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Abstract 
 
 

The United States is a large net exporter of corn seeds. Seed trade, including that of 

corn, has been expanding, but its determinants are not well understood. This paper 

econometrically investigates the determinants of world demand for U.S. corn seeds with a 

detailed analysis of trade costs impeding export flows to various markets, including costs 

associated with distance, tariffs, and sanitary and phytosanitary (SPS) regulations. The 

analysis relies on an explicit specification of derived demand for seed by foreign corn 

producers, estimated based on data from 48 countries for the years 1989 to 2004. An SPS 

count variable is incorporated as a shifter in the unit cost of seeds faced by foreign users. A 

sample selection framework is used to account for the large presence of zero trade flows. All 

trade costs matter and have had a negative impact on U.S. corn seed exports. Tariffs matter 

most, followed by distance and SPS measures.  
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1. Introduction 

The U.S. commercial seed market is the world’s largest, with an estimated annual value 

exceeding $6 billion per year in the late 1990s, followed by those of China and Japan. Over 

the past decade, the U.S. seed market has been growing in quantity and value, particularly for 

major field crops such as corn, soybeans, cotton, and wheat, which constitute two-thirds of 

the commercial seed market in the United States (Fernandez-Cornejo and Caswell, 2006). 

Seed trade has been an integral part of this market expansion. The United States is a net and 

large exporter of corn seed for planting. The U.S. corn seed export value grew from 

approximately US$68.5 million in 1989 to $174 million in 2004. Italy, Mexico, Canada, 

France, and Spain are the largest importers of U.S. corn seed. Together, these countries 

accounted for approximately 60 percent of total U.S. corn seed exports in 2004.1 However, 

seed trade is arguably underdeveloped with much potential to expand, especially in 

developing countries (McGee, 1998). Only 10 percent of total U.S. commercial seed goes to 

developing countries such as India and China. These two countries represent large potential 

seed markets, along with Brazil and Argentina (Fernandez-Cornejo, 2004).  

The use of standards and technical regulations as instruments of commercial policy 

in world agri-food trade has been rising, as tariff and quota barriers continue to decline and 

as consumers demand safer agri-food products (Beghin, 2008; Henson and Wilson, 2005). 

Among non-tariff measures, sanitary and phytosanitary (SPS) regulations and technical 

barriers to trade (TBTs) are of increasing importance as impediments to, and sometimes 

facilitators of, agri-food trade (Disdier, Fontagné, and Mimouni, 2008; and Moenius, 2006).  

Despite the substantial body of work analyzing the impact of standards and technical 
                                                 
1 On a regional basis, North America (36 percent), Western Europe (32 percent), Asia (11 
percent), other European countries (6 percent), and South America (4 percent) accounted 
for 89 percent of the total quantity of U.S. exports in 2004. 
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regulations on agricultural and food trade, little is known about seed trade determinants. 

Seed trade policies have not attracted much attention from economists, although seed 

scientists have raised concerns about SPS policies (Rohrbach, Minde, and Howard, 2003; 

and McGee, 1998). The U.S. seed industry faces significant problems satisfying SPS 

regulations because of increasing concerns about seed safety, stricter SPS requirements in 

trade, competitiveness in export markets, and, occasionally, protectionism.  

There is a large literature on the analysis of TBTs and SPS measures, including 

Anderson, McRae, and Wilson (2001); Beghin and Bureau (2001); Deardorff and Stern 

(1998); and Maskus and Wilson (2001). Henson and Wilson (2005) provide a comprehensive 

discussion of these and other earlier contributions. Cipollina and Salvatici (2007) review 

more recent developments on this topic. Recent analyses include Calvin, Krissoff, and Foster 

(2008); Peterson and Orden (2008); Yue, Beghin, and Jensen (2006); and Yue and Beghin 

(2009). Conspicuously absent in this SPS literature are explicit analyses of seed trade 

determinants and the impact of associated SPS regulations. This void is surprising because 

seeds are well-known vectors of invasive pests and species propagation. Accordingly, SPS 

measures have been extensively used in world seed trade in order to mitigate the 

introduction of exotic species, pests, and diseases, and to limit risks to human and animal 

health. Examples include quarantines, inspections, tests, certificates, fumigation, and outright 

bans.  

This paper fills this gap and addresses the following questions: What does actually 

determine seed trade among a list of presumed relevant factors (relative seed price, corn 

output, tariff, transportation cost, and SPS policies), and what is their relative importance? 

These are pertinent research questions, which lead to a formal elucidation of seed trade and 

its policy determinants. To estimate the factors determining world demand for U.S. seed 
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corn exports, we develop a parsimonious seed export demand model and use it for an 

econometric investigation of world demand for U.S. corn seeds. The empirical analysis relies 

on a newly constructed data set covering major corn and silage producing countries and their 

trade policies (tariffs and SPS measures), which are faced by U.S. seed exporters. The 

frequency measure of SPS policies is based on the EXCERPT (Export Certification Project 

Demonstration) regulation database collected for the U.S. Department of Agriculture 

(USDA), Animal and Plant Health Inspection Service (APHIS), by Purdue University.  

