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Abstract

A commonly observed feature of visitation data, elicited via a survey instrument, is a greater
propensity for individuals to report trip numbers that are multiples of 5’s, relative to other
possible integers (such as 3 or 6). One explanation of this phenomenon is that some survey
respondents have difficulty recalling the exact number of trips taken and instead choose to
round their responses. This paper examines the impact that rounding can have on the estimated
demand for recreation and the bias that it may induce on subsequent welfare estimates. We
propose the use of a latent class structure in which respondents are assumed to be members of
either a nonrounding or a rounding class. A series of generated data experiments are provided
to illustrate the range of possible impacts that ignoring rounding can have on the estimated
parameters of the model and on the welfare implications from site closure. The results suggest
that biases can be substantial, particularly when then unconditional mean number of trips is
in the range from two to four. An illustrative application is provided using visitation data to
Saylorville Lake in central Iowa.

1Contact author information: 260 Heady Hall, Department of Economics, Iowa State University, Ames, IA 50011.
email: ksevans@iastate.edu. Phone: 515-294-6173



1 Introduction

Models of recreation demand are used extensively to value both access to and potential changes
in environmental amenities at recreation facilities, such as lakes, rivers and beaches. Analysts link
visitation patterns to the cost of traveling to a site, consumer characteristics and the attributes of
the available sites using a range of modeling frameworks, including discrete choice Random Utility
Maximization (RUM) models, count data models, and the structural Kuhn-Tucker model. Key to
all of these approaches, of course, are data on the numbers of trips to the sites of interest. Trip
data most often take the form of counts of the trips taken over a fixed time horizon (e.g., a summer
season or calendar year) elicited via a survey instrument, asking the individual to recall (or in some
applications to forecast) their numbers of trips. A commonly observed feature of these counts is
a greater propensity for individuals to report trip numbers that are multiples of 5’s, relative to
other possible integers (such as 3 or 6). One explanation of this phenomenon is that some survey
respondents have difficulty recalling the exact number of trips taken and instead choose to round
their responses.2 While the apparent clumping of trip data around specific integers is a familiar
pattern in recreation demand data, we are aware of no efforts in the literature to date that attempt
to account for this pattern. Instead, practitioners treat the reported counts as an accurate reflection
of the trips taken by the survey respondent. Even in the broader survey literature, attempts to
account for rounding in survey data analyses are rare. Manksi and Molinari [8] provide one of the
few exceptions, developing an approach to partially identify patterns in probabilistic expectations
elicited via survey instruments.

The purpose of this paper is to examine the impact that rounding can have on the estimated demand
for recreation and the bias that it may induce on subsequent welfare estimates. In particular, we
propose a latent class count data model of visitations to a single site in which respondents are
assumed to be members of either a nonrounding or a rounding class, with the latter group providing
censored responses to trip questions by rounding their trip counts to the nearest multiple of five.
We are agnostic as to why the latter group chooses to round. As Manski and Molinari [8] suggest,
“. . . [t]here are no established conventions for rounding survey responses. Hence, researchers cannot
be sure how much rounding there may be in survey data. Nor can researchers be sure whether
respondents round to simplify communication or to convey partial knowledge” (p. 219). We
go on to suggest the use of an expectation-maximization (EM) algorithm for the estimation of
the model. A series of generated data experiments are then provided to illustrate the range of
possible impacts that ignoring rounding can have on the estimated parameters of the model and
on the welfare implications from site closure. The results suggest that biases can be substantial,

2Similar phenomena have been observed in other survey settings. For example, Dominitz and Manski [4] note
that in surveys eliciting probabilistic expectations (e.g., the probability of loosing one’s job or living to a specific
age), responses tend to bunch around multiples of 5%. See Manksi and Molinari [8] for additional discussion of this
phenomenon.
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particularly when then unconditional mean number of trips is in the range of two to four. Finally,
an illustrative application is provided using data on the visitations to Saylorville Lake, a popular
recreational site and reservoir in central Iowa. The paper closes with an overall summary of our
findings and a discussion of possible extensions of the modeling framework.

