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Abstract

Although the spectral analysis of stationary stochastic processes has
solid mathematical foundations, this is not the case for non-stationary
stochastic processes. In this paper, the algebraic foundations of the
spectral analysis of non-stationary ARMA processes are established.
For this purpose the Fourier Transform is extended to the field of
fractions of polynomials. Then, the Extended Fourier Transform pair
pseudo-covariance generating function / pseudo-spectrum, analogous
to the Fourier Transform pair covariance generating function / spec-
trum, is defined. The new transform pair is well defined for station-
ary and non-stationary ARMA processes. This new approach can be
viewed as an extension of the classical spectral analysis. It is shown
that the frequency domain has some additional algebraic advantages
over the time domain.

∗This paper was partly financed by the Comisión Interministerial de Ciencia y Tec-
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Complutense de Madrid. E-mail: marcos.bujosa@ccee.ucm.es
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1 Introduction

Time series literature provides two alternatives to represent non-stationary
stochastic processes in the frequency domain. The first one is based on the
same mathematical concepts used in the case of stationary processes, i.e.,
the Hilbert spaces l2 and L2 and the Fourier transform F. In this case the
property of finite variances is required and then, we are limited to analyz-
ing stochastic processes of finite duration. Since, in practice, we are facing
non-stationary processes, the covariance generating functions depend on the
time origin and, therefore, their corresponding pseudo-spectra are, equally,
time dependent (see Hatanaka and Suzuki, 1967). Also included within this
approach we can find some processes whose parameters change slowly with
time so that we can analyze the evolution of its pseudo-spectra. Priestley
(1981) has coined them evolutionary spectra.

The second approach deals with non-stationary and infinite processes with
infinite variance, and its pseudo-spectrum functional form is obtained from
the structural model of the time series processes. This approach has been
extensively used in the literature (e.g., Harvey (1989), Young, Pedregal, and
Tych (1999)). Within this approach the pseudo-spectra are similar to the
spectra as regards to its functional structure and simplicity. There is, how-
ever, one drawback. Contrary to the spectra, the pseudo-spectra are not
mathematically well founded since they are outside of the classical Fourier
analysis. Our goal in this paper is to fill out this gap by generalizing the spec-
tral theory to the non-stationary AutoRegressive Moving Average (ARMA)
processes. To do that, we will extend the Fourier transform outside the l2
space.

Priestley’s (1981) evolutionary spectra are local, i.e., they describe the
variance at each instant in time. Equally local are the Hatanaka and Suzuki’s
(1967) pseudo-spectra since its estimation is based on the use of samples
of finite length. In our case, however, the pseudo-spectrum describe the
variance for the whole process in a similar way as the spectra of the stationary
processes. Besides, they are also time independent if the parameters of the
ARMA model remain unchanged.

This paper is organized as follows: the pseudo-covariance is defined in
Section 2, and the pseudo-covariance generating function in Section 3. In
Section 4 we provide a new definition for the pseudo-spectra based on the
pseudo-covariance generating function. In Section 5 we show that the fre-
quency domain has some additional algebraic advantages over the time do-
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main. Finally, in Section 6 we underline some conclusions. Some notation
and the algebraic results used in the paper appear in the Appendix: in Sec-
tion A.1 the algebraic structure needed to deal with the pseudo-spectra is
exposed; in Section A.2 we extend the Fourier transform outside the Hilbert
space l2.

2 The pseudo-covariance

Let (Ω, B, P ) be a probability space. For a given wide-sense stationary sto-
chastic process of uncorrelated random variables with zero mean and variance
equal to one, ε = {εj; j ∈ Z} on (Ω, B, P ), we may consider the set H of all
finite linear combinations:

L(ε) = {f : Ω → R; such that f =
∑m

j=n
λjεj, −∞ < n ≤ m < ∞}.

L(ε) is a subspace of the Hilbert space, Hε, generated by ε, with scalar
product of two vectors x, y ∈ Hε:

〈x|y〉 = E [xy] = 〈
∑m

j=n
ajεj |

∑m′

j=n′
bjεj 〉 =

∑m′′

j=n′′
ajbj, (1)

where x =
∑m

j=n ajεj, and y =
∑m′

j=n′ bjεj. This scalar product is the co-
variance of x and y. The vector space Hε is a subspace of the well known
Hilbert space L2(Ω, B, P )1. To define the pseudo-covariance we need a wider
framework.

2.1 The dual space L(ε)∗

Let L(ε)∗ be the dual space of L(ε), i.e., the set of all linear functionals
defined on L(ε):

L(ε)∗ = {f : L(ε) → R; such that f is linear}.