Our investigation relies on a sectoral gravity-equation-type model. An original feature 

of our setup is that the model is grounded in intermediate demand rather than final demand 

as are most other gravity models. Many agricultural products are indeed intermediate inputs 

used in other industries, and thus our specification is likely to be of interest for other 

agricultural trade applications. The applied trade literature has neglected this simple but 

important point on the differentiation of intermediate and final demands (see also Ghazalian 

et al. (2007) for a related intermediate demand approach). We find that trade costs are 

important determinants of seed export demand: tariffs, SPS regulations, and distance 

negatively affect U.S. corn seed export demand.  

 

2. A Gravity Equation for Imported Seed Demand 

As in many gravity models, we use the simple constant elasticity of substitution (CES) 

structure to incorporate the intermediate demand for corn seed in corn production and 

eventually to calculate the tariff equivalent estimate of SPS regulations. The significant 

departure is that the CES applies to production rather than to final consumer preferences. 

Taking a dual approach to the specification of this technology, the cost function for corn 

production derived from a CES production function can be written as follows:  
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where jQ  is corn production for country j;  is the price paid by corn producers of 

country j for their seed corn sourced in country i; 

ijW

jkR  is the price of the kth non-seed input 

used in country j; σ  is a parameter that determines the degree of substitutability of the 

inputs; and θi  and μ jk  are technology productivity parameters associated with the various 

inputs used. Note that we assume that the productivity parameters of the seed input are the 

same in all countries, although seeds sourced in different countries can have different 

productivity. With that we try to capture, somewhat roughly, the fact that origin-

differentiated seeds may differ in quality and may be imperfect substitutes. On the other 

hand, the μ jk  parameters associated with non-seed inputs are allowed to differ across 

countries, and thus we do allow for some heterogeneity in the technology for final corn 

production. 

The conditional factor demands for corn seeds, by Shephard’s lemma, are 
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Seed input prices at destination j can be written as 

(3) ,  =ij i ijW W T

where  is the export unit price (FOB) of seed corn sourced in country i and  is the 

trade cost factor (also known as trade resistance) that reflects the impacts of tariffs, distance, 

and SPS regulations affecting the price of seed corn from country i and landed in country j. 

By using equation (3), the seed import demand in each country can be expressed as 

iW 1≥ijT

(4)  σ σ σθ − −=ij i j j i ijX Q c W T , 
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where jc  is the unit cost function for corn production defined as 
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Demand equations for non-seed inputs could similarly be derived from (1). But in 

our application we will not have data on them, and so we work with a specialized 

formulation that allows us to sidestep the modeling of their explicit impacts. Specifically, to 

proceed we will assume a competitive structure in final corn production, which justifies the 

constant return to scale (CRTS) assumption implicit in our CES specification. In a 

competitive equilibrium, therefore, the unit production cost jc  will equal the expected 

output price, i.e., the expected corn price in country j. Furthermore, we do not have data on 

seed imports from all destinations, but we do have detailed data on export of U.S. corn 

seeds. So, in what follows we focus on trade in corn seed coming from a single source (the 

United States). 

2.1. A model for U.S. corn seed exports 

Because we consider seed sourced in the Unites States only, in what follows we simplify the 

notation and drop the subscript i  that denotes the source. To make the foregoing model 

operational, we also need to be specific on the formulation of the trade resistance factor. We 

write this factor as 

(6) ( ) ( ) ( )1 1 1
β γ

τ= + + +j j j jT S D , 

where jT is the trade resistance factor, in country j, toward seed imports from the United 

States; τ j  is the (ad valorem) trade tax on seed corn levied by country j; jS  is a variable 

capturing the effects of SPS regulation in country j (which we will represent as the count of 
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SPS measures that apply to U.S. corn seed exports to country j);2 jD  is the distance from the 

United States to country j ; and β  and γ  are coefficients that parameterize the effects of 

SPS variables and distance into tariff factor equivalent effects. More specifically, to measure 

the SPS effect we use a frequency measure at the commodity market level, a count of SPS 

regulations affecting U.S. corn seeds. Our model embeds this measure in a cost factor and 

posits that the cost factor increases in the SPS count to capture its incidence. 

With the foregoing parameterization, the import of U.S. corn seed in country j  can 

be written as  

( )1 1( ( )1)
σβ γσ σθ τ

−
− ⎡ ⎤= + + +⎢ ⎥⎣ ⎦j j j jX Q c W D(7) , j jS

where, again, we have dropped the origin subscript (so that, for example, W  represents the 

U.S. corn seed export price). This equation represents the basis of our estimating model in 

the empirical application.3 

 

3. Empirical Formulation 

The model is estimated with a sample of M observations of U.S. corn seed exports going to 

 countries. Our empirical model is the log transformation of equation n (7), leading to the 

following specification: 