2 The Model

We begin this section by formally defining the assumed latent class structure and developing the
necessary notation. Latent class models have emerged in recent years as a popular approach to
incorporating preference heterogeneity in discrete choice models, both in recreation demand (e.g.,
[2],[10],[11]) and in the broader literature (e.g., [5],[6],[7]). In our application, the heterogeneity lies
in the individual’s propensity to round. We then propose an EM algorithm for use in the estimation
of the model.

2.1 The Latent Class Count Data Model

The starting point in our approach to examining the impact of rounding in the modeling of recre-
ation demand is to assume that individuals fall into one of two latent classes: Nonrounders (N)
or Rounders (R). Individual class membership (denoted by C∗

i = N or R) is unknown to the ana-
lyst. For each class, the actual number of trips (y∗i ) taken to the site in question is assumed to be
drawn from a Poisson distribution, though the underlying parameters of the Poisson distribution
are allowed to vary by class. Specifically, we assume that:

Pr(y∗i = k|C∗
i = c) =

exp(−λic)λk
ic

k!
i = 1, . . . , I; c = N, R, (1)

where
λic = exp(X ′

iβc) (2)

denotes the conditional mean trips for individuals in class c given characteristics Xi and the
parameter vector βc. For individuals in the nonrounding class, the reported trips yi are assumed
to be the same as the actual number of trips (i.e., yi = y∗i ). Thus, conditional on knowing that
C∗

i = N , the individual’s choice probability is simply:

LiN (yi, Xi;βN ) =
exp(−λiN )λyi

iN

yi!
(3)

In contrast, for individuals in the rounding class, reported trips are assumed to be rounded to the
nearest multiple of five for trips greater than 2.3 Let I5 denote the set of positive integers that

3We assume that when actual trips (y∗i ) equal 1 or 2, they are not rounded down to zero by the survey respondent,
even in the case of the rounding class. It seems reasonable to us that, in reporting trips, the rounding individual
distinguishes taking a trip from staying at home even when the number of trips is small.
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are multiples of five. In this case, conditional on knowing that C∗
i = R, the individual’s choice

probability is simply:

LiR(yi, Xi;βR) =





exp(−λiR)λ
yi
iR

yi!
yi = 0, 1, 2

∑2
j=−2

exp(−λiR)λ
yi+j
iR

(yi+j)! yi ∈ I5

0 otherwise.

(4)

Let sR ∈ [0, 1] denote the probability of being in the nonrounding class. Since class membership is
not known, the unconditional choice probability for individual i becomes:

Li(yi, Xi; θ) = sRLiR(yi, Xi; βR) + (1− sR)LiN (yi, Xi; βN ), (5)

where θ = (β′N , β′R, sR)′ denotes the combined parameters of the model. The parameter vector
θ can be obtained using standard maximum likelihood gradient based methods. However, latent
class models are notorious for their difficulty in estimation, particularly since the class labels are
themselves arbitrary. In our generated data experiments and application, we instead employ the
EM algorithm described below.

2.2 The EM Algorithm

EM algorithms were introduced by Dempster, Laird and Rubin [3] as a means dealing with missing
data and have subsequently been adapted to a variety of estimation problems in which some piece
of information in a model is missing.4 In the current application, the missing piece of information
we focus on is the class membership variable C∗

i . As with all EM algorithms, the procedure is
iterative. Let θt denote value of the parameter vector at iteration t. Following the notation in [13],
the next iteration on θ (i.e., θt+1) is obtained for our latent class model by maximizing:

E(θ|θt) =
I∑

i=1

R∑

c=N

ht
ic ln [scLic(yi, Xi; βc)] (6)

where

ht
ic = h(C∗

i = c|yi, s
t) =

st
cLic(yi, Xi;βt

c)
st
NLiN (yi,Xi; βt

N ) + st
RLiR(yi,Xi; βt

R)
(7)

denotes the probability that individual i belongs to class c conditional on the observed choice of the
individual. Given the structure of the problem in (6), this is equivalent to separately maximizing:

E(s|θt) =
I∑

i=1

[
ht

iR ln(sR) + ht
iN ln(1− sR)

