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Abstract 

A common and longstanding assumption in the economic growth literature has been that total 

factor productivity growth is lower in the agriculture sector than in the rest of the economy. 

Using a stochastic production frontier finite mixture model, labor productivity change is 

decomposed into catch-up, technological change and factor accumulation effects and stochastic 

shocks. This decomposition is investigated separately in the agriculture sector and the economy 

as a whole using a balanced panel data set of 45 countries in different development stages 

during the time period 1967-1992.  The impact of labor productivity change components on the 

evolution of the cross-country counterfactual distribution of labor productivity is also analyzed.  

For the overall economy, the empirical results indicate that growth and the twin-peak 

distribution of labor productivity are driven by capital deepening.  However, the results for the 

agriculture sector suggest that labor productivity distribution is brought by total factor 

productivity changes rather than factor accumulation. Furthermore, the agriculture sector 

exhibits reductions in capital per worker as well as stronger catch-up and technological change 

effects. Thus, growth of the rest of the economy appears to owe more to capital deepening and 

resource reallocation from agriculture than to faster productivity change. 

 

Key words: Agriculture, Labor Productivity Growth, Catch-Up, Total Factor Productivity, Factor 

Accumulation, Panel data, Stochastic Production Frontier, Finite Mixture Model. 
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1. Introduction 

Recent empirical studies of economic growth (e.g., Quah, 1996a, 1997) have shown that 

the second half of the 20st century was characterized by a phenomenon of bipolar 

international divergence of labor productivity. More specifically the distribution of 

labor productivity across countries, which had a conventional unimodal shape in the 

early sixties, became clearly bimodal at the end of the century. Having in mind that 

labor productivity is a rough indicator of a nations’ welfare, such evidence suggests that 

the world has become bipolarized into the rich and the poor, with the middle-income 

group of countries nearly disappearing.  

The empirical research that has been done on the determinants of economic growth has 

provided important clues for explaining why the inequality among countries has 

significantly increased in the last few decades. In particular, various studies have 

investigated which one of the two factors – capital accumulation or total factor 

productivity growth – is the main responsible for the observed differences in labor 

productivity growth across countries.  

Mankiw, Romer and Weil (1992) are among the first to perform cross-country analysis 

of economic growth determinants. Using data for 98 countries, these authors conclude 

that factor accumulation accounts for approximately 80% of the variation in output per 

worker between 1965 and 1985. Young (1995) applies the approach known as growth 

rates accounting to the growth miracles of the East Asia between 1965 and 1990 and 

concludes that total factor productivity (TFP) growth rates for these countries ranged 

between 0 and 2%, clearly less than previously found by growth accounting studies, 

which attributed 1/3 of growth to TFP. Thus, both studies of Mankiw, Romer and Weil 

(1992) and Young (1995) are consistent with the idea that factor accumulation is the 

crucial determinant of growth. 

This view was initially questioned by the works of Hall and Jones (1999) and Klenow 

and Rodriguez-Clare (1997), suggesting that disparities in TFP are the main explanation 

for output per worker differences. Hall and Jones (1999) present a new technique of 

level accountings instead of growth rates accounting in the decomposition of output per 

worker into capital intensity, human capital and TFP. Assuming a small capital share 
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coefficient in the Cobb-Douglas production functions, these authors conclude that most 

of the growth gap between any country and the United States of America is due to 

residual productivity differences, which are primarily related to differences in social 

infrastructures across countries. Klenow and Rodriguez-Clare (1997) apply a similar 

method, with the difference of using two production functions: one for consumption 

goods and physical capital, the other for human capital. These authors report that TFP 

explain more than 60% of the differences in output per worker. 

More recently, Kumar and Russell (2002) have used a nonparametric and deterministic 

method known as Data Envelopment Analysis (DEA) to estimate a world production 

frontier for the years of 1965 and 1990 from a large sample of countries. Assuming 

constant returns to scale (CRS) it is possible to decompose labor-productivity growth 

into components attributable to capital accumulation (movements along the frontier), 

technological change (shifts in the world production frontier) and technological catch-

up (movements towards the frontier). The two latter effects can be combined into the 

TFP growth effect. The empirical results suggest that capital deepening, as opposed to 

technological change or technological catch-up, is the main explaining factor for the 

international divergence of economies. Furthermore, the authors argue that wealthy 

countries have benefited more from technological progress than less developed 

countries and find striking examples of technological regress in low-income countries. 

Comparing this approach with the one presented by Hall and Jones (1999), it is 

important to mention that none of the effects is determined residually and that catch-up 

is not measured relatively to a single country.    

An additional perspective for attempting to explain why the gap between rich and poor 

countries has widened concerns the sectoral composition of output. In particular, the 

fact that in developing countries agriculture still accounts for a significant share of the 

overall economy appears to be a major source of disadvantage for the developing world 

for at least three main reasons.  Firstly the demand for agricultural products is rather 

inelastic. Therefore, a developing country will never be able to base a process of fast 

growth on the agricultural sector, unless it manages to exploit its comparative 

advantages by increasingly supplying foreign markets. Unfortunately, the highly 

protective agricultural policies of the rich countries strongly constrain this possibility.  

 3



Secondly, since the days of Adam Smith and David Ricardo, agriculture has often been 

regarded as a sector of low productivity growth relatively to the rest of the economy, 

due to a more limited scope for division of labor and also to diminishing returns to land. 

Thirdly, empirical studies have suggested that agricultural productivity growth is higher 

in developed countries than in developing countries.     

All those theoretical predictions and empirical results appear to indicate that the 

agricultural sector cannot play the role of the “engine of economic growth” in the 

developing world. Fast capital accumulation in the other sectors of the economy appears 

therefore to be one of the recipes for overcoming those countries’ poor performance in 

terms of welfare and economic growth. Indeed, these ideas seem to have contributed to 

strong policy biases against agriculture and towards manufacturing in many developing 

countries (e.g., Krueger, Schiff and Valdés, 1992). 