                                                 
2 The count variable is, admittedly, a crude indicator. A better proxy would aggregate the SPS 
measures weighted by their cost incidence. The lack of systematic information on the 
associated cost of each SPS measure rules out the preferred aggregation. 
3 It is readily shown that a share equation version of (7) would include a multilateral trade 
resistance term, thereby coming closest in spirit to recent gravity equation investigations as it 
includes a multilateral trade resistance term (e.g., Disdier, Fontagné, and Mimouni, 2008). A 
disadvantage of such a formulation is that the model is nonlinear in the parameters, and for 
that reason we do not pursue it further as a vehicle for estimating the structural parameters 
of the model. 
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where  and 1,2,...,=t M 1,2,...,=j n , the coefficients αi  are related to the structural 

parameters as 0 ln( )α θ= , 1α βσ= , and 2α γσ= , and  is an error term that is assumed to 

be independently and identically distributed, so that observations over all destinations can be 

pooled. 

iju

3.1. Heteroskedasticity and the “zeros” problem 

Two econometric issues that have been recognized to affect gravity-type of models 

estimations are those of heteroskedasticity and zero values for the left-hand-side (LHS) 

variable. Heteroskedasticity in the error term is suspected when the magnitude of the 

residuals appear proportional to the regression function, the latter being a common property 

of empirical models in this area. In equation (8), on the other hand, following a common 

practice in applied econometrics, we allow for some proportionality between errors and 

trade values by, implicitly, postulating a multiplicative error structure for the model in (7). 

The error term itself, of course, is assumed to have a constant variance. An alternatively 

approach, advocated by Silva and Tenreyro (2006) and gaining some popularity, relies on the 

so-called pseudo Poisson maximum likelihood (PPML) estimation method. This approach 

estimates the model in levels as in equation (7), with a multiplicative error term and the 

additional assumption that the conditional variance is proportional to the conditional mean. 

The claim is that PPML is robust to heteroskedastic errors. 

A distinct problem is that of the LHS variable taking on zero values for a sizeable 

portion of our data set (about 30 percent of the observations). This “zeros problem” 

presents an immediate challenge for the LHS transformation used in the log-linear model of 

equation (8). Martin and Pham (2008) and Burger, van Oort and Linders (2009) provide a 
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taxonomy and a brief review of the relevant literature and discuss a number of estimation 

strategies that have been used in this setting. Two common ways of dealing with this 

problem, in the context of the log-linear model in (8), are: (i) replace zero trade values by a 

small (arbitrary) number, so as to make the log transformation admissible; or (ii) drop all 

observation with zero values (i.e., estimated the structural parameters with a truncated 

sample). The PPML estimation of (the stochastic version of) model (7), on the other hand, 

can readily admit zero observations for the LHS variable, and that is another reason why it is 

being advocated as a reasonable model estimation strategy.  

All these methods are somewhat unsatisfactory in our context because zero values 

for the dependent variables here represent true absence of trade, rather than missing 

observations, and as such are themselves very much in need of explanation. Such a need is 

ignored by approaches that rely on the truncated sample of positive trade flows only, for 

example. Similarly, using the full data sample with the log-linear model in (8) (and the 

arbitrary replacement of zeros by a small number) or the PPML estimation of the model in 

levels (the stochastic version of (7)), does not address this issue either because, essentially, it 

treat all zeros equally. But in fact, some zeros might reflect cases that are just at or near the 

margin where countries are ready to trade. Clearly, such zeros would have a high probability 

to turn into actual trade and could be modeled as arising from the same process generating 

the observations with the positive trade volume. In contrast, other zero observations might 

be associated with high trade costs and thus possess a low probability to turn into positive 

trade. Perhaps not surprisingly, therefore, a large number of zero observations in the data 

 - 8 - 



can be problematic with the PPML approach which can suffer from biased estimates as 

shown by Martin and Pham (2008) and Burger, van Oort, and Linders (2009). 4 

A natural way to handle zero observations in our setting is the sample-selection 

framework originated with Heckman (1979). As discussed later, this is our preferred 

approach, because it allows us to identify the impact of changes in exogenous variables on 

both the likelihood of trade (which we interpret as the “extensive margin”) and the existing 

volume of trade (which we interpret as the “intensive margin”).  We apply this estimation 

procedure to the log-linear model of equation (8). Let ty  denote the vector of the LHS 

variables at time t  corresponding to the trade equation (8), and let  be the corresponding 

trade indicator variable that takes on value one if positive trade is observed, and value zero if 

no trade is observed. These observable variables are related to two latent variables that 

satisfy the following linear processes: 

tz

(9)  
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0

π
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where  and  are vectors of conditioning variables, tH tL π  and ψ  are vectors on unknown 

parameters, and the error terms have bivariate normal distribution. Specifically, 
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Finally, the observables of the model are related to these latent variables as follows: 0=t ty y  

if  and  otherwise; and 0 0>tz 0=ty 1=tz  if , 0 0>tz 0=tz  otherwise. Heckman’s (1979) 

procedure to get consistent estimates in this setting relies on a two-step approach, but given 

the normality assumption a consistent maximum likelihood estimator is readily possible 
                                                 
4 Zero-inflated Poisson regression could be used but it would leave the sample selection 
issue unaddressed. 
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(Davidson and MacKinnon, 2004). 