]
(8)

4Train [13], chapter 14, provides an excellent overview of EM algorithms, while McLachlan and Krishnan [9]
provide a review of applications.
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with respect to sR and (for both c = R and N) maximizing

E(βc|βt) =
I∑

i=1

ht
ic ln [Lic(yi, Xi; βc)] (9)

with respect to βc. The solution to the maximization of (8) yields:

st+1
R =

∑I
i=1 ht

iR∑I
i=1

(
ht

iN + ht
iR

) . (10)

The specific steps involved in the EM algorithm are then:

1. With t denoting the current iteration, set t = 0 and specify the initial values for both the
share of rounders (i.e., s0

R) and the parameters of the two classes (i.e., β0
N and β0

R). We set
s0
R = 0.5. Similar to the approach suggested by [13] in the context of a latent class logit

model (p. 360), the starting values for the parameters of our two latent classes are obtained
by randomly partitioning the sample into two groups (N and R) and maximizing (9) for each
subsample to obtain β0

N and β0
R.

2. For each observation i and each class c, the probability ht
ic that individual i belongs to class

c conditional on the observed choice of the individual is computed using (7).

3. The updated class share of rounders (st+1
R ) is obtained using (10).

4. The updated parameters for the two latent classes (βt+1
N and βt+1

R ) are obtained by maximizing
(9).

5. Check for convergence. If convergence has not been achieved, then t is incremented by 1 and
the algorithm returns to step 2. Otherwise, the algorithm ends and the standard errors for
the parameters can be calculated. We use bootstrapped standard errors, but an alternative
approach would be to use the converged values from the EM algorithm as starting values in
a maximum likelihood estimation of θ using (5).

3 Generated Data Experiments

In order to investigate to potential impact that rounding can have on both parameter estimates
and subsequent welfare calculations, we conduct a series of generated data experiments. In all of
the experiments, the conditional mean number of trips for each class is assumed to be a linear
exponential function of travel cost to the site (denoted by Pi), individual income (denoted by Yi),
and a demographic variable (Zi) . Specifically, we assume that:

λic = exp(βc0 + βcP Pi + βcY Yi + βcZZi), c = N, R. (11)
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Across the experiments we vary two factors: (1) the share of rounders (i.e., sR) and (2) the mean
trips for the two classes (by varying βN0 and βR0).5 The emphasis on sR is obvious, with our
model reducing to the standard count data model when sR = 0. Five values for sR were considered
(sR = 0.1, 0.25, 0.5, 0.75, and 0.9). We focus on mean trips by class, since the propensity for
individuals to round will depend, in part, on their trip frequencies. If the vast majority of the
sample takes 0, 1, or 2 trips, then there will be little room for rounding to occur. Along these
lines, we consider two basic experiments. In experiment #1, we fix φ0 ≡ βR0/βN0 = 2 (making
rounders correspond to somewhat more avid trip takers) and vary βN0 from 0.5 to 1.5 in steps of
0.25 (increasing the overall trip taking by the two groups). The resulting intercepts are listed part
a of Table 1.6 In experiment #2, we fix β̄0 = 1

2(βN0 +βR0) (i.e., the simple average of the two type
intercepts), varying φ0 from 0.5 to 2.0. When φ0 = 0.5, rounders are less frequent trip takers than
non-rounders, whereas when φ0 = 2 the opposite is true. The resulting intercepts are listed in part
a of Table 2. In both experiments, we assume that the price, income and demographic coefficients
are the same across the two classes (i.e., βcP = βP , βcY = βY , and βcZ = βZ for c = N, R). In total,
twenty-five generated data settings were analyzed for each experiment. In all of the experiments,
the sample size was set at I=5000.

Formally, 100 generated data sets (with 5000 observations in each data set) were constructed for
each experiment/setting as follows:

1. Vectors of travel cost (P1, . . . , PI), income (Y1, . . . , YI) and the demographic variable (Z1, . . . , ZI)
were drawn from uniform distributions (i.e., Pi ∼ U [0, 1], Yi ∼ U [0, 1], and Zi ∼ U [0, 1]).