However, some of those findings appear to be challenged by recent empirical research. 

The study of Krueger, Schiff and Valdés (1992), focusing on 18 developing countries 

over the time period of 1960-83, indicates that the more countries discriminate against 

agriculture, the lower is their Gross Domestic Product (GDP) growth. Moreover, recent 

international studies suggest that TFP growth is higher in agriculture than in other 

sectors of the economy. Bernard and Jones (1996) have estimated annual TFP growth 

rates at 2.6 percent for agriculture and 1.2 percent for industry in a sample of 14 OECD 

countries for the period 1970-87. Martin and Mitra (2001), using data from an extended 

sample of countries for the period 1967-1992, find evidence that technical progress has 

been faster in agriculture than in manufacturing for both developing and developed 

countries. In addition, the study conducted by Martin and Mitra (2001) indicates a 

tendency for a relatively rapid convergence in agricultural productivity across countries, 

contradicting the notion that agricultural productivity growth is larger in developed than 

in developing countries.  

There seems therefore to be recent conflicting evidence on agricultural productivity 

growth both in relation to the other sectors of the economy as well as across countries. 

In our view, such evidence brings new interest to the issue of measuring agricultural 

productivity growth and investigating the role of agriculture in economic development. 

If empirical results such as those of Martin and Mitra (2001) are correct, then the 
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agricultural sector may well have the potential for playing a decisive role in the growth 

strategies of developing countries and in reversing the trend for global divergence that 

has been observed in the last few decades.  

Although estimates of productivity growth for the economy as a whole abound, there 

are surprisingly very few studies that provide comparisons between productivity in 

agriculture and the rest of the economy, particularly in developing countries.  This essay 

attempts to make a contribution in filling that gap. More specifically, our main purposes 

are the following: firstly we compare the economy as a whole with the agricultural 

sector in terms of how their distributions of labor productivity have changed through 

time. Secondly, we measure the determinants of labor productivity growth across 

countries and again compare agriculture with the overall economy in that respect.   

Methodologically, our paper tries to extend the work of Kumar and Russell (2002), in 

some important directions: our model is estimated from panel data; the production 

frontier is not assumed to be common to all countries; and we adopt a fully stochastic 

approach.   

The rest of the paper is organized as follows. Section 2 explains the method employed 

in distribution analysis of output per worker. Sections 3 and 4 describe the empirical 

model and the labor decomposition growth using a production frontier approach, 

respectively. Section 5 gives details about data sources and section 6 reports the 

empirical results. Section 7 proceeds to summary and concluding remarks.   

2. Distribution Analysis of Output per Worker 

The starting point of our study involves the analysis of the evolution of the distribution 

function of labor productivity through time. Regarding the estimation of the probability 

density function of labor productivity, we purpose the use of a nonparametric kernel 

density estimator. The goal of density estimation is to approximate the probability 

density function f(.) of a random variable X. Assuming n independent observations x1, 

x2, …, xn from the random variable X, the kernel density estimator of the density value 

f(x) at point x, ( )f̂ x , is defined as: 
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∑ 
                                            (1) 

where k(.) denotes a Gaussian kernel function and h is the optimal bandwidth (for 

details, please see Pagan, A. and A. Ullah, 1999). 

The choice of the optimal bandwidth for a kernel density estimate is typically calculated 

on the basis of the minimization of the mean integrated squared error function: 
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Minimizing (23) with respect to h, we obtain the following optimal bandwidth:  
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  =  
    

                                          (4) 

Using the method of Silverman (1986) and assuming a normal distribution ( )2,N µ σ  

for f, the optimal bandwidth for a Gaussian kernel: 

1
5ˆ1.06opth σ= n                                                     (5) 

The nonparametric kernel approach is used to test Quah’s findings (Quah, 1996a, 1997) 

that the distribution of labor productivity has been transformed from a unimodal into a 

bimodal distribution over the last decades.  
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3. A Stochastic Frontier Finite Mixture Model 

Kumar and Russell (2002) use a nonparametric framework to estimate a common 

production frontier function encompassing a sample of 57 countries for the period 1965-

90. However, one can challenge the underlying belief that the production technology is 

common to all these countries in so different development stages.  If this assumption is 

not valid, technological differences may be labeled as inefficiency and the 

decomposition of output per worker is imprecisely determined.  

One method to solve this problem is a two-stage approach: first, countries are classified 

into several classes, according, for instance, to a cluster analysis applied to the 

dependent variable; and second, a production frontier is estimated separately for each 

class (e.g., Kolari and Zardkoohi, 1995; Mester, 1997). This procedure has the 

disadvantage of estimating the production frontier of a particular class without using 

information regarding the other classes. This problem may be overcome using the 

Stochastic Frontier Finite Mixture Model that allows simultaneous estimation of the 

probability of class membership and the parameters of mixed frontier functions.  The 

stochastic frontier finite mixture model is based on the approach proposed by Heckman 

and Singer (1984) and on recent developments suggested by Greene (2001).  

The parametric and panel data version of the model presented in Kumar and Russell 

(2002) can be expressed by the equation of the Cobb-Douglas stochastic frontier:  

it it it ity x vβ ′= + − u    i = 1,...,N ; t = 1,...,T   (6) 

where: 

- ‘i’ indexes countries and ‘t’ indexes time periods,  

- yit  is the log of the production level in year t for the i-th country, 

- xit  is a 1 × K vector of the log of inputs in year t for the i-th country,  

- β is a 1 × K vector of coefficients,  

- vit is the measurement error, and uit refers to the inefficiency component. 
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In this framework, heterogeneity in the distribution of yit is assumed to impact the 

density function in the simple form of a random effect. We prefer that unobserved 

heterogeneity might be accommodated with a model where the density function is 

specific to each country class that is endogenously determined: 

'       ;       1,...,  ;    1,...,  ;    1,...,  it j it it ity j x v j u j i N t T j Mβ= + − = = =   
       (7) 

where j indicates class number.  

