∈ I. Payoffs for losers, by definition,

must satisfy ûi < ūi, so we have u0i > ûi because u0i ≥ ūi. However, it follows from Claim 2,

Claim 3, and
P

i∈S0 u
0
i =

P
i∈S0 ûi = V (S0) that

X
i∈S0∩S∗∩T

u0i ≤
X

i∈S0∩S∗∩T
ûi. (3)

Together with
P

i∈W u0i ≥
P

i∈W ûi and
P

i∈I u
0
i ≥

P
i∈I ûi, these implies that L is empty, and

hence
P

i∈S0∩S∗∩T u
0
i ≥

P
i∈S0∩S∗∩T ûi. Consequently, we have from (3) that

P
i∈S0∩S∗∩T u

0
i =P

i∈S0∩S∗∩T ûi. ¤

Claims 2, 3, and 4 immediately imply the following for group (ii).
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Claim 5.
P

i∈S0\S∗ u
0
i =

P
i∈S0\S∗ ûi = V (S0\S∗)

The final claim follows from Claim 5 and the supposition that the deviation by T is

profitable and credible.

Claim 6. Consider a deviation by S0 ∪ S∗ such that S0 \ S∗ is the resulting contribu-

tion group (all members in S∗ stop contributing). Then the allocation (S0 \ S∗, a∗(S0 \

S∗), (u0i)i∈S0\S∗, (vj(a
∗(S0\S∗)))j /∈S0\S∗) is inCoreFRP (S0\S∗) and Pareto-dominates (S∗, a∗(S∗), u∗).

Proof of Claim 6. Since the deviation by T is profitable, we have

X
i∈S0\S∗

vi(a
∗(S0\S∗))− C(a∗(S0\S∗)) = V (S0\S∗)

=
X

i∈S0\S∗
u0i

>
X

i∈S0\S∗
vi(a

∗(S∗)).

Thus, we have
P

i∈S0\S∗ vi(a
∗(S0 \S∗)) >

P
i∈S0\S∗ vi(a

∗(S∗)), and hence a∗(S0\S∗) > a∗(S∗).

Now, since the deviation by T is credible, and hence u0i ≥ vi(a
∗(S0 \ {i})) ≥ vi(a

∗((S0 \ S∗) \

{i})) for any i ∈ S0 \ S∗, Claim 5 implies that (S0 \ S∗, a∗(S0 \ S∗), (u0i)i∈S0\S∗ , (vj(a∗(S0 \

S∗)))j /∈S0\S∗) ∈ CoreFRP (S0 \ S∗).

Next, we show that ((u0i)i∈S0\S∗ , (vj(a
∗(S0 \ S∗)))j /∈S0\S∗) Pareto-dominates u∗. First, the

profitability of the deviation by T immediately implies that u0i ≥ vi(a
∗(S∗)) = u∗i for any

i ∈ S0 \ S∗. Thus, we have shown the Pareto-domination for group (ii). Pareto-domination

for group (v) is immediate from a∗(S0 \ S∗) > a∗(S∗). As for groups (i), (iii), and (iv), i.e.,

for all i ∈ S∗, we first note that since u∗ ∈ Core(S∗) and the game V is convex, we have
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u∗i ≤ V (S∗)− V (S∗\{i}) (Shapley 1971). Now,

V (S∗)− V (S∗\{i})

=
X
j∈S∗

vj(a
∗(S∗))− C(a∗(S∗))−

⎛⎝ X
j∈S∗\{i}

vj(a
∗(S∗\{i}))− C(a∗(S∗\{i}))

⎞⎠
< vi(a

∗(S∗))

+
X

j∈S∗\{i}

vj(a
∗(S∗))− C(a∗(S∗))−

⎛⎝ X
j∈S∗\{i}

vj(a
∗(S∗\{i}))− C(a∗(S∗\{i}))

⎞⎠
< vi(a

∗(S0\S∗)),

where the last inequality holds since
P

j∈S∗\{i} vj(a)−C(a) is maximized at a = a∗(S∗\{i}).

This proves that all members of groups (i), (iii), and (iv) are better off in the allocation

(S0\S∗, a∗(S0\S∗), (u0i)i∈S0\S∗ , (vj(a∗(S0\S∗)))j /∈S0\S∗). Hence, we conclude that (S∗, a∗(S∗), u∗) ∈

CoreFRP is Pareto-dominated by (S0\S∗, a∗(S0\S∗), (u0i)i∈S0\S∗, (vj(a∗(S0\S∗)))j /∈S0\S∗), which

is in CoreFRP (S0\S∗). ¤

The statement of Claim 6 is an apparent contradiction to (S∗, a∗(S∗), u∗) ∈ CoreFRP .

Thus, we have shown that there is no profitable and credible deviation from the constructed

strategy profile σ, so σ is a PCPNE.