Because all the elements of L(ε)∗ are linear functionals it is possible to de-
scribe each functional f using the value of f(·) for each εj, i.e., using the
values f(εj) = aj. Then we know that f(

∑m
j=n λjεj) =

∑m
j=n λjaj. It follows

that each element of the dual space, f ∈ L(ε)∗, is associated to a sequence

1(see Caines, 1988, Chapter one.)
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{aj}j∈Z ∈ RZ 2. Is easy to check that the functionals of L(ε)∗ are of the form
f( · ) ≡ 〈

∑
j∈Z ajεj | · 〉, and therefore

f
( ∑m

j=n
λjεj

)
≡ 〈

∑
j∈Z

ajεj |
∑m

j=n
λjεj 〉 =

∑m

j=n
λjaj.

We let f ≡
∑

j∈Z ajεj denote the elements f ∈ L(ε)∗, and let B denote the
usual backward operator: Bxt = xt−1.

Definition 2.1 (Filtered process). Let {ut}∞t=−∞ be an stochastic pro-
cess. We define a linear filter (or simply, filter) as a linear operator b(B) =∑

j∈Z bjB
j, where the weights are characterized by the sequence b ≡ {bj}j∈Z.

The filtered process, {b(B)ut}∞t=−∞ will be then expressed as

b(B)ut = · · ·+ b1ut−1 + b0ut + b−1ut+1 + · · · =
∑

r+s=t
brus ≡ (b ∗ u)t;

where the elements of the new stochastic process {b(B)ut}∞t=−∞ = b ∗ u,
are weighted sums of the random variables of the original stochastic process
{ut}∞t=−∞. Therefore, the filtered process is a sequence of functionals of the
dual space L(u)∗, associated to the sequence b.

2.2 Covariance and pseudo-covariance

In this subsection we define covariance and the pseudo-covariance using three
subspaces of the dual space L(ε)∗. The first subspace is the set, El2 , of all
functionals f ≡

∑
j∈Z ajεj whose associated sequence {aj}j∈Z are square

summable3.
El2 = {f ∈ L(ε)∗; such that a ∈ l2}.

The subspaces El2 and Hε ⊆ L2(Ω, B, P ) are isometrically isomorphic.4

From this, it is straight forward to see that the stationary solution5 of any
ARMA models is a sequence of functionals yt =

∑∞
j=∞ ϕjεt−j, where each

yt ∈ El2 . We can now redefine the covariance as a scalar product of function-
als in El2 :

2see definition of RZ in Section A.1 in the Appendix.
3see definition of l2 at the end of Section A.1.
4In fact, if ε is a base of L2(Ω,B, P ), then Hε = L2(Ω,B, P ); and then El2 and

L2(Ω,B, P ) are isometrically isomorphic.
5 (see Brockwell and Davis, 1987, Theorem 3.1.3)
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Definition 2.2 (Covariance). The covariance of x, y ∈ El2 is the following
bilinear form

cov : El2 × El2 −→ R
cov (x, y) ≡ E [xy] −→ 〈

∑
j∈Z ajεj |

∑
j∈Z bjεj 〉 =

∑
j∈Z ajbj,

(2)

where x =
∑

j∈Z ajεj, y =
∑

j∈Z bjεj.

The only difference with (1) is that here, x and y are elements of L(ε)∗; but
since a and b are squared summable sequences, the functionals x =

∑
j∈Z ajεj

and y =
∑

j∈Z bjεj, are also random variables with finite first and second
moments. Therefore, this new definition is operationally indistinguishable
from (1).

Clearly, from the former definition, the covariance is related to sequences
that belong to l2. The pseudo-covariance will be related to left finite se-
quences ({aj}, n < j < ∞), and right finite sequences ({bj}, −∞ < j < m);
where n and m are scalars6. With the two following subspaces of L(ε)∗ we
will define the pseudo-covariance. Let EI and E� be the subspaces:7

EI = {f ∈ L(ε)∗; such that a is left finite}
E� = {f ∈ L(ε)∗; such that a is right finite} .

Definition 2.3 (Pseudo-covariance). The pseudo-covariance of x ∈ EI

and y ∈ E� is the following bilinear form:

pseudo− cov : EI × E� −→ R
pseudo-cov(x, y) ≡ E [x, y] −→ 〈

∑
j∈Z ajεj |

∑
j∈Z bjεj 〉 =

∑
j∈Z ajbj.

where x =
∑

j∈Z ajεj, and y =
∑

j∈Z bjεj.

Note that, since aj is a left finite sequence and bj is a right finite sequence,
only a finite number of products ajbj are non-zero.

6This sequences belong to the sets R(z) or R [R(z)] defined in Notation A.1.2 in the
Appendix.