The observations of the sample arise from M unobserved classes in unknown 

proportions, p1, p2, …, pM, such that: 

                            (8) ( )
1

  0 1   and   1       
M

j j
j

p p
=

≤ ≤ =∑
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∑
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ss, the basic form of half normal specification in (6) applies: 
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where: 

- |it j jit ity j x′−βε = , 

- σj  =  [σvj
2 + σuj

2]1/2 , 

- λj  =  σuj / σvj, 

- Φ(.) refers to the standard normal cumulative distribution function, 

- φ(.) designates the standard normal probability density function. 

 

It is unknown a priori from which class a particular observation arises. Assuming that 

the T events are independent within each class, the contribution of country i to the 

likelihood function is: 

(
1 1

,
TM

j it it
j t

p f y x j
= =



 

∑ ∏ )      (12) 

 

Thus, the log likelihood function for the sample is given by: 
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where  

( ) ( ) ( ) ( ) ( ),..., ,..., ,..., , ,..., , ,..., , ,...,              p pα β β β β σ σ σ σ=  
The log likelihood can be maximized with respect to α using conventional gradient 

methods.  Once estimates of α are calculated, we can also obtain the posterior estimate 

of the probability of a particular class membership using these parameters estimates and 

Bayes theorem: 
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Using (14), we can identify the index of the group with the highest posterior probability 

and therefore determine which class generates each observation. Furthermore, the 

posterior probability can be used in the computation of the efficiency estimates. 

Following Greene (2001), the individual efficiencies are computed as: 

( )
1

ln  | ln
M

it it
j

EF P j i EF j
=

= ∑                                           (15)  

where EFit|j is the estimator of the efficiency of the i-th country, calculated applying the 

Jondrow et al. (1982) approach to the production frontier of class j.1  

There remains an unsolved question: how to determine the number of classes, M? In 

fact, M is not an estimable parameter and, therefore, it cannot be obtained by 

maximization of the likelihood function. A model with (M-1) classes is nested within a 

model with M classes by imposing restrictions on the parameters. Testing ‘up’ from   

(M-1) to M is not a valid procedure because if there are M classes, then estimates based 

only on (M-1) are inconsistent.  Nevertheless, as suggested by Greene (2002), testing 

‘down’ is a correct method.  Therefore, we only need to pick a large M* and test down 

to the true M based on likelihood ratio tests. Unfortunately, the latent class model is a 

little volatile and the estimation of models with larger number of classes or/and 

restrictions may not be possible with poor panel data samples, because the estimated 

variance matrix of estimates can be singular. Furthermore, according to McLachlan 

(1987) and Feng and McCulloch (1996), Pearson fit, Kolmogorov-Smirnov and 

likelihood ratio tests do not have a nice distribution for this sort of problems. Thus, 

some authors (see, for example, Fraley and Raftery,1998 and Roeder et al., 1999) 

propose the use of information criteria such as the Akaike Information Criterion (AIC) 

and the Schwarz Bayesian Information Criterion (SBIC). Both AIC and SBIC take the 

following form:  

MSC(k)  =  -2 ln max L(k)  +  a(n)m(k)                                  (16) 

                                                 
1 In models with a unique frontier, it is a standard procedure the application of the Jondrow et al. (1982) 
estimator of individual inefficiencies E[uit|vit-uit] to calculate efficiency E[exp(-uit)|vit-uit]. 
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where:    

- MSC(h) is the value of the criterion for the h-th model -  the lower the score the better,   

- L(h)  is the likelihood for the h-th model,    

- m(h) is the number of parameters used in the h-th model,      

- a(n) = 2 for AIC  but  a(n) = ln n  for SBIC, and  

- h = 1, 2, . . ., H  indexes the alternative models. 

Most statisticians who are involved with the theory and application of model selection 

criteria prefer SBIC since it penalizes models with more components heavier than AIC. 

Moreover, Leroux (1992) concludes that SBIC does not underestimate the number of 

classes; and Roeder and Wasserman (1997) argue that this method is consistent. On the 

other hand, Berger and Pericchi (1998) suggest that SBIC approximation is valid only 

for nice problems: large sample sizes models with regular asymptotics and models for 

which the likelihood is not concentrated in the boundary of the parameter space. We 

must proceed cautiously, taking into account the advices of Zhang (1997) who prefers 

to select a simpler model that approximates sufficiently the true one. Thus, we will 

conjugate the use of SBIC with an evaluation of the estimation results.    

4. Decomposition of Labor Productivity Growth 

We define a CRS reference technology with one aggregate output, Y, and a K-

dimensional vector of inputs, X. The CRS hypothesis allows us to transform the 

dependent variable in labor productivity, y, and the vector X into the (K-1)-dimensional 

vector of inputs per worker, x.  For the economy as a whole, K=2 and X=(labor, capital); 

and for agriculture, K=3 and X=(labor, land, capital). 

Figure 1 illustrates the decomposition of output per worker growth, assuming an 

aggregate input per labor x. Let b and c stand for the base period and the current period, 

respectively. For simplicity in the analysis, we suppress the subscript i, and consider 

only one country. 
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In period b, xb units of input per worker are used to produce yb units of output per 

worker. However, the country faces a positive shock vb in this period and, in reality, it 

could produce (b by x ) . Therefore, efficiency in period b is measured as: 

( ) ( ) ( ) ( ) ( ) ( )exp exp exp exp
b b b b

b
b b b b b b bb b

y y y yEff
x v x v y xy x β β

= = = =
′ ′+ ⋅ ⋅ v

          (17) 

Thus, labor productivity in period b can be expressed as: 

( )exp( )b b b by Eff v y x= ⋅ ⋅ b                                                (18) 

Mutatis mutandis, labor productivity in period c is given by: 

     ( )exp( )c c c cy Eff v y x= ⋅ ⋅ c           (19) 

Dividing (19) by (18), we obtain labor productivity growth: 

 ( )
( )

exp( )
exp( )

c cc c c

b b b b

y xy Eff v
y Eff v y x

= ⋅ ⋅
b

)