 

4. Data Description 

A summary of the data is presented in table 1. The dataset is available from the authors. The 

U.S. seed corn export data are based on Foreign Agricultural Trade of the United States 

(FATUS) from the USDA, which reports both value and volume. Under FATUS, volume is 

derived from value divided by the unit value of the largest seed category. We found some 

irregularities in the volume data reported in FATUS. Hence, we transformed the seed export 

value (US$) into quantities (metric tons) using the U.S. seed corn price in respective years as 

the average export unit value. This step provides quantity data that are consistent with the 

value data and that are quality adjusted, as the export volume is expressed in the same 

volume unit for every country. The U.S. seed corn quantities and prices are from the 

Economic Research Service (ERS), USDA. Annual seed corn production in the United 

States is calculated by adding total exports of U.S. seeds to the estimated total domestic 

(U.S.) use of seeds.5 Annual U.S. domestic use of seed is assumed to be equal to corn 

planted acres times the seed rate as assumed by USDA. Corn planted area for all purposes is 

taken from the National Agricultural Statistics Service (NASS), Agricultural Statistics Board, 

USDA. Average seeding rate per acre for corn is based on data from Cropping Practices 

surveys and the Agricultural Resource Management Survey (ARMS), ERS, USDA. The U.S. 

corn seed use data are by calendar year. 

The seed export data are based on the calendar year. We concentrate on 1989 to 

2004 because of the limited export data availability in FATUS. Our final country sample 

                                                 
5 When estimating trade share by country, we compute shares based on total seed use for 
countries included in the sample, and hence shares do add up to one. 
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consists of 48 countries based on the following criteria. This sample was selected based on 

an average minimum corn production of 1 million metric tons (mmt) per year, including 

seed corn and forage, during the time period of the study. Although its corn production is 

smaller than 1 mmt, Australia was added to the sample because it has very restrictive corn 

seed regulations (a formal ban except for non commercial corn seed imports) and  hence 

adds across-country variation in the SPS count variable combined to across-country 

variation in other covariates since Australia’s applied tariff is zero. Total world corn 

production and each country’s corn production are based on the Food and Agriculture 

Organization of the United Nations FAOSTAT.  

The FAOSTAT provides production data on Seed Maize (HS code: 1005) as well as 

Maize for Forage and Silage (HS code: 1214.90). Growers buy hybrid corn seed to produce 

silage just as they would to produce corn for other purposes. We found inconsistencies 

between large seed net imports and small corn outputs reported under HS 1005 in some 

countries in the FAOSTAT data. Notably, we found that Japan, the United Kingdom, and 

the Netherlands have sizeable imports of corn seeds but no significant seed maize 

production in the FAOSTAT data. Most of these countries use corn for silage instead of 

maize. Given these facts, we account for the corn production for silage as being relevant for 

the overall demand for seed corn. To aggregate these two types meaningfully, we use 8 

bushels of grain maize per one ton of silage to get units in green maize physical equivalent. 

Corn production data are by calendar year. Our original country sample consisted of 54 

countries. We deleted Belarus, Moldova, Kazakhstan, and the Russian federation for which 

we found irregularities (e.g., wide unexplainable swings) in corn production data that could 

not be reconciled using other data sources. We also deleted Malawi and Nigeria, for which 

data were incomplete. 
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As noted earlier, in our framework the expected producer price of corn is assumed 

to approximate the (unobserved) unit cost of corn seed production under the assumption of 

perfect competition in corn production and constant return to scale (unit cost=marginal 

cost=expected price). Expected prices are, of course, not observable. Notionally, they 

embed available information at the time expectations are formed, and empirical models for 

expected prices range from full rational expectation formulations to naïve expectation 

models. The simple model we use postulates an information set that includes the previous-

period U.S. price (i.e., the most recent price pertaining to the most important market) and a 

time trend (to capture secular movements in the price of interest). Specifically, we 

approximate the expected price in any one country as the fitted values of a regression of 

observed corn prices of that country on the one-period-lagged U.S. corn price and a linear 

time trend. The current producer price is by calendar year and based on the FAOSTAT. 

Tariffs applied to U.S.-sourced corn seeds are based on World Bank’s World 

Integrated Trade Solution (WITS) database (see Table 7 in the Data Appendix). Tariff data 

are currently limited to 1996-2004 in WITS. Hence, we found some pre-1996 data from the 

Trade Analysis and Information System (TRAINS) database and Agricultural Market Access 

Database (AMAD). We use whatever data are available for 1989-1995 in TRAINS and 

AMAD and backtrack to 1989 assuming the same value for missing information. Tariff data 

are by calendar year and, although they are expressed in ad valorem form, include all tariffs. 

WITS and TRAINS are consistent for overlapping years since WITS originate from 

TRAINS raw data.  There were very few overlapping data for tariffs across TRAINS and 

AMAD sources; hence, no inconsistencies were found between these two sources. Tariffs in 

most countries exhibit flat or decreasing ad valorem tariffs with the exception of Korea, 

Hungary, and Poland.  In Korea and Hungary, there is a strong increase tariffs in 1996, 
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which then decrease in subsequent years. In Poland, the applied tariff increases first in 1996 

and then again in 2001. 