7The subspace El2 is isomorphic to the subspace, Ml2 , of sequences a ∈ RZ associated
to the functionals f ∈ El2 . Therefore Ml2 is a subspace of l2. In the same manner, the
subspaces EI and E� are, respectively, isomorphic to the subspaces MR(z) ⊂ R(z) and
MR[R(z)] ⊂ R [R(z)], of sequences a ∈ RZ associated to the functionals f ∈ EI and f ∈ E�.
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3 The pseudo-covariance generating function

From now on let {ξt} ∼ w.n. N(0, σ2
ξ ) denote a Gaussian stochastic process

that satisfies E(ξt) = 0, E(ξ2
t ) = σ2, and E(ξtξt−k) = 0 when k 6= 0. In

the next subsection we deal with the three inverses of polynomials defined
in equations (15), (11), and (12); i.e., the inverses that belong to l1 (the set
of absolutely summable sequences); or belong to R((z)) (the set of left finite
sequences); or belong to R [R((z))] (the set of right finite sequences)8.

3.1 Three solutions of ARMA models

In this paper we restrict ourselves on ARMA(p, q) stochastic process, i.e.,
stochastic process {yt}∞t=−∞ that satisfy the ARMA(p, q) model

φ(B)yt = θ(B)ξt, {ξt} ∼ w.n. N(0, σ2
ξ ) (3)

where φ(B) =
∑p

j=0 φjB
j is the AutoRegressive (AR) polynomial and θ(B) =∑q

j=0 θjB
j is the Moving Average (MA) polynomial. We assume that φ0 =

θ0 = 1, and φ(·) and θ(·) have no common zeros. {ξt}∞t=−∞ denotes the
innovation in the process {yt}∞t=−∞.

If the AR polynomial does not have roots with unit modulus, there is
a unique stationary solution of (3) (see Brockwell and Davis, 1987); this
stationary solution is a filtered process whose associated sequence belongs
to l1. To find the stationary solution we should use the inverse of the AR
polynomial that belongs to l1 (see (15)):

yt =
θ(B)
φ(B)

(l1)ξt, {ξt} ∼ w.n. N(0, σ2
ξ ).

Then, the weighted sum of the {ξt}∞t=−∞ random variables generates a random
variable yt with finite first and second moments; and therefore, the random
variables {yt}∞t=−∞ belong to Hε.

For any AR polynomial we can define two more solutions. The causal or
backward solution is related to the left finite inverse sequence (see (11)):

yt =
θ(B)
φ(B)

Iξj, {ξt} ∼ w.n. N(0, σ2
ξ ).

8A formal definition of the sets R((z)), and R [R((z))] appear in Godement (1974) or
in Notation A.1.1 in the Appendix.
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This solution is a weighted sum of the past values of {ξt}∞t=−∞. When all
the roots of φ(z) lie outside the unit circle the left finite inverse sequence is
absultely summable; and therefore this solution is the stationary one. We
can also define the forward solution using the right finite inverse sequence
(see (12)):

yt = �
θ(B)
φ(B)

ξj, {ξt} ∼ w.n. N(0, σ2
ξ ),

where the solution is expressed as a weighted sum of future values of {ξt}∞t=−∞.
When all the roots of φ(z) lie inside the unit circle the right finite inverse
sequence is absultely summable; and therefore this solution is the stationary
one.

3.2 The covariance generating function

Let us consider an ARMA model whose AR polynomial has no roots with
unit modulus. If we restrict ourselves to its stationary solution

yt =
θ(B)
φ(B)

(l1) ξt = ϕ(B)ξt, {ξt} ∼ w.n. N(0, σ2
ξ ); (4)

using Definition 2.2, and considering the (reversing) map R [·] such that
R [aj] = a−j, the covariances are

γk,t ≡ cov (ytyt−k) = E [ytyt−k] =

= E

[ (
· · ·+ ϕ−1ξt+1 + ϕ0ξt + ϕ1ξt−1 + · · ·

)(
· · ·+ ϕ−1ξt−k+1 + ϕ0ξt−k + ϕ1ξt−k−1 + · · ·

) ]
=

= σ2
ξ

∑
j∈Z

ϕj+kϕj = σ2
ξ

∑
j∈Z

ϕj+kR [ϕ−j] =

= σ2
ξ (ϕ(z) ∗R [ϕ(z)])k = σ2

ξ

(
ϕ(z) ∗ ϕ(z−1)

)
k
, (5)

where ϕ(z−1) ≡ R [ϕ(z)], and [ϕ(z) ∗ ϕ(z−1)]k is the k-th element of the se-
quence ϕ(z)∗ϕ(z−1). This expression is independent of t, and hence γk,t = γk.
When the roots of φ(B) are outside the unit circle (φ(B))−1(l1) = (φ(B))−1I ,
and then (4) becomes the backward solution; and it is said that the process
is causal stationary. The covariance generating function is

Γy(z) = σ2
ξ ·

θ(z)
φ(z)

(l1) ∗R

[
θ(z)
φ(z)

(l1)

]
= σ2

ξ ·
θ(z)
φ(z)

I ∗ �
θ(z−1)
φ(z−1)

= σ2
ξ ·

θ(z) ∗ θ(z−1)
φ(z) ∗ φ(z−1)

(l1) =
∞∑

k=−∞
γkz

k
. (6)
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This sequence is summable, symmetric, and both left and right infinite.