                                         (20) 

Multiplying the numerator and the denominator of equation (20) by , labor 

productivity growth can be rewritten as: 

(c by x

( )
( )

( )
( )

exp( )
exp( )

c b c cc c c

b b b b b c

y x y xy Eff v
y Eff v y x y x

= ⋅ ⋅ ⋅
b

                                  (21) 

The ratio  to  is the efficiency change or technological catch-up between the 

current period and the base period. The second component on the right hand side of 

(21), 

cEff bEff

exp( )
)

c

b

v
vexp(

, represents the stochastic shocks effect. The ratio of to  

captures the shift in the “deterministic” frontier caused by technological change, since 

input quantity per worker does not change. The last term on the right hand side captures 

the effect of factor accumulation, since it measures the output per worker change along 

the “deterministic” frontier in period c. If we consider the combined effect of efficiency 

variation with technological change, we obtain total factor productivity growth. 

( )c by x ( )b by x
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Alternatively, equation (20) could be multiplied and divided by ( )b cy x  and a different, 

but valid, decomposition would be obtained: 

( )
( )

( )
( )

exp( )
exp( )

c c b cc c c

b b b b c b

y x y xy Eff v
y Eff v y x y x

= ⋅ ⋅ ⋅
b

     (22) 

This means that labor productivity decomposition is path dependent, forcing the use of 

the geometric average of equations (21) and (22): 

( )
( )

( )
( )

( )
( )

( )
( )

1 1
2 2exp( )

exp( )
c b c c c c b cc c c

b b b b b b c c b b b

y x y x y x y xy Eff v
y Eff v y x y x y x y x

   
= ⋅ ⋅ ⋅ ⋅ ⋅  

   
                  (23) 

In the stochastic finite mixture model, there is not a unique frontier for the entire 

sample, but one frontier for each class. Furthermore, one observation does not belong to 

only one class; it has a probability of class membership. Thus, the decomposition of 

labor productivity in equation (23) must be adjusted to this framework. Following a 

similar procedure used in the computation of individual inefficiencies, the potential 

output per worker of each country in each year is determined by: 

( ) ( ) ( )
1

 |
M

it it it it
j

y x P j i y x j
=

=∑                             (24) 

Using (23) and (24), labor productivity is decomposed as: 
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1 1

1 1
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∑ ∑
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∑ ∑
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where the third component on the right hand side of equation (25) represents 

technological change, the last term indicates factor accumulation and all the other terms 

are defined as before. 

Using the components of the labor productivity change decomposition, given in 

equation (25), it is possible to obtain the counterfactual distributions, described by Quah 

(1993, 1996a, 1996b, 1997) as more informative than summary measures like the mean 

or the variance. We derive the nonparametric kernel mean-preserving distribution, as 

already described in section 2, and test the closeness of each of the counterfactual 

distributions and the labor productivity distribution in the period c, using the T-test of Li 

(Li, 1996).  

The T-statistic of Li (Li, 1996) tests the closeness of two distributions f(x) and g(x) on 

the integrated-square-error metric space, ( ) [ ]2, ( ) ( )I f g f x g x dx= −∫ : 

ˆ
I n hT

σ
⋅ ⋅

=                                                        (26) 

where: 

2
1 1

1 n n
i j i j i j i j

i j
j i

x x y y y x x y
I k k k k

n h h h h h= =
≠

 − − − −       
= + − −       

        
∑∑


 , and                (27) 

2
2

1 1

1ˆ 2
n n

i j i j i j

i j
j i

x x y y x y
k k k

h h hn h
σ

π = =
≠

 − − −    
= + +     

     
∑∑





.                      (28) 

Li (1996) demonstrates that this statistic test is valid for dependent and independent 

variables. Fan and Ullah (1999) show that the T-statistic goes asymptotically to the 

standard normal.    

5. Data 

Two samples are used in this study.  One sample incorporates information on the 

economy as a whole and the other contains information on the agricultural sector during 

the time period 1967-1992.  Both samples involve information on 45 countries in 
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different development stages, as indicated in Table 1.  Although, each individual sample 

could have more than 45 countries, the lack of information on the economy as a whole 

and the agricultural sector restricts the number of countries. Nevertheless, for the overall 

economy, as it is common in the convergence literature, we drop the two major oil-

producing countries and outliers in these kind of empirical studies, Iran and Venezuela 

(e.g., Kumar and Russell, 2002).   

For the Economy as a Whole, we use the following data sources: 

(i) Gross Domestic Product at 1990 constant USD is built from Heston, 

Summers and Aten (2002). 

(ii) Economy-Wide Fixed Capital series at 1990 constant USD is drawn from 

Crego, Larson, Butzer and Mundlak (1998). Its construction is based on 

aggregate national accounts investment data.   

(iii) Total Labor Force is obtained from World Development Indicators (WDI), 

for 1998. It comprises people who meet the International Labor Organization 

(ILO) definition of the economically active population: all employed or 

unemployed people who supply labor for the production of goods and 

services during a specified period.  

For Agriculture, we also recur to several sources:  

(i) For the year 1990, the level of total output from the agricultural sector (net 

of feed and seed) together with its decomposition in crops and livestock are 

drawn from table 5.4 in Rao (1993, p. 74). FAO production index number 

series for crops and livestock are obtained from FAOSTAT (2001). These 

series are used to extend 1990 series to cover the period of analysis, 

obtaining the value of agricultural output at 1990 constant USD for all years 

and countries of the database. 

(ii) Capital series - defined as the sum of the fixed capital stock, livestock and 

orchards in 1990 USD - is drawn from Martin and Mitra (2001). 
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(iii) The agricultural labor data series is obtained from the Mundlak, Larson and 

Butzer (1997) data set. These authors define labor as the economically active 

population in the same way as the WDI for the overall economy.  

(iv) Land data is taken from FAO Fertilizer data set, defined as arable and 

permanent cropland and permanent pastures in hectares. 