2. Using βR0 and βN0 for the given setting, along with βP = −0.75, βY = 0.25, and βZ = −0.25,
λic was computed for each individual and latent class using (11).

3. Each individual in the sample was randomly assigned to either the nonrounding (C∗
i = N) or

rounding (C∗
i = R) latent class with probabilities sN and sR, respectively, using a draw from

uniform distribution; i.e.,

C∗
i =





N ui < sN

R otherwise,
(12)

where ui ∼ U [0, 1].

4. Using
λi = 1(C∗

i = N)λiN + 1(C∗
i = R)λiR, (13)

5We also investigated the impact of varying both the overall price coefficient and differences between βNP and
βRP , but found that this had relatively little impact on the bias induced by rounding.

6Variations in these intercepts will induce variations in a group’s unconditional mean number of trips. Table 1
also provides (in square brackets) the corresponding unconditional mean trips for each group and parameter setting
given the assumed data generating process. For example, with β0R = 1, the corresponding unconditional mean trips
would be 1.40.
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where 1(·) is the indicator function, the individual’s actual trips (y∗i ) were drawn from a
Poisson distribution with conditional mean λi.

5. Reported trips (yi) were then constructed as

yi =





y∗i yi = 0, 1, 2

1(C∗
i = N)y∗i + 1(C∗

i = R)rnd5(y∗i ) otherwise,
(14)

where rnd5(x) is the function censoring x to the nearest integer of five.

For each experiment, two models were estimated: (1) The latent class count data model (LCCM)
outlined above and (2) the standard (single class) (SCCM) count data model in which no rounding is
assumed. The resulting parameter estimates are available from the authors upon request. However,
as the ultimate goal of the recreation demand model is typically for use in policy analysis, we
focus our attention here on the potential bias on subsequent welfare calculations that results from
ignoring respondent rounding. Specifically, we consider the welfare impact of the complete loss of
access to the site as measured by consumer surplus (CS).7 In a Poisson count data model with the
linear exponential representation of mean trips, the change in consumer surplus resulting from the
elimination of the site is given by:

CSi =
λi

βiP
, (15)

where
λi = exp(βi0 + βiP Pi + βiY Yi + βiZZi) (16)

denotes the mean number of trips and βi = (βi0, βiP , βiY , βiZ) denotes individual i’s true parameter
vector. The true welfare loss measures for individual i in the generated data sample are computed
using equation (15). Averaged across the individuals yields the mean true welfare loss for the
sample (denoted CS

Tr) for the rth generated data set.

For the single class count data model, the estimated welfare loss measures were computed for each
individual i using the fitted parameter vector from the SCCM specification for the rth generated
data set. Averaged across the individuals yields the mean welfare loss for the sample predicted
using the SCCM specification (denoted CS

Sr).

For the latent class count data model, the predicted welfare loss for individual i is a weighted
average of the welfare loss predicted for each latent class; i.e.,

ĈS
Lr

i = (1− ŝr
R)ĈS

Nr

i + ŝr
RĈS

Rr

i (17)
7Similar results are obtained if either compensating variation (CV) or equivalent variation (EV) are used instead

to measure the welfare impact.
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where

ĈS
cr

i =
exp(β̂r

c0 + β̂r
cP Pi + β̂r

cY Yi + β̂r
cZZi)

β̂r
cP

, for c = N, R (18)

and β̂r
ck (k = 0, P, Y, Z) and ŝr

R denote the fitted parameter estimates from the LCCM using the
rth generated data set. Averaged across the individuals yields the mean welfare impact for the
sample predicted using the LCCM specification (denoted CS

Lr). For each experiment/setting, we
compute the percentage error of each model in predicting the true consumer surplus. Tables 1b
and 2b provide a summary of our findings for experiments 1 and 2, respectively.