Direct air distance between the U.S. and the major commercial city of each country 

is based on Hengeveld’s World Distance Tables, which are widely used in gravity equations 

and available from the Inter-University Consortium for Political and Social Research 

(ICPSR) database. For each country, one airport has been selected as the major air terminal 

from the International Air Transport Association Guide on the basis of importance in 

international passenger and good traffic. For most countries, the name of the airport is 

identical to the name of the nearest large city in order to use the known geographical 

latitudes and longitudes of these cities for calculating air distances. 

The number of SPS regulations imposed by the importing country is based on data 

from the Export Certification Project Demonstration (EXCERPT) database maintained at 

Purdue University on behalf of USDA APHIS. The SPS regulations for each country are 

updated in 2006 by the EXCERPT. However, older regulations starting from 1996 are 

reported in the EXCERPT archives. We look at phytosanitary certificates, import permit, 

and field inspection as well as some other demanding regulatory requirements, including 

seed testing, post-entry testing, and quarantine. Virtually all countries require a phytosanitary 

certificate, except Canada. Australia and China have a seed import ban, although China has 

imported a small amount of seeds in recent years. Some seed lines have to be imported by 

China to initiate local production. Hence, the Chinese trade ban has not been as tight in 

recent years, although seed imports remain very small relative to the size of the Chinese corn 

sector. We use a large number (50) for the SPS count (prohibitive SPS compliance cost) for 

China and Australia to mimic an SPS count equivalent to the prohibitive policies.  

Over time, most countries have streamlined their SPS regulations. Argentina and 

 - 13 - 



Chile have a low SPS count. The most radical simplifications have occurred in some Eastern 

European countries, which are now members of the European Union (EU). Notably, in the 

last 10 years, Hungary started with an SPS count of 68, streamlined it to 30 in 2003, and 

eventually adopted EU regulations (SPS count of 3) with EU accession in 2004. South 

Africa, India, and Indonesia also simplified their regulations by removing all SPS 

requirements. Egypt, Zimbabwe, and, surprisingly, Brazil have very high SPS count (18 

requirements). The Brazilian case is puzzling, as the country is a large corn producer that 

would benefit from accessing better seeds.  

 

5. Econometric Results 

As noted earlier, the sample-selection framework of equations (9)-(10) represents our 

favorite estimation strategy although, for comparison, we will also report the results of two 

single-equation estimation procedures: OLS on the log-linear equation in (8) (where zeros on 

the LHS are replaced by 0.1); and, the PPML estimation of the stochastic version of the 

model in (7). The results of these two estimation procedures are reported in Table 2. OLS 

on the log-linear model and the PPML model produce similar results as far as the sign and 

significance of the estimated effects, but the estimated magnitude of these effects is quite 

different. In particular, the PPML approach suggests a larger response to the SPS variable, 

and a lower response to distance. Another feature of these results that is readily apparent is 

the difference between the estimates based on the full sample and those based on the 

truncated sample (positive trade only). This is so even for the PPML approach, which 

typically is presumed to be more robust to truncation. Hence, it appears that selection bias 

might be a relevant issue, further motivating the Heckman sample-selection approach. 

 Table 3 reports results for sample-selection specification in (9)-(10) estimated by 
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maximum likelihood (ML), which produces asymptotically efficient estimators. Notice that 

both the selection and the trade equations depend on the trade cost components (tariff, 

distance, and SPS). In addition, a time trend as appears in the selection model but not in the 

trade equation. Such a variable is meant to capture other secular effects on the evolution of 

trade patterns that are not explained by our limited set of exogenous variables and, in 

principle, could be advocated for either equation in (9). But the exclusionary restriction that 

we have adopted is meant to aid identification (Davidson and MacKinnon, 2004).6 The 

selection equation has all parameters significant with the expected sign. The negative signs 

on the estimated parameters of the trade cost components in the selection model indicate 

that the likelihood to trade diminishes as the trade cost factors increase. Also, the positive 

sign on the estimated parameter of the time trend in the selection model indicates that the 

likelihood to trade has increased over time, consistent with trade integration.  

 The implied structural parameter estimates are reported in the lower part of Table 3. 

These structural parameter estimates are significantly different from zero and similar in 

magnitude to the results reported in Table 2 for the estimation of (8) with the truncated 

sample. The estimated correlation coefficient ρ̂  is negative and statistically significant, 

indicating a sample selection bias in the data. A comparison of OLS parameter estimates for 

the log-linear model with the full sample in Table 2 with the ML estimates in Table 3 

indicates the selectivity bias that affects the OLS method with full sample. In particular, 

consider the change in the estimates for distance and SPS from OLS to the ML estimates. 