3.3 The Pseudo-covariance generating function

Let us consider an ARMA(p,q) with AR roots with modulus that could
be greater, equal or smaller than one. If one of them has unit modulus
the inverse (φ(B))−1(l1) is not defined and therefore there is no station-
ary solution. Neither there is a covariance generating function. Neverthe-
less, it is always possible to define the pseudo-covariance generating func-
tion using the forward and backward solutions. Let yI

t = ϕ(B)ξt, and
y�

t = υ(B)ξt, denote respectively the backward and forward solutions; where
ϕ(B) = (φ(B))−1I ∗θ(B) and υ(B) = (φ(B))−1� ∗θ(B). Using Definition 2.3,
the pseudo-covariances, λk,t, of the process are

λk,t = E
[
yI

t y�
t−k

]
= E [ϕ(B)ξt · υ(B)ξt−k]

= E

[ (
ϕ0ξt + ϕ1ξt−1 + ϕ2ξt−2 + · · ·

)(
· · ·+ υ−1ξt−k+1 + υ0ξt−k + · · ·+ υq−pξt−k−(q−p)

) ]
(7)

= σ2
ξ

∞∑
r+s=k

ϕrυ−s = σ2
ξ

∞∑
r+s=k

ϕrR [υ]s = σ2
ξ (ϕ(z) ∗R [υ(z)])k .

The convolution product is well defined since both ϕ(z), R [υ(z)] are left
finite. This expression does not depend on t, therefore, λk,t = λk.

The pseudo-covariance generating function, Λy(z), is the whole sequence
of pseudo-covariances

Λy(z) = σ2
ξ ·

θ(z)
φ(z)

I ∗R

[
�

θ(z)
φ(z)

]
= σ2

ξ ·
θ(z)
φ(z)

I ∗ R [θ(z)]
R [φ(z)]

I

= σ2
ξ ·

θ(z) ∗R [θ(z)]
φ(z) ∗R [φ(z)]

I = σ2
ξ ·

θ(z) ∗ θ(z−1)
φ(z) ∗ φ(z−1)

I =
∞∑

k=q−p

λkz
k.

(8)

This sequence is left finite and starts in the lag (q−p). The pseudo-covariance
generating function is defined for any ARMA(p,q) process.

4 The pseudo-spectrum

From the previous pseudo-covariance generating function we can now define
the pseudo-spectrum of an ARMA(p,q) process as:
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Definition 4.1 (Pseudo-spectrum). Let {yt}∞t=−∞ be a stochastic ARMA(p,q)
process such as

φ(B)yt = θ(B)ξt, {ξt} ∼ w.n. N(0, σ2
ξ )

where φ(·) could have roots with modulus greater, equal or smaller than
one. We define the pseudo-spectrum of {yt}∞t=−∞ as the extended Fourier
transform9 of its pseudo-covariance generating function

fy(ω) = FE (Λy(z)) = σ2
ξ

F (θ(z) ∗ θ(z−1))

F (φ(z) ∗ φ(z−1))
= σ2

ξ

θ(e−iω)θ(eiω)

φ(e−iω)φ(eiω)
= Λy(e

−iω).

(9)

Note that, as a result of Theorem A.9, when the ARMA(p,q) process is
stationary the spectrum and the pseudo-spectrum coincide.

Example 4.1. Let {yt}∞t=−∞ be a random walk process

yt(1−B) = ξt, {ξt} ∼ w.n. N(0, σ2
ξ );

following Equation (8), its pseudo-covariance generating function is

Λy(z) = σ2
ξ ·

1
1− z

I ∗R

[
�

1
1− z

]
=

σ2
ξ

(1− z) ∗ (1− z−1)
I. (10)

On one hand
1

1− z
I = 1+z+z2+z3+· · · . On the other, from Equation (12)

R
[
(1− z)−1�

]
= R

[
R

[
(R [1− z])−1I

]]
= (1− z−1)

−1I

= −z−1 − 1− z − z2 − · · · .