Starting with experiment 1, several patterns emerge. First, as we would expect, the LCCM model
does well in predicting the mean welfare loss stemming from the elimination of the site, since it
is the correct specification of the data generating process. In general, the average error is less
than one percent. The errors are typically larger when the share of rounders sR is small, leaving
relatively few observations with which to estimate parameters for the rounding class. Second,
the bias in welfare predictions from ignoring rounding (and using the standard SCCM) can be
substantial. Consumer surplus is overstated by as much as 37%. Indeed, the extent to which the
SCCM consumer surplus measure overstates the overall welfare loss appears to increase with the
latent percentage of rounders in the sample, but does not increase monotonically as the average
number of trips increase. Indeed, the largest bias occurs when the unconditional mean number of
trips for the rounding class is just over two. This may simply be because, when few trips are taken
by the rounding class, there is little opportunity for rounding, whereas when the rounding class
takes many trips (e.g., with an unconditional mean of 10.32), the percentage error in reported trips
is smaller (e.g., rounding 7 trips to 5 is a larger percentage error than when rounding 47 trips to
45).

Turning to the second experiment in Table 2b, we again see that percentage error resulting from
ignoring rounding increases with the size of the rounding class, with the bias being largest when
the unconditional mean trips for the rounding class is in the range from 2 to 3. Even when the
coefficients are identical for the two latent classes (i.e., φ0 = 1), the SCCM welfare measures are
biased; consumer surplus is overstated by as much 36%. This is due to the fact that, within the
rounding class, there will be a larger percentage of individuals rounding up than rounding down
(e.g., a larger percentage of the population will have actual trips of 3 and 4 relative to those having
actual trips of 6 and 7). Thus, reported trips will be a biased indicator of actual trips for the
rounding class, with E(yi|Xi, Ci = R) > E(y∗i |Xi, Ci = R).
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4 Application

As illustration of our proposed methods, we employ data from the Iowa Lakes Valuation Project.
The Iowa Lakes Project, funded by the Iowa Department of Natural Resources and the US EPA, was
a four year effort to gather panel data on the recreational lake usage patterns of Iowa households.
Beginning in 2002, trip counts for the 132 primary recreational lakes in the state were elicited from
a random sample of 8000 state residents. After accounting for nondeliverables, the overall response
rate to the mail survey was approximately 62%.8 In the current paper, we limit our attention to
visits to a single site, Saylorville Lake, a reservoir in central Iowa locate just north of the state
capital, Des Moines. We also restrict our attention to households within a 100 mile radius of the
site, leaving a total of I=1395 observations for use in our analysis. Table 3 provides basic summary
statistics for the sample.9 As Table 3 indicates, the mean number of trips taken to Saylorville Lake
in 2002 is 1.66, with approximately 69.4% of the sample choosing not visiting the site that year.

Table 4 provides the parameter estimates for the SCCM and two versions of the LCCM specification.
In version 1 of the LCCM, we constrain the parameters of the rounding and non-rounding groups
to be the same (and in doing so focus on rounding alone as a source of bias), whereas version
2 relaxes restriction. In general, all of the parameter estimates are statistically significant. The
SCCM model finds, as expected, that travel cost negatively impacts the mean number of visits to
the site. The results also suggest that trips increase with income, but decrease with the individual’s
age and education. Similar results are found in the constrained LCCM model, though the impact
of education is now somewhat larger. The estimated share of rounders is approximately one-
third of the population. The mean consumer surplus associated with closure of Saylorville Lake
is approximately 5.3% higher using the SCCM model ($22.49) compared to estimates based on
the constrained LCCM specification ($21.36), which is line with our generated data experiment.
With the unconditional mean number of trips of 1.66, there is relatively little room for rounding
to impact the results.

Turning to the unconstrained LCCM specification, while the general sign of the marginal effects
are similar to the other two specification, the parameters differ somewhat between the nonrounding
and rounding latent class. Trips are more responsive to age and education for the rounding class,
but less responsive to price and income. As was the case in the constrained LCCM model, under
forty percent of the population is found to belong to the rounding class. Despite the similarities
with the other two model, the unconstrained specification yields a substantially higher estimate of
the consumer surplus loss due to the closure of the site ($43.41). While this is certainly possible,