                                                 
6 Strictly speaking, given the normality assumption, the nonlinearity of the inverse Mills ratio 
suffices for identification even when the elements of  and  are the same. But such an 
identification strategy is often criticized, and the exclusion of one variable (time trend in our 
case) is common for identification purposes. In response to a referee’s inquiry, we looked at 
the impact of replacing the time trend with a set of time dummy variables in the selection 
equation, and that had virtually no effect on the estimated structural parameters.  

tH tL
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The coefficient for distance decreases from 0.4157 in OLS to 0.2312 in ML. The coefficient 

for tariffs decreases from 2.1365 in OLS to 1.4885 in ML. On the other hand, the coefficient 

for SPS increases from 0.3421 in OLS to 0.4769 in ML. In summary, the impact of distance 

and tariffs is overestimated and the impact of SPS is underestimated when failing to correct 

for the selectivity bias in the data.  

 Although the sample selection approach is popular in empirical analysis, marginal 

effects are often misinterpreted when a regressor enters into both selection and trade 

equations. In this case, when ˆ 0ρ ≠ , it is incorrect to interpret the estimated parameters of 

the trade equation shown in Table 3 as the marginal effect. Even if one were interested only 

in the conditional impact of a regressor (that is, conditional on trade taking place), in 

addition to the direct impact as per the estimated coefficients one still needs to account for 

an indirect effect. This is apparent when one recalls that, for observations for which trade 

takes place, the conditional mean of the trade equation from (9) satisfies (see, e.g., Davidson 

and MacKinnon, 2004): 

(11) 
( )

0
( )
t

t t t
t

L
E y y H

L
φ ψ

π ρω
ψ

⎡ ⎤> = +⎣ ⎦ Φ
,  

where ( )φ ⋅ and  denote the density and distribution functions of the standardized 

normal, respectively, and 

( )Φ ⋅

φ ψ ψ λΦ ≡( ) ( )t tL L t  is known as the inverse Mills ratio. From (11) 

it follows that the marginal effect, on the conditional mean, of a regressor  that appears 

both in  and  is: 

kR

tH tL

(12) ( )π ψ ρω λ λ ψ
⎡ ⎤∂ >⎣ ⎦ = − +
∂

20t t
k k t t t

kt

E y y
L

R
.  

Furthermore, when a regressor affects both the intensity of trade and the probability that 
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trade takes place, the total unconditional impact is arguably the effect of interest. Following 

Hoffmann and Kassouf (2005) such an unconditional effect can be written as 

(13)
  

ψ⎡ ⎤∂ >∂ ⎡ ⎤ ∂ Φ⎣ ⎦ ⎣ ⎦= +
∂ ∂ ∂

0 ln ( )t tt t

kt kt kt

E y yE y L
R R R

 

where ( ) 1 (tL )tLψ ψΦ = −Φ −  is the probability that trade takes place. Hence, to find the 

unconditional effect of a regressor that affects both the intensity of trade and the probability 

that trade takes place, the conditional effect in (12) needs to be augmented by 

ψ λ∂ =kt k tR∂ Φln

                                                

. 

 The conditional and unconditional marginal effects, evaluated at the sample mean of 

the observations used to fit the model, are reported in columns 2 and 3 of Table 4. As noted 

earlier, we relate these two marginal effects to the intensive and extensive margins to trade. 

Specifically, the conditional marginal effects represent the elasticities of trade given that trade 

takes place (intensive margin). The unconditional marginal effects represent the elasticities of 

trade for all countries, trading and not trading (both intensive and extensive margins).7 The 

estimated unconditional marginal effects for the trade cost components are larger in absolute 

value than the conditional effects, because the former takes into account both extensive and 

intensive margins, whereas the latter only measures the intensive margin. 

 The tariff factor has the largest marginal effect, followed by distance and SPS factors. 

The striking result is the importance of the distance factor on both trade margins. The 

 
7 As noted by a reviewer, our implicit definition of the extensive margin is somewhat 
restrictive. More generally, new trade (the extensive margin) can arise because of the 
emergence of new destinations (Felbermayr and Kohler, 2006), new exported varieties 
(Hummels and Klenow, 2005), or the participation of new firms on export markets 
(Helpman, Melitz and Rubinstein, 2008). Because our model considers the same product (no 
new varieties), and our industry-wide modeling does not identify firm-level activity, we can 
narrowly interpret the change in the probability to trade as the change in the extensive 
margin, whereas the change in existing trade is the change in the intensive margin. 
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estimated parameters in the first column of Table 3 provide a poor gauge of the total 

marginal effect of the respective explanatory variables on trade. 

 Distance has the strongest effect on the extensive margin (likelihood to trade) as 

measured by the difference between the unconditional and conditional marginal effects. This 

suggests that transportation cost (as proxied by distance) is the major trade cost inhibitor of 

the emergence of new trade followed by tariffs and SPS measures and policies decreasing 

these costs associated with distance would presumably have a large impact. However, at the 

intensive margin, tariffs matter the most followed by distance and SPS measures.  