Hence, the pseudo-covariance generating function is

Λy(z) = (1 + z + z2 + · · · ) ∗ (−z−1 − 1− z − · · · ) = −
∑∞

j=−1
(j + 2)z,

that is, λj = 0 for all j ≤ −2, and λ−1 = −1, λ0 = −2, λ1 = −3, . . . .
Finally, from Equation (10), we know that the pseudo-spectrum is

fy(ω) = FE

(
σ2

ξ

(1− z) ∗ (1− z−1)
I

)
=

σ2
ξ

(1− e−iω)(1− eiω)
=

σ2
ξ

2− 2 cos(ω)
.

9see Definition A.2 in the appendix.
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5 Frequency domain versus time domain

Looking at Figure 1 we may observe that both sides have a Hilbert space.
Nevertheless, in the left side (the time domain) there are three rings that
are not simultaneously embedable in any ring, because the convolution prod-
uct is not associative, whereas the whole right side (the frequency domain)(
C[−π,π]/ ∼, +, ·

)
10 is a ring. Furthermore, the extended Fourier transform

simplifies the algebraic structure because both fields, R(z) and R [R(z)], have
a common image, the field Q. There is an important consequence: only when
the pseudo-covariance generating functions belong to l1 we have guarantee
that it is equivalent to deal with ARMA(p,q) models in the time domain or
in the frequency domain. The reason is that, whereas the product of the
pseudo-spectra is associative, the convolution product of sequences as a par-
tial operation in RZ is not11, or even it is not defined for some sequences12.
Therefore, the frequency domain has clear operational advantages when the
ARMA(p,q) processes are non-stationary. Some problems can be solved using
the pseudo-spectra but not using the pseudo-covariance generating functions .
For example, Bujosa, Garćıa-Ferrer, and Young (2002) try to fit by Ordinary
Least Squares (OLS) a linear combination of pseudo-spectra of non-stationary
unobserved components to the pseudo-spectrum of a seasonal non-stationary
observed time series. But, since those pseudo-spectra are outside the Hilbert
space L2, OLS are not applicable. However, the problem can be shift to L2

by products inside the ring
(
C[−π,π]/ ∼, +, ·

)
. This is not feasible in the time

domain.

6 Conclusions

The pseudo-spectrum has some interesting properties. The first one is that
the pseudo-covariance generating function and the pseudo-spectrum are de-
fined for any (stationary or non-stationary) ARMA(p,q) process. Secondly,
we have shown that the frequency domain has some additional algebraic
advantages over the time domain. Finally, the pseudo-spectrum keeps its

10See Section A.2.
11For example:

[
(1− αz)−1I ∗(1−αz)

]
∗(1− αz)−1� = (1− αz)−1� ; but (1− αz)−1I ∗[

(1− αz) ∗ (1− αz)−1�

]
= (1− αz)−1I .

12For example: (1− z)−1I ∗
(
1− z−1

)−1� is not defined.
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physical interpretation as the power distribution among different frequencies.
When the ARMA(p,q) process is stationary, the spectrum and the pseudo-
spectrum coincide. It follows that both sequences Γ(z), and Λ(z) have the
information about the power distribution of the process. When facing roots
with unit modulus in the AR side, Γ(z) and the spectrum are no longer de-
fined. But, Λ(z) is defined; and its extended Fourier transform (the pseudo-
spectrum) shows poles in the frequencies associated with the roots with unit
modulus. This means that there are infinite contributions to the variance at
those frequencies. In those cases the pseudo-spectra are non-integrable and
therefore, the process has infinite variance. However, the pseudo-spectra are
time invariant, such that although the variance is infinite, it’s distribution
among the frequencies is time invariant.

A Appendix

A.1 Algebraic foundations

Let RZ consist of all the sequences of real numbers {aj}∞j=−∞. This set
together with the two usual operations (+, ·) is a vector space. Let

b ≡ {bj}j∈Z ≡
∑

j∈Z
bjz

j,

denote the elements of RZ, where the coefficient on zj is the jth element of
b. In the above expression the Greek letter

∑
does not indicate summa-

tion, since
∑

bjz
j is a mere notation and can also denote a non-convergent

sequence.
Let codegree denote the bigger lowest index of a non-null sequence that

verifies that for each j < codegree (a) , aj = 0. For the null sequence, 0, we
set codegree (0) = −∞.

Notation A.1.1. Let R((z)) be the subset of RZ of all the sequences with
finite codegree and the null sequence (the set of left finite sequences). If we
define the convolution product ∗ of two sequences a, b ∈ R((z)) as:

(a ∗ b)j =
∑

r+s=j
arbs,

it is easy to prove that (R((z)), +, ∗) is a field13, and that codegree (a ∗ b) =

13(R((z)),+, ∗) is the field of fractions of formal series (see Godement, 1974).
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codegree (a) + codegree (b). The inverse sequence of a ∈ R((z)), a 6= 0, is:

(a)−1I ≡ 1
a

I =


0 when j < −k
1
ak

when j = −k
−1
ak

∑j−1
r=−k braj+k−r when j > −k

, k = codegree (a) .