8Additional details regarding the Iowa Lakes Project can be found in [1]
9Travel cost Pi is computed assuming an out-of-pocket trip cost of $0.25 per mile times the individual’s round

trip distance to the site and a time cost of one-third the individual’s hourly times the round trip travel time to the
site. Travel distance and travel time were computed using the software package PCMiler.
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we believe that some caution would be appropriate in using the unconstrained LCCM specification.
Examining the summary statistics in Table 3, it is clear that the data exhibits a form of overdis-
persion, since the unconditional mean number of trips (1.66) is much less than the corresponding
unconditional variance (24.2). Intuitively, it seems possible that the unconstrained LCCM results
may be using the rounding class to compensate for overdispersion. A generalization of the LCCM
specification (e.g., using the negative binomial as the base distribution) could be used to examine
this issue further.

5 Summary and Possible Extensions

The objective of this paper was to illustrate the potential bias that rounding can have on both the
characterization of trip demand and the subsequent welfare estimates derived from a count data
model of recreation demand. We propose a latent class model to allow for rounding by a subset of
the population. Both our generated data experiments and an application to recreation demand at
Saylorville Lake in central Iowa suggest that the potential bias can be substantial.

There are a number of possible directions for future research. First, our latent class model assumes
that the share of rounders (sR) is a constant. However, it seems reasonable that the propensity for
individuals to round might depend upon their characteristic (e.g., age, gender, etc.), as well as the
circumstance under which the survey is conducted (e.g., involving near-term recall versus recall for
time periods further into past). Numerous authors have made the class membership probability in
the latent class model of function of respondent attributes (e.g., using a logit specification). Second,
our latent class model allows for only one type of rounding (i.e., to the near integer multiple of
five). The framework could readily be generalized to allow for a variety of rounding behaviors
(e.g., rounding to multiples of ten) by introducing addition latent classes. Finally, the Poisson
count model underlying our latent class model specification carries with it the often criticized
assumption of equidispersion (with the conditional mean of the trips being equal to the conditional
variance). The latent class approach used above could, however, be readily generalized by assuming
the each class has actual trips that are from a more general count data distribution allowing for
overdispersion (e.g., the negative binomial).

References

[1] Azevedo, C., K. Egan, J. Herriges, and C. Kling (2003). Iowa Lakes Valuation Project: Sum-
mary and Findings from Year One. Final Report to the Iowa Department of Natural Resources,
August.

10



[2] Boxall, A., and W. Adomowicz (2002). “Understanding Heterogeneous Preferences in Random
Utility Models: A Latent Class Approach,” Environmental and Resource Economics, Vol. 23,
pp. 421-442.

[3] Dempster, A., N. Laird, and D. Rubin (1977), “Maximum Likelihood from Incomplete Data
via the EM Algorithm,” Journal of the Royal Statistical Society B Vol. 39, pp. 138.

[4] Dominitz, J., and C. Manski (1997). “Perceptions of Economic Insecurity: Evidence From the
Survey of Economic Expectations,” Public Opinion Quarterly, Vol. 61, pp. 261-287.

[5] d’Uva (2005). “Latent Class Models for Use of Primary Care: Evidence from a British Panel,”
Health Economics, Vol. 14, pp. 873-892.

[6] d’Uva (2006). “Latent Class Models for Utilisation of Health Care,” Health Economics, Vol.
15, pp. 329-343.

[7] Greene, W., and D. Hensher (2003). “A Latent Class Model for Discrete Choice Analysis:
Contrasts with Mixed Logit,” Transportation Research, Part B, Vol. 37, pp. 681-698.

[8] Manski, C., and F. Molinari (2010). “Rounding Probabilistic Expectations in Surveys,” Journal
of Business & Economic Statistics, Vol. 28, No. 2, pp. 219-231.

[9] McLachlan, G. and T. Krishnan (1997), The EM Algorithm and Extensions, John Wiley and
Sons, New York

[10] Morey, E., J. Thacher, and W. Breffle (2006). “Using Angler Characteristics and Attitudinal
Data to Identify Environmental Preference Classes: A Latent-Class Model,” Environmental &
Resource Economics, Vol. 34, pp. 91-115.