6.  Empirical Results 

This empirical study involves basically a three-step analysis for both the economy as a 

whole and agriculture.  First, kernel density functions of labor productivity are 

generated for the years of 1967 and 1992 as well as for the time periods of 1967-1979 

and 1980-1992.  Second, the number of country classes is determined and production 

frontiers are estimated accordingly.  Third, labor productivity change is decomposed 

and counterfactual distributions of labor productivity change are estimated.  The 

empirical results of the second and third steps provide possible explanations for the 

changes in the distribution functions generated in step 1. 

6.1 Economy as a Whole 

The kernel distributions of labor productivity are presented in figure 2.  Figure 2.a 

describes the first and last year kernels and figure 2.b represents the kernels in the first 

and last 13-years periods.2  We focus on mean-preserving distributions, i.e., departures 

from the productivity mean.  For the economy as a whole, the empirical results are 

similar to the findings in Kumar and Russell (2002) and Quah (1996a, 1997).  Labor 

productivity distribution evolves from a unimodal to a bimodal distribution with a 

higher mean.  Before investigating the factors that cause those changes in the labor 

productivity distribution, it is necessary to estimate the production frontiers and to 

decompose the output per labor change.    

A translog specification of the production frontier is used (Christensen, Jorgenson and 

Lau (1971)). This flexible functional form allows the elasticity of substitution to vary 

with the type of inputs and the returns to scale and output elasticity to vary with the size 

                                                 
2 Partition of the time period 1967-1992 into two periods of 13 years is explained later. 
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of the inputs.  The production frontier model (ignoring the j-class subscript, for 

notational ease) can be written as: 

( )2
0 1 2ln ln lnit it it it ity k k vβ β β= + + + −u                                 (29) 

where: 

-   refers to output per worker in year t for the i-th country. ity

-  k  designates capital per worker in year t for the i-th country. it

-  β’s  label coefficients.  

-  vit is the measurement error and uit refers to the inefficiency component. 

The production frontier in (29) is estimated separately for the time periods 1967-1979 

and 1980-1992. This procedure overcomes the estimation problems when a time trend is 

included in the specification to capture the technological change. The utilization of 

these large periods is explained by the need of using richer panels with these models. 

We start to estimate our model with a large number of classes. The 4-class model for the 

economy is over-specified since convergence is not attained.  As discussed in section 2, 

SBIC is the indicator desirable to help choosing class number in these kinds of models. 

In table 2, we can observe the SBIC scores obtained for the economy. The score values 

suggest the use of a 3-class model for the economy.  However, as suggested by Greene 

(2002) and following the advices of Zhang (1997), a judgment about estimation results 

of each model is also advisable.  The estimation results for the 3-class model in both 

periods are presented in table 3.  At least one of the lambdas is not statistically 

significant and some of the estimation results are poor for this class.   

Following a testing down procedure, empirical results are generated for the 2-class 

model (table 4).  The estimation results are very satisfactory indicating the assumption 

of a common production frontier for all countries does not seem appropriate.  The 

grouping of countries between the two classes generated by the stochastic frontier finite 
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mixture model is reported in table 7.  This classification is influenced by several factors 

such as different factor elasticities, efficiency patterns and/or shock effects. 

After estimating production frontiers, it is possible to perform the decomposition of 

labor productivity growth. We use two approaches.  In one way, the decomposition is 

made considering the evolution of all components between the first and the last year of 

the sample.  In the other one, the mean values of all components in the time periods 

1967-1979 and 1980-1992 are used to evaluate their contribution to the relative change 

in output per worker. The decomposition results are reported in Table 8.  

Regarding counterfactual distributions, we put side by side only the first and the last 

year output per worker distribution in order to compare our results with the findings in 

Kumar and Russell (2002). Counterfactual distributions are not generated for the 

periods 1967-1979 and 1980-1992.  The analysis becomes clearer since distributions are 

not so close from each other. The analysis of the counterfactual distributions of labor 

productivity presented in figures 4-6 and the tests of Li (1996) reported in table 10 

allow us to enrich the analysis of table 8. Thus, we conclude that: 

- The catch-up effect is, in general, small and it does not seem to contribute to 

convergence, since rich as well as poor countries have, on average, move toward the 

frontier as we can see in table 8. Panel b of figure 4 reveals that the efficiency change 

has an almost imperceptible effect on the first year labor productivity distribution. There 

is a very small shift of the density function from the lower and upper tails to the middle, 

without significant changes in labor productivity mean.   

- As we can observe in panel b of figure 5, technological change is responsible for a 

small shift of density function from the lower tail to the low-middle and from the high-

middle to the upper tail of the distribution, with a small rise of the labor productivity 

mean. The conjugated effect of the technological change and the efficiency change 

reveals the same tendency, reinforcing the transfer of mass from the low to the low-

middle income countries (Panel c of figures 4 and 5).  Kumar and Russell (2002) 

indicate that technological change has contributed more to the welfare of richer 

countries than poorer ones. These authors neglect the barely visible effect of the mass 

increase for the low-middle countries. In this study, this outcome is more evident 
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suggesting that total factor productivity change also help very poor countries. As we can 

observe in table 8, there are some low and low-middle income countries such as India, 

Pakistan, Madagascar, Malawi, Chile, Zimbabwe and Dominican Republican in which 

total factor productivity change is the main contributor to growth. 

- Capital deepening is, in general, the most important determinant of labor productivity 

growth for the majority of countries as we can see in table 8. Comparing panel b in 

figures 4-6, which reports the effect of a single component, we can infer that capital 

deepening causes the emergence of a bimodal distribution and leads to significant 

increase in the mean of labor productivity.  Statistic tests of Li support this conclusion 

(table 10).  We can observe that factor accumulation is the only factor that, per se, alters 

the 1967-labor productivity distribution in a way that we cannot reject the hypothesis of 

being the same as the 1992-distribution. Additionally, when factor accumulation is 

combined with each of the other components, the null hypothesis cannot be rejected 

either. 