(11)
Let us consider the auto-morphism R : RZ → RZ such that R [aj] = a−j.

The image R [R((z))] with the sum and convolution product operations form
a field isomorphic to (R((z)), +, ∗). The degree of a non-null sequence is the
highest integer index that verifies that for each j > degree (a), aj = 0. For the
null sequence, 0, we say degree (0) = ∞. Therefore R [R((z))] is the set of all
sequences with degree (the set of right finite sequences); and degree (a ∗ b) =
degree (a) + degree (b). The inverse sequence of a in (R [R((z))] , +, ∗) is the
sequence (a)−1� that verifies

(a)−1� ≡ �
1
a

= �
1

R [R [a]]
= R

[
1

R [a]
I

]
. (12)

Notation A.1.2. We define the set of all polynomials R[z] as the set of
sequences with codegree equal or greater than zero that also have degree. The
triple (R[z], +, ∗) is a sub-ring of the aforementioned two fields. The smallest
field K ⊂ R((z)) containing R[z] is isomorphic to the field of fractions of
polynomials R(z). This set is characterized by

R(z) = {p ∗ (q)−1I ≡ p
q

I ∈ R((z)); such that p, q ∈ R[z] and q 6= 0}. (13)

Because R is an isomorphism, there is an isomorphic field, R [R(z)], of R(z)
in R [R((z))].

It follows that the polynomials have, at least, two inverse sequences; one
in R(z), and another in R [R(z)] (equations (11) and (12)).

The space l1 consist of all absolutely summable sequences, or simply all
summable sequences in Schwartz’s (1961) sense14, that is, the sequences that
verify

∑
j∈Z aj < ∞. The convolution product of two sequences in l1 belongs

14If I is an index set, and if (ui)i∈I is a family of real numbers defined by the index set
I, the sequence

∑
i∈I ui is summable and

∑
i∈I ui = S if, for every ε > 0, there is a finite

index subset J ⊂ I such that, for any index subset K ⊂ J , it is verified that |S − SK | ≤ ε,
where SK =

∑
i∈K ui.
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to l1. The inverse sequence of the polynomial (1 − az) in R(z) is (1 + az +
a2z2+· · · ), and the inverse sequence of (1−az−1) in R [R(z)] is (· · ·+a2z−2+
az−1 + 1). Given that every polynomial b with degree (n + r), n, r ≥ 0 can
be expressed as

b = constant ·
[
zn ∗

∏r

j=1
(1− βjz)

]
, (14)

it is easy to prove that (b)−1I belongs to l1 if all the roots of b lie outside
the unit circle, and that (b)−1� belongs to l1 if all the roots of b lie inside the
unit circle. This fact suggests another inverse sequence for the polynomials
ϕ with roots of modulus different from one. We can write ϕ as ϕ = φ ∗ Φ,
where φ is the polynomial with all its roots outside the unit circle, and Φ is
the polynomial with all its roots inside the unit circle. Then, the sequence

(ϕ)−1(l1) ≡ 1
ϕ

(l1) =
1
φ

I ∗ �
1
Φ

, (15)

is an inverse sequence of ϕ that belongs to l1 because ∗ is associative for
ϕ, (φ)−1I , (Φ)−1� ∈ l1.

The vector space
(
l2, +, ·

)
consists of all square summable sequences, that

is,
∑

j∈Z |aj|2 < ∞. This vector space is a Hilbert space when the inner
product is 〈a|b〉l2 =

∑
j∈Z ajbj. The set l2 contains the set l1.

A.2 The Extended Fourier Transform FE

Let C[−π,π] denote the set of all real valued functions f(ω) on the closed
interval [−π, π]. We say that f is equivalent to g, and write f ∼ g, if
and only if µ{ω|f(ω) 6= g(ω)} = 0, where µ{ω} is the Lebesgue measure
of the set {ω}. The set C[−π,π] with the equivalence relation ∼ is a vector
space. Indeed,

(
C[−π,π]/ ∼, +, ·

)
is an unitary ring, where the equivalence

class [f ] = {g|g ∼ f} is invertible if and only if µ{ω|f(ω) = 0} = 0.
The space L2[−π, π] consist of all equivalence classes of real valued func-

tions [f ] ∈ C[−π,π] such that
∫ π

−π
f 2d(ω) < ∞, where

∫ π

−π
f 2d(ω) is the

Lebesgue integral (Luenberger, 1968). We now let the function f denote
the equivalence class of functions [f ] ∈ C[−π,π]. The vector space L2[−π, π]
with the inner product 〈f |g〉L2 =

∫ π

−π
(f · g) d(ω) is a Hilbert space.