 In summary, the results show that trade costs do matter considerably in corn seed 

trade. Tariff factors have the largest effect, followed by the cost factor reflecting 

geographical distance, and last, the factor for SPS regulations, provided that sample selection 

bias is properly addressed. Gauging the effects of trade costs based on the estimation of the 

intensive margin alone would be quite misleading. When properly computed using marginal 

effects derived from the sample selection model, the magnitude and ranking of the impacts 

of these trade costs on seed trade differ from the estimated regression coefficients on which 

they are based. The marginal effects are much larger in absolute value than the associated 

coefficients and reveal the relative importance of cost associated with distance.  

 We also note that our responses to distance are within the range of estimates 

reviewed by Disdier and Head (2008). Average tariffs on the U.S. seed trade have been 

moderate (10 percent in our sample) over the last two decades. Yet, the high response of 

corn seed exports to tariffs suggests that tariffs remain an important barrier that could be 

further reduced. Removing the remaining tariffs evaluated (in 2004) would increase existing 

(2004) seed trade by roughly 12%, specifically 11% through intensified trade and 1% 

through new trade. These estimates are obtained by applying the conditional marginal effect 
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to the removal of positive ad valorem tariffs in countries with positive trade and by 

computing the extensive margin effect of removing the positive tariff in countries with no 

trade and applying it to the average observed trade level for 2004. The small effect on new 

trade occurs because many countries with positive tariffs have positive trade already and 

several countries with no trade have zero tariffs.  

 SPS regulations also pose a significant barrier to U.S. seed exports but unlike for 

tariffs, a complete unilateral removal may not be beneficial as externalities could occur in 

absence of SPS regulations. Nevertheless, in most case, a few SPS measures would suffice, 

such as a SPS certificate, eventual field inspection, or occasional treatments, focusing on the 

few relevant pests for each importing country. These few measures would be sufficient to 

eradicate most if not all vectors of externalities for corn seeds (Mcgee, 1998). For the sake of 

estimating a trade effect from rationalizing SPS measures, we conjecture that five SPS 

measures would be sufficient to maintain the SPS integrity of the seeds to all destinations 

and compute the associated trade effects from removing SPS policies in excess of this 

reference count in 2004. This approach is somewhat arbitrary but provides an order of 

magnitude to a potential rationalization of SPS policies in export markets. As for tariffs, we 

apply the implied proportional reduction of SPS measures to the intensive margin for 

countries with positive trade and then apply the proportional reduction in SPS count to the 

extensive margin for countries with no trade, weighted by the average trade level prevailing 

in 2004. The total trade expansion effect of rationalizing SPS regulations is nearly 8.8% of 

which 0.4% comes from the extensive margin (i.e., new trade). 8 

 In sum, although the extensive margin is a critical component of the unconditional 

                                                 
8 If only three SPS measures were necessary to maintain the SPS integrity of the seeds, then 
the total expansion of trade would be 11.4 %, of which 0.7% through the extensive margin. 
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(total) trade margin, trade expansion from tariff liberalization and SPS policy rationalization 

would come principally through intensification of existing trade rather than from new export 

destinations.  

 
6. Concluding Remarks 

The U.S. seed market is the largest in the world and is expanding. Seed trade has been an 

important part of this expansion. Despite these facts, seed trade and its determinants remain 

a somewhat neglected topic in agricultural trade research. We fill this gap with an analysis of 

trade costs associated with U.S. corn seed trade. We develop a parsimonious seed export 

demand model with a sound conceptual foundation based on derived demand in production, 

accounting for major trade costs including transportation, tariff factors, and the cost of SPS 

measures affecting seed trade flows. We use a count of SPS regulations affecting U.S. corn 

seeds embedded in a cost factor and posit that the cost factor increases in the SPS count.  

We estimate the export demand equation based on a log-linear specification of seed 

export levels and using Heckman’s sample selection model. The major empirical findings of 

the study are that all the trade costs have a statistically significant and negative impact on 

U.S. corn seed exports. The sample selection procedure addresses the large number of zero-

trade observations in the data and is motivated by evidence of sample selection bias with 

alternative methods. The sample selection procedure also allows computing extensive and 

intensive margins of trade when trade costs components are altered. Based on marginal 

effects computed from the sample selection model, the decreasing order of importance for 

trade costs is first tariffs, followed by distance, and then SPS regulations.  

This study contributes to the existing literature in several ways. The research 

question addressed here, namely, the determinants of seed export demand, appears to have 
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been ignored to date in the economic literature. Further, we derive a gravity-like approach to 

export demand based on derived demand in production unlike in other applications of the 

gravity model to agricultural trade based on final demand. Lastly, the dataset collected for 

the investigation is also novel in its SPS component and the development of the SPS count 

variable.  

Our analysis has relevant policy and political economy implications. Trade policy 

barriers matter much in trade costs. Tariffs on agricultural goods remain important, although 

they have somewhat decreased with the Uruguay round of the World Trade Organization 

and with regional trade agreements. Tariffs on seed trade have been moderate (an average of 

10 percent in our sample). Nevertheless, the high response of corn seed exports to tariffs 

suggests that tariffs remain an important barrier that could be further reduced. We estimate 

that the removal of remaining tariffs would induce a 12% increase in U.S. corn seed trade. 