Proof of Proposition 4

Suppose to the contrary that for all natural number n, there exists r ≥ n such that

(Sr, a
∗(Sr), u

∗
r) ∈ CoreFRP (V r) and a∗(Sr) ≥ ā. This implies that there exists an increasing

sequence of natural numbers r that satisfy (Sr, a∗(Sr), u∗r) ∈ CoreFRP (V r). We show that

(under this supposition) for any r with (Sr, a∗(Sr), u∗r) ∈ CoreFRP (V r) and any iq ∈ Sr,

a∗(Sr \ {iq}) approaches a∗(Sr) as r →∞, and hence the left-hand side ofX
i∈N

mi(S)

r
[vi(a

∗(S))− vi(a
∗(S\{iq}))] ≥ C(a∗(S)). (1)

diminishes to zero (since v0i(a
∗(S)) ≤ v0i(ā) < ∞). Since C(a∗(S)) ≥ C(ā) > 0, this im-

plies that (1) is violated eventually as r → ∞, which in turn leads to a contradiction to

(Sr, a
∗(Sr), u

∗
r) ∈ CoreFRP (V r).
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Now, a∗(Sr), the public good provision level induced by the contribution group Sr, is

chosen so as to satisfy the first-order condition:

X
j∈N

mj(Sr)

r
v0j(a

∗(Sr))− C 0(a∗(Sr)) = 0, (4)

where [mj(Sr)/r]v
0
j(a) =

P
iq∈S v

r0
iq(a). For any r, the left-hand side of (4) is continuous and

strictly decreasing in the public good provision level a since v00j ≤ 0 and C 00 > 0 (as Figure 3

illustrates). Similarly, for any iq ∈ Sr, the optimality of public good provision requires that

a∗(Sr \ {iq}) satisfyX
j∈N

mj(Sr \ {iq})
r

v0j(a
∗(Sr \ {iq}))− C 0(a∗(Sr \ {iq})) = 0, (5)

or equivalently

X
j∈N

mj(Sr)

r
v0j(a

∗(Sr \ {iq}))−
v0i(a

∗(Sr \ {iq}))
r

− C 0(a∗(Sr \ {iq})) = 0,

where the second term in the second equation represents the free-rider iq’s marginal benefit

from the public good provision.

Now, we claim that for any � ∈ (0, ā), there exists a positive integer r� such that for any

r ≥ r�, X
j∈N

mj(Sr)

r
v0j(a

∗(Sr)− �)− v0i(a
∗(Sr)− �)

r
− C 0(a∗(Sr)− �) > 0,

i.e., the left-hand side of (5), evaluated at a = a∗(Sr)− � instead of a∗(Sr \ {iq}), is positive

as Figure 3 shows. Together with v00j ≤ 0 and C 00 > 0, this implies that a∗(Sr \ {iq}) ∈

(a∗(Sr)− �, a∗(Sr)), which in turn implies the convergence of a∗(Sr \ {iq}) to a∗(Sr).

To show the claim, we first define the minimum C 00 over the relevant range as c ≡

mina∈[0,a∗(N)]C
00(a). It follows from C 00 > 0 that c > 0. Now, for any r, it follows from (4)
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and Taylor’s formula that there exists a0 ∈ [a∗(Sr)− �, a∗(Sr)] such thatX
j∈N

mj(Sr)

r
v0j(a

∗(Sr)− �)− C 0(a∗(Sr)− �)

=
X
j∈N

mj(Sr)

r
v0j(a

∗(Sr))− C 0(a∗(Sr))

−�
"X
j∈N

mj(Sr)

r
v00j (a

0)− C 00(a0)

#

= �

"
C 00(a0)−

X
j∈N

mj(Sr)

r
v00j (a

0)

#
≥ c�,

where we have used v00j ≤ 0 to derive the last inequality. On the other hand, it follows from

v0i(a
∗(Sr)− �) ≤ v0i(ā− �) (as a∗(Sr) > ā) that there exists r� such that

v0i(a
∗(Sr)− �)

r
≤ v0i(ā− �)

r
<

c�

2

holds for any r ≥ r�. Then the claim follows immediately sinceX
j∈N

mj(Sr)

r
v0j(a

∗(Sr)− �)− v0i(a
∗(Sr)− �)

r
− C 0(a∗(Sr)− �) > c�− c�

2

> 0.

Now, we have from mi(Sr) ≤ r and the claim established above thatX
i∈N

mi(Sr)

r
[vi(a

∗(Sr))− vi(a
∗(Sr \ {iq}))]

≤
X
i∈N

[vi(a
∗(Sr))− vi(a

∗(Sr \ {iq}))]→ 0 as r →∞.

Since C(a∗(S)) > C(ā) > 0, we have shown that there exists r̄(ā) such that for any r ≥ r̄(ā),

the free-riding-proofness condition (1) fails to be satisfied, which implies that a∗(S∗) < ā for

any (S∗, a∗(S∗), u∗) ∈ CoreFRP (V r) when r ≥ r̄(ā).
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