6.2 Agricultural Sector 

The kernel density function of labor productivity is presented in figure 3.  Figure 3.a 

represents the kernel distributions in 1967 and 1992 and figure 3.b represents the kernel 

distributions in the time periods 1967-1979 and 1980-1992. For agriculture, there is a 

probability shift from the lower tail toward the rest of the distribution. This is more 

evident in figure 3.a since distributions are closer when we compare two adjacent 

periods. The increase of density for the middle-income countries contradicts the idea of 

the world becoming polarized into rich and poor countries, implying Quah’s evidence 

(Quah, 1996a, 1997) is rejected for the agricultural sector.  Investigation of the factors 

that cause those distributions changes requires first to estimate the production frontier 

and then to decompose output per labor changes. 

As before, a translog specification of the production frontier is used (Christensen, 

Jorgenson and Lau (1971)). The production frontier model (ignoring the j-class 

subscript, for notational ease) can be written as: 

( ) ( )2 2
0 1 2 3 4 5ln ln ln ln ln ln lnit it it it it it it it ity k la k la k la vβ β β β β β= + + + + + + −u      (30) 
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where  designates land per worker in year t for the i-th country and all the other 

variables are defined as before. 

itla

The model is estimated first with a large number of classes.  The 3- and 4-class models 

are over-specified for agriculture since convergence is not attained.  By imposing 

restrictions on parameters to perform likelihood ratio tests, the estimation of such 

models is impossible because the estimated variance matrix of estimates is singular.  

Table 2 reports the score values of SBIC for the agricultural sector.  The score values 

suggest a 2-class model for agriculture.  Following Greene (2002) and Zhang (1997), 

the next step consists in evaluating the estimation results of the 2-class model and 

deciding whether this model should be used or not.  The estimation results of the 2-class 

model are presented in table 5.  Inspection of the results indicates that one of the 

lambdas and some of the coefficients are not statistically significant in both time 

periods.  Hence, a 1-class model is considered and table 6 reports the estimation results.  

Based on the results for both time periods, there is evidence supporting the use of a 

single production frontier for all countries. 

As mentioned before, the next step of the analysis is to decompose the labor 

productivity change and to generate the counterfactual distributions.  As in the case of 

the economy as a whole, the decomposition of labor productivity growth is performed 

considering the years of 1967 and 1992 and the time periods 1967-1979 and 1980-1992 

in table 9. The analysis of the counterfactual distributions (figures 7-9) and the T-test of 

Li (table 11) are performed using only the first and the last years. We can conclude that: 

- The catch-up effect is stronger for agriculture than for the economy, as described in 

table 9. Panel b of figure 7 indicates that efficiency change is responsible for an 

important shift of density from the lower tail to the low-middle and an almost 

imperceptible mass change from the high-middle to the upper tail of the distribution, 

with a small increase of the labor productivity mean. 

- The analysis of table 9 reveals that technological change is the most important 

component for the majority of countries. Panel b of figure 8 suggests that technological 

change has a similar effect on the labor productivity distribution as the efficiency 

change, although the counterfactual distribution is closer to the last year distribution.  
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Also, the technological change effect leads to a higher increase in the mean of the 

income per labor.  The combined effect of the catch-up and technological change 

components on the distribution of labor productivity is presented in panel c of figures 7 

and 8.  The analysis of panel c shows that the combined effect of the two components 

results in a higher mean of output per worker and in a 1967-distribution closer to the 

1992-distribution than the individual effect of each component. This conclusion is 

supported by the statistic tests of Li (1996) presented in table 11. For both significance 

levels, total factor productivity effect changes the 1967-labor productivity distribution 

in a way that we cannot reject the null hypothesis of being the same as the 1992-

distribution.  

- It is notable that many countries experience reductions in factor endowments, as we 

can observe in table 9.  Nevertheless, factor accumulation is a very important 

determinant of growth for some countries. It is the case of two Southeast Asian growth 

miracles presented in the sample (Japan, Korea) and some European countries (Austria, 

Finland, France, Netherlands, Norway, Sweden, Portugal). Panel b of figure 9 indicates 

that factor accumulation effect leads to a shift from the lower tail to the rest of 

distribution. However, this is a very reduced effect, with very small changes on labor 

productivity distribution and its mean.  

7. Conclusion  

This study does not intend to explain economic growth. Using a growth-accounting 

exercise, our focus is the comparison of each contribution to labor productivity growth 

between agriculture and the overall economy. One important conclusion of our analysis 

is that in the overall economy labor productivity was transformed from an unimodal into 

a bimodal distribution, with the middle-income countries nearly disappearing. This 

contrast with the changes occurred in agriculture, with an important increase of mass in 

the middle of the distribution. Furthermore, our results suggest that changes in labor 

productivity distribution are brought by capital deepening in the overall economy and 

by total factor productivity changes in agriculture.  

Catch-up effect is much reduced for the economy and it does not contribute to 

convergence since poor and rich experience efficiency increases. In agriculture, it has 
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some expression and it seems to help convergence. Factor accumulation also affects 

differently labor productivity distribution. For the economy, there is a mass transfer to 

the upper tail, contributing to the welfare of the rich more than the poor and to the 

formation of the twin-peak. For agriculture, there is a transfer from the lower tail to the 

rest of the function and an unimodal counterfactual distribution. Despite having 

different magnitudes in each decomposition, technologic change acts in the same way 

for both cases, causing a density transfer from the lower tail and high-middle to the low-

middle and upper tail of labor productivity distribution.  