Definition A.1. We define the Fourier Transform F, to be the bijective
mapping F : l2 −→ L2 such that

a =
∑∞

j=−∞ ajz
j −→ fa(ω) =

∑∞
j=−∞ aje

−iωj. (16)
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F is an isometric isomorphism from l2 to L2[−π, π]; and F (l1) ⊂ L2. The
Fourier Transform verifies the well known convolution property:

Proposition A.1 (Convolution property 1). If p, q ∈ l1, then F (p) (ω) ·
F (q) (ω) = F (p ∗ q) (ω), for all ω ∈ [−π, π].

Therefore, (F (l1) , +, ·) is a sub-ring of C[−π,π] isomorphic to l1. In par-
ticular, F is defined in the ring R[z]. We may extend the Fourier Transform
F15 to the whole field R(z), in such a way that the new mapping is an iso-
morphism of fields. To do so, we need the following proposition:

Proposition A.2. For all p ∈ {R[z]− {0}}, F (p) is invertible.

Proof. We need to prove that there is a finite number of points where F (p)
is zero. This is straightforward from Equation (14), since eiω has no zeros,
and 1− αeiω has one zero or none, depending on |α|.

Let (Q, +, ·) be the smallest field containing F (R[z]). Then Q is set of
fractions Q = {f/g; such that f, g ∈ F (R[z]) , g 6= 0}; and we can extend F

defining the following new transform FI:

FI : R(z) −→ Q; such that
p
q

I −→ F (p)
F (q)

. (17)

Proposition A.3. FI is well defined, bijective, and it is an isomorphism
from the field R(z) to the field Q.

Proof. 1. FI is well defined since

p ∗ (q)−1I = p′ ∗ (q′)−1I ⇒ p ∗ q′ = q ∗ p′

⇒ F (p) · F (q′) = F (q) · F (p′)

⇒ F(p)
F(q)

= F(p′)
F(q′)

⇒ FI(p ∗ (q)−1I) = FI(p′ ∗ (q′)−1I).

2. FI is an homomorphism of fields:

FI

(
p
q

I +
p′

q′
I

)
= FI

(
p ∗ q′ + p′ ∗ q

q ∗ q′
I

)
= F(p)·F(q′)+F(p′)·F(q)

F(q)·F(q′)

= F(p)
F(q)

+ F(p′)
F(q′)

= FI(p ∗ (q)−1I) + FI(p′ ∗ (q′)−1I); and

FI

(
p
q

I ∗ p′

q′
I

)
= F(p∗p′)

F(q∗q′)
= F(p)·F(p′)

F(q)·F(q′)
= FI

(
p
q

I

)
· FI

(
p′

q′
I

)
.

15The restriction of F on R[z]
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3. Finally, FI (1) = FI(1 ∗ (1)−1I) = F(1)
F(1)

= 1

The following lemma shows that FI extends the Fourier Transform to
R(z).

Lemma A.4. For all a ∈ l2 ∩ R(z), F (a) = FI (a).

Proof. The result is trivial when a is a polynomial. In the other case, let a =
p∗(q)−1I ∈ l2∩R(z), where p, q ∈ R[z] and q 6= 0, then, due to (p∗(q)−1I)∗q =
p ∈ R[z], it follows that F((p ∗ (q)−1I) ∗ q) = F(p ∗ (q)−1I) ·F(q) = F(p), and
FI((p∗(q)−1I)∗q) = FI(p∗(q)−1I)·F(q) = F(p). Since q 6= 0, F(q) ∈ Q−{0}
is invertible on C[−π,π], then FI(p∗(q)−1I) ·F(q) = F(p∗(q)−1I) ·F(q) implies
FI(p ∗ (q)−1I) = F(p ∗ (q)−1I).

In the same way we define the transform F� to be

F� : R [R(z)] −→ Q; such that �
p
q
−→ F (p)

F (q)
. (18)

The transform F� has similar properties, that is, it is well defined, bijective,
it is an isomorphism from the field R [R(z)] to the field Q. Furthermore, it
extends the Fourier Transform from l2 to R [R(z)].

Note that if a ∈ R(z) ∩ R [R(z)] then a ∈ l2 ∩ R(z) ∩ R [R(z)] because
only finitely many of the aj are non-zero. Hence, from Lemma A.4, (and the
analogue proposition for a ∈ l2∩R [R(z)]), we have F (a) = FI (a) = F� (a).
Now we come to the Extended Fourier Transform FE.