[11] Provencher, B., K. Baerenklau, and R. Bishop (2002). “A Finite Mixture Logit Model of Recre-
ational Angling with Serially Correlated Random Utility,” American Journal of Agricultural
Economics, Vol. 84, No. 4, pp. 1066-1075.

[12] Train, K. (2008). “EM Algorithms for Nonparametric Estimation of Mixing Distributions,”
Journal of Choice Modelling, Vol. 1, No. 1, pp. 40-69.

[13] Train, K. (2009). Discrete Choice Methods with Simulation, Cambridge University Press, 2nd
edition.

11



Table 1: Welfare Performance - Experiment #1
a. Parameter Settinga

β0R 1.00 [1.40] 1.50 [2.30] 2.00 [3.80] 2.50 [6.26] 3.00 [10.32]
β0N 0.50 [0.85] 0.75 [1.09] 1.00 [1.40] 1.25 [1.79] 1.50 [2.30]

b. Mean Percentage Error in CS
sR LCCM SCCM LCCM SCCM LCCM SCCM LCCM SCCM LCCM SCCM

0.10 2.4 2.9 1.8 7.9 1.2 5.9 1.3 2.0 -0.1 -0.2
0.25 0.6 6.1 1.9 16.8 0.5 12.0 0.1 2.9 0.3 0.5
0.50 0.5 11.0 0.6 26.0 0.2 19.2 -0.4 2.0 0.1 1.3
0.75 0.9 15.6 -0.2 32.9 0.5 23.8 0.2 3.2 0.3 0.4
0.90 1.2 17.3 0.0 36.7 0.1 25.6 0.1 2.7 0.0 0.1
aCorresponding unconditional group mean trips in square brackets.

Table 2: Welfare Performance - Experiment #2
a. Parameter Settingb

φ0 0.50 0.75 1.00 1.50 2.00
β0R 1.00 [1.40] 1.29 [1.86] 1.50 [2.30] 1.80 [3.11] 2.00 [3.80]
β0N 2.00 [3.80] 1.71 [2.85] 1.50 [2.30] 1.20 [1.71] 1.00 [1.40]

b. Mean Percentage Error in CS
sR LCCM SCCM LCCM SCCM LCCM SCCM LCCM SCCM LCCM SCCM

0.10 0.9 1.1 1.3 2.0 1.2 3.6 1.4 6.4 1.2 5.9
0.25 0.1 1.7 1.0 6.0 1.0 9.3 1.5 14.1 0.5 12.0
0.50 0.0 5.0 0.7 12.5 0.8 19.0 1.4 24.8 0.2 19.2
0.75 0.3 9.6 -0.1 19.9 0.3 28.8 0.1 31.1 0.5 23.8
0.90 0.4 14.7 0.8 27.0 0.7 35.8 0.6 35.9 0.1 25.6
bCorresponding unconditional group mean trips in square brackets.

Table 3: Summary Statistics
Variable Model Variable Mean Std. Dev. Min Max
Total Day Trips (2002) yi 1.664 4.924 0.000 60.000
Travel Cost ($10’s) Pi 3.057 2.095 0.185 17.067
Income ($10000’s) Yi 6.300 5.904 0.500 32.500
Age (10 years) ZAge,i 5.290 1.744 1.550 8.750
College ZEduc,i 0.396 0.489 0.000 1.000

Table 4: Parameter Estimates
Model Class β̂0 β̂P β̂Y β̂Z,Age β̂Z,Educ ŝR

SCCM 2.664 -0.740 0.033 -0.170 -0.030 n.a.
(0.006) (0.002) (0.003) (0.001) (0.004)

Constrained 2.626 -0.741 0.033 -0.171 -0.469 0.361
LCCM (0.084) (0.023) (0.004) (0.014) (0.046) (0.097)

LCCM Ci = N 3.193 -0.816 0.032 -0.079 -1.621
(0.017) (0.006) (0.001) (0.003) (0.033)

LCCM Ci = R 0.866 -0.750 0.014 -0.258 4.093 0.386
(0.125) (0.039) (0.002) (0.018) (0.062) (0.008)

12