Thus, our study seems to confirm the main conclusions of Kumar and Russell (2002) for 

the overall economy, namely the reduced importance of total factor productivity to 

growth and the bipolar international divergence of labor productivity. Furthermore, it 

also supports the results of Bernard and Jones (1996) and Martin and Mitra (2001) by 

concluding that total factor productivity growth rates are higher in agriculture and by 

finding important indications of convergence in this sector. These conclusions could 

lead policy makers to rethink the role of agriculture in economic growth, particularly in 

developing countries.  
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APPENDIX 
 

Figure 1 – Illustration of Labor Decomposition 
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Table 1. Countries List 

Code Country Code Country 
1 Argentina 24 Korea, Republic of 
2 Australia 25 Sri Lanka 
3 Austria 26 Morocco 
4 Canada 27 Madagascar 
5 Chile 28 Malawi 
6 Colombia 29 Netherlands 
7 Costa Rica 30 Norway 
8 Denmark 31 New Zealand 
9 Dominican Republic 32 Pakistan 
10 Egypt 33 Peru 
11 Finland 34 Philippines 
12 France 35 El Salvador 
13 Great Britain 36 Sweden 
14 Greece 37 Syrian Arab Republic 
15 Guatemala 38 Tunisia 
16 Honduras 39 Turkey 
17 Indonesia 40 Uruguay 
18 India 41 United States of America 
19 Iran 42 Venezuela 
20 Israel 43 South Africa 
21 Italy 44 Zimbabwe 
22 Japan 45 Portugal 
23 Kenya    

I  



Figure 2 – Gaussian Kernel of Labor Productivity for the Economy 
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b) First vs Last Period 
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Figure 3 – Gaussian Kernel of Labor Productivity for Agriculture 
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b) First vs Last Period  
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Table 2 – Score for Schwarz Bayesian Information Criterion (SBIC) 

Number of classes  

1 2 3 4 

1967-1979 -18,749 -349,442 -541,640 - 
Economy as 

a Whole 1980-1992 -21,104 -400,116 -567,284 - 

1967-1979 1040,398 491,191 - - 
Agriculture 

1980-1992 736,106 363,016 - - 

 
 

Table 3 – Three Class Model Estimation Results for the Economy as a Whole 
 

a) First period: 1967-1979 

 Model parameters for 
latent class 1 

Model parameters for 
latent class 2 

Model parameters for 
latent class 3 

Variable Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] 

Constant -0,0213 271298 1,0000 1,4252 0,1289 0,0000 2,3218 0,4848 0,0000 

ln itk  1,5186 0,0421 0,0000 1,1556 0,0282 0,0000 0,7225 0,1171 0,0000 

( )2ln itk  -0,0547 0,0022 0,0000 -0,0350 0,0016 0,0000 0,0002 0,0069 0,9721 

σ j  =  [σvj
2 +σuj

2]1/2 0,1146 0,0025 0,0000 0,1736 0,0094 0,0000 0,2204 0,0097 0,0000 

λ j  =  σuj / σvj 0,0000 2965820 1,0000 1,2826 0,2439 0,0000 46,7975 173,865 0,7878 

Prior Probabilities for 
Class Membership 

0,3010 0,0758 0,0001 0,5051 0,0913 0,0000 0,1939 0,0975 0,0466 

 
b) Last period: 1980-1992 

 Model parameters for 
latent class 1 

Model parameters for 
latent class 2 

Model parameters for 
latent class 3 

Variable Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] 

Constant 6,5086 0,2879 0,0000 2,7048 0,2778 0,0000 -0,9588 0,3120 0,0021 

ln itk  0,0205 0,0671 0,7605 0,7847 0,0650 0,0000 1,7624 0,0655 0,0000 

( )2ln itk  0,0290 0,0037 0,0000 -0,0137 0,0039 0,0004 -0,0680 0,0033 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 0,1842 0,0164 0,0000 0,1579 0,0705 0,0251 0,1577 0,0126 0,0000 

λj  =  σuj / σvj 1,3392 0,4973 0,0071 0,7111 1,7676 0,6875 3,1117 0,9559 0,0011 

Prior Probabilities for 
Class Membership 

0,4189 0,0756 0,0000 0,1628 0,0563 0,0038 0,4183 0,0756 0,0000 
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Table 4 – Two Class Model Estimation Results for the Economy as a Whole 

a) First period: 1967-1979 

 Model parameters for 
latent class 1 

Model parameters for 
latent class 2 

Variable Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] 

Constant 0,8585 0,2222 0,0001 -1,3149 0,1741 0,0000 

ln itk  1,3241 0,0483 0,0000 1,7275 0,0392 0,0000 

( )2ln itk  -0,0431 0,0025 0,0000 -0,0640 0,0022 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 0,2089 0,0087 0,0000 0,2768 0,0050 0,0000 

λj  =  σuj / σvj 1,4707 0,2060 0,0000 5,4008 0,7528 0,0000 

Prior Probabilities for 
Class Membership 0,4652 0,0763 0,0000 0,5348 0,0763 0,0000 

 

b) Last period: 1980-1992 

 Model parameters for 
latent class 1 

Model parameters for 
latent class 2 

Variable Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] 

Constant 4,7043 0,0903 0,0000 1,1935 0,1693 0,0000 

ln itk  0,5064 0,0197 0,0000 1,1765 0,0372 0,0000 

( )2ln itk  -0,0005 0,0011 0,6766 -0,0338 0,0020 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 0,1898 0,0151 0,0000 0,2936 0,0089 0,0000 

λj  =  σuj / σvj 1,4959 0,3978 0,0002 7,8311 2,0985 0,0002 

Prior Probabilities for 
Class Membership 0,5375 0,0765 0,0000 0,4625 0,0765 0,0000 
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Table 5 – Two Class Model Estimation Results for Agriculture 

a) First period: 1967-1979 

 Model parameters for 
latent class 1 

Model parameters for 
latent class 2 

Variable Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] 

Constant 
2,3565 1,2931 0,0684 9,0558 0,2264 0,0000 

ln itk  0,7012 0,2254 0,0019 0,4485 0,0479 0,0000 

ln itla  1,5487 0,2835 0,0000 -0,3563 0,0655 0,0000 

( )2ln itk  0,0127 0,0065 0,0521 -0,0825 0,0041 0,0000 

( )2ln itla  -0,0899 0,0419 0,0320 -0,1014 0,0100 0,0000 

ln lnit itk la⋅  -0,0285 0,0366 0,4371 0,2378 0,0113 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 
0,1864 0,3559 0,6006 0,6742 0,0078 0,0000 