 The importance of trade costs induced by SPS regulations raises the issue of sorting 

which of these regulations are legitimate, that is, science based, and which are not and could 

be eliminated or challenged using the WTO dispute settlement body.  We consider a 

rationalization of “excess” SPS measures in countries ridden by many SPS policies. We find 

that such rationalization would increase trade by nearly 9%,  mostly through intensification 

of trade.  In the data presentation we also noted the important policy development in the 

enlarged European Union. The streamlining of SPS measures among EU-27 members has 

facilitated much trade expansion in the last decade. 

When looking at these two policies together, the political economy of SPS measures 

in seed markets does not seem to fit the traditional argument of SPS and tariffs being policy 

substitutes in rent-seeking activities. Both have been significantly decreased with a few 

exceptions for applied tariffs. SPS measures have not risen and substituted for falling tariffs 
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through our 1989-2004 time span. The correlation between tariff and SPS is statistically weak 

and does not suggest any strategic interaction from rent-seeking pressures. 

Finally, distance is irreducible of course, but cost associated with distance and 

transportation could be reduced, and could lead to new trade and intensification of existing 

trade.  
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Table 1.      Data Summary 

variable Mean Std Dev Minimum Maximum Units 
SPS count S 9.602 14.366 0 68 count  
Distance D 8542.071 3268.792 0 15801 miles  
tariff τ 9.915 39.38 0 357.6 Ad val. (%)  
US Seed use X 14218.292 87492.541 0 653424.5 Metric tons  
expected unit cost c 175.145 158.317 23.795 1194.178 US$/mt  
US seed price fob W 3644.237 481.886 3082.062 4629.706 US$/mt  
Corn production Q 13572.09 39632.325 57 319692.188 1000 mt  
       
                 Correlation among Variables  
 S D τ X c W Q 
SPS count S 1       
Distance D -0.001 1      
tariff τ 0.023 0.240 1     
US Seed use X -0.102 -0.404 -0.040 1    
expected unit cost c -0.067 0.130 0.193 -0.079 1   
US seed price fob W -0.041 0.004 0.086 0.008 -0.061 1  
Corn production Q 0.081 -0.349 -0.010 0.898 -0.128 0.031 1 
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Table 2. U.S. Corn Seed Exports: OLS on log-linear model, and PPML model  
 
 
Variable Estimated structural parameters with: 

         Full sample       Truncated sample 

 Log-linear  PPML Log-linear  PPML 

Intercept ( 0α ) 
11.1817* 
(1.3173) 
 

4.5941* 
(.4548) 
 

7.284* 
(0.7910) 
 

3.7133* 
(0.4466) 
 

Distance (γ ) 0.4157* 
(0.0666) 

0. 0784* 
(0.0243) 

0.2552* 
(0.0433)  

0.0287 
(0.0318) 

SPS ( β ) 0.3421* 
(0.0914) 

1.3293* 
(0.1489) 

0.4732* 
(0.0809) 

1.5898* 
(0.2109)    

Elasticity of  

substitution (σ ) 
2.1365* 
(0.2672) 

.9775* 
(0.1116) 

  1.5794* 
(0.1642) 

0.7730* 
(0.1075) 

R2  (Pseudo R2 for 

PPML) 
0.2016 0.1877 0.2976 0.1732 

Observations 709 709 490 490 

 
Note: In the log-linear model with full sample,  jtX  replaced by 0.1+jtX  when . 0=jtX

Standard errors are in parentheses; * denotes significant at the 1% level. 
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Table 3. Maximum likelihood (ML) estimation of sample selection model 

 Log linear gravity equation specification 

 

 Selection equation Log of trade equation  

Variable 
Parameter 

estimate 

Standard 

error 

Parameter 

estimate 

Standard 

error 

Intercept 16.4842* 1.7996 6.7485* 0.8297 

Time 0.0596* 0.0134  

( )ln 1+ jD  -1.6129* 0.1915 -0.3442* 0.0657 

( )ln 1+ jS  -0.1702* 0.0559 -0.7098* 0.1025 

( )( )ln (1 )τ+j jc W  0.4747* 0.1236 1.4885* 0.1703 

Recovered parameters     

 Distance (γ )   0.2312 0.0465 

 SPS ( β )   0.4769 0.0871 

 Elasticity of  

 substitution (σ )   1.4885 0.1703 

ρ̂   -0.3645*

ω̂   2.1508

Observations 709 494

Note: Maximized log-likelihood value = -1430.75, and * denotes significance at the 1% level. 
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Table 4: Conditional and unconditional marginal effects of trade costs 

 

Variable estimated 

coefficient of  

trade equationa 

Conditional 

marginal  

effectb 

Unconditional 

marginal  

effectb 

( )ln 1+ jD  -0.3442 -0.9921 -1.8091 

( )ln 1+ jS  -0.7098 -0.7782 -0.8644 

( )( )ln (1 )τ+j jc W  1.4885 1.6792 1.9194 

a First column from table 2.  
b Because we use log specifications, these effects correspond to elasticities  

  (see derivations in text).  
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