Definition A.2 (Extended Fourier Transform, FE). We define the Ex-
tended Fourier Transform, FE, to be the mapping:

FE : l2 ∪ R(z) ∪R [R(z)] → L2 ∪ Q

a → FE (a) =


F (a) if a ∈ l2
FI (a) if a ∈ R(z)
F� (a) if a ∈ R [R(z)]

.
(19)
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Figure 1: Extended Fourier Transform Structure

A.2.1 Extended Fourier Transform Properties

The Extended Fourier Transform verifies the following properties (in addition
to Proposition A.1):

Lemma A.5 (Convolution property 2). Let p ∗ (q)−1I ∈ R(z), let b ∈
l2 ∪ R(z) ∪R [R(z)], and let (p ∗ (q)−1I) ∗ b ∈ l2 ∪ R(z) ∪R [R(z)], then

FE(p ∗ (q)−1I ∗ b) = FE(p ∗ (q)−1I) · FE (b) .

Proposition A.6. If p ∈ R[z], q ∈ l2, then F (p ∗ q) = F (p) · F (q)

Proof. We know that

F (zr) · F (q) = e−irω ·
∑∞

s=−∞ qse
−iωs =

∑∞
s=−∞ qse

−iωse−irω

= F
(∑∞

s=−∞ qsz
r+s

)
= F

(
zr ∗

∑∞
s=−∞ qsz

s
)

= F (zr ∗ q) .

Therefore

F (p ∗ q) = F (p0q + p1z ∗ q + p2z
2 ∗ q + · · ·+ pnz

n ∗ q)
= p0F (q) + p1F (z ∗ q) + · · ·+ pnF (zn ∗ q)
= p0 · F (q) + F (p1z) · F (q) + · · ·+ F (pnz

n) · F (q) = F (p) · F (q) .

Lemma A.7. If p is a polynomial, and q∗a is defined, p∗(q∗a) = (p∗q)∗a.
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Proof. ((zj ∗ q) ∗ a)n =
∑

r+s=n(zj ∗ q)ras =
∑

r+s=n qr−jas. If we substitute
r′ by r − j, then

∑
r′+s=n−j qr′as = (q ∗ a)n−j = (zj ∗ (q ∗ a))n . Therefore

(p ∗ q) ∗ a =
(
p0 ∗ q + p1z ∗ q + p2z

2 ∗ q + · · ·+ pmzm ∗ q
)
∗ a =

(p0 ∗ q) ∗ a + (p1z ∗ q) ∗ a + · · ·+ (pmzm ∗ q) ∗ a =

p0(q ∗ a) + p1z ∗ (q ∗ a) + · · ·+ pmzm ∗ (q ∗ a) = p ∗ (q ∗ a)

Proof of Lemma A.5 (The convolution property 2). On the one hand, the ex-
tended Fourier transform of q ∗ (p ∗ (q)−1I ∗ a) is

FE(q ∗ (p ∗ (q)−1I ∗ a)) = FE(q) · FE(p ∗ (q)−1I ∗ a)

= F(q) · FE(p ∗ (q)−1I ∗ a)
,

because q is a polynomial (Proposition A.6 and Point 2 of the proof of Propo-
sition A.3). On the other, from Lemma A.7 it follows that q∗(p∗(q)−1I ∗a) =
(q ∗ p ∗ (q)−1I) ∗ a = p ∗ a, and its extended Fourier transform is

FE(q ∗ (p ∗ (q)−1I ∗ a)) = FE(p ∗ a) = FE(p) · FE(a) = F(p) · FE(a),

because p is a polynomial. Then

F(q) · FE(p ∗ (q)−1I ∗ a) = F (p) · FE(a)

⇒ FE(p ∗ (q)−1I ∗ a) = F(p)
F(q)

· FE(a)

⇒ FE(p ∗ (q)−1I ∗ a) = FE(p ∗ (q)−1I) · FE (a) ,

given that q 6= 0; and therefore, F (q) ∈ Q− {0} is invertible on C[−π,π].

Lemma A.8 (Convolution property 3). Let p ∗ (q)−1� ∈ R [R(z)], let
b ∈ l2 ∪ R(z) ∪R [R(z)], and let (p ∗ (q)−1�) ∗ b ∈ l2 ∪ R(z) ∪R [R(z)], then

FE(p ∗ (q)−1� ∗ b) = FE(p ∗ (q)−1�) · FE(b).

The proof is similar to the former.
The following theorem shows a most remarkable property. We have seen

that the polynomials have different inverse sequences, in contrast, the image
of all of then in Q is common.

Theorem A.9 (Common image of the inverse sequences). Let p ∈
R(z), and let q, q′ ∈ l2 ∪ R(z) ∪R [R(z)] such that (p ∗ q) = 1 y (p ∗ q′) = 1,
then FE (q) = FE (q′).

Proof. FE (p ∗ q) = FE (p) · FE (q) = 1 = FE (p) · FE (q′) = FE (p ∗ q′) . Since
q 6= 0, F (q) ∈ Q − {0} is invertible on C[−π,π], it follows that FE (q) =
FE (q′).
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