λj  =  σuj / σvj 0,3477 9,7291 0,9715 6,2148 0,7656 0,0000 

Prior Probabilities for 
Class Membership 0,2221 0,0621 0,0004 0,7779 0,0621 0,0000 

 
b) Last period: 1980-1992 

 Model parameters for 
latent class 1 

Model parameters for 
latent class 2 

Variable Coeff. St.Err. P[|Z|>z] Coeff. St.Err. P[|Z|>z] 

Constant 6,5715 0,4885 0,0000 7,9509 0,1258 0,0000 

ln itk  0,4140 0,1657 0,0125 0,5748 0,0735 0,0000 

ln itla  0,7919 0,0995 0,0000 -0,0543 0,0793 0,4940 

( )2ln itk  -0,0173 0,0143 0,2263 -0,1196 0,0065 0,0000 

( )2ln itla  -0,0413 0,0110 0,0002 -0,1037 0,0166 0,0000 

ln lnit itk la⋅  0,0322 0,0174 0,0640 0,2493 0,0219 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 0,4413 0,0682 0,0000 0,3561 0,0114 0,0000 

λj  =  σuj / σvj 0,6658 0,4957 0,1792 4,0321 0,9388 0,0000 

Prior Probabilities for 
Class Membership 0,4693 0,0995 0,0000 0,5307 0,0995 0,0000 
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Table 6 – One Class Model Estimation Results for Agriculture 

a) First period: 1967-1979 

b) Last period: 1980-1992 

 Model parameters for 
latent class 1 

Variable Coeff. St.Err. P[|Z|>z] 

Constant 7,8479 0,3347 0,0000 

ln itk  0,1632 0,0737 0,0268 

ln itla  0,4114 0,0793 0,0000 

( )2ln itk  -0,0305 0,0046 0,0000 

( )2ln itla  -0,1150 0,0110 0,0000 

ln lnit itk la⋅  0,1584 0,0150 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 0,7570 0,0132 0,0000 

λj  =  σuj / σvj 1,5599 0,1306 0,0000 

 

 Model parameters for 
latent class 1 

Variable Coeff. St.Err. P[|Z|>z] 

Constant 8,1360 0,2091 0,0000 

ln itk  0,4601 0,0715 0,0000 

ln itla  0,0151 0,0647 0,8159 

( )2ln itk  -0,0600 0,0068 0,0000 

( )2ln itla  -0,0884 0,0096 0,0000 

ln lnit itk la⋅  0,1773 0,0133 0,0000 

σj  =  [σvj
2 +σuj

2]1/2 0,5380 0,0130 0,0000 

λj  =  σuj / σvj 1,1033 0,1177 0,0000 
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Table 7 – Countries Classification according to the Stochastic Frontier Finite Mixture 
Model for the Economy as a Whole 

1967- 1979 1980-1992 
 Class  Class  Class  Class
Argentina 1 Austria 2 Australia 1 Argentina 2 
Australia 1 Chile 2 Canada 1 Austria 2 
Canada 1 Costa Rica 2 Chile 1 Costa Rica 2 
Colombia 1 Dominican Republic 2 Colombia 1 Denmark 2 
Denmark 1 Egypt 2 Dominican Republic 1 Finland 2 
France 1 Finland 2 Egypt 1 Greece 2 
United Kingdom 1 Greece 2 France 1 Honduras 2 
Guatemala 1 Honduras 2 United Kingdom 1 Indonesia 2 
Indonesia 1 India 2 Guatemala 1 Japan 2 
Israel 1 Japan 2 Índia 1 Kenya 2 
Italy 1 Kenya 2 Israel 1 Korea, Republic of 2 
Sri Lanka 1 Korea, Republic of 2 Italy 1 Morocco 2 
Madagascar 1 Morocco 2 Sri Lanka 1 Malawi 2 
Netherlands 1 Malawi 2 Madagascar 1 Norway 2 
New Zealand 1 Norway 2 Netherlands 1 Peru 2 
Philippines 1 Pakistan 2 New Zealand 1 El Salvador 2 
Sweden 1 Peru 2 Pakistan 1 Tunisia 2 
Syria 1 El Salvador 2 Philippines 1 Turkey 2 
Uruguay 1 Tunisia 2 Sweden 1 South Africa 2 
USA 1 Turkey 2 Syria 1 Zimbabwe 2 
  South Africa 2 Uruguay 1   
  Zimbabwe 2 USA 1   
  Portugal 2 Portugal 1   
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Table 8 – Decomposition of Labor Productivity Growth for the Economy 

a) From First to Last Year 

Contribution to Percentage Change in Output per Worker of
Percentage

       Country Change in Output Change in Change in Capital Stochastic
per Worker Efficiency Technology Deepening Shocks

Argentina 19,13% -11,56% -17,97% 58,71% 3,47%
Australia 35,76% 1,31% 3,08% 25,41% 3,66%
Austria 84,33% -4,35% 13,63% 69,73% -0,07%
Canada 39,33% 1,71% 3,15% 24,47% 6,70%
Chile 24,22% 9,34% 16,61% -8,74% 6,75%
Colombia 31,98% 8,63% -3,65% 1,56% 24,17%
Costa Rica 15,18% 1,43% -0,12% 12,54% 1,04%
Denmark 36,22% -4,19% -13,84% 52,90% 7,93%
Dominican Republic 40,71% 1,93% 24,44% 23,85% -10,43%
Egypt 92,30% 19,45% 32,44% 8,54% 12,00%
Finland 71,42% 0,75% 14,38% 44,59% 2,88%
France 63,81% 1,54% 5,65% 47,81% 3,30%
United Kingdom 51,35% 0,47% -0,66% 50,97% 0,45%
Greece 108,70% 13,35% 4,73% 67,81% 4,76%
Guatemala 23,56% 5,62% 0,12% -8,23% 27,33%
Honduras 15,56% 21,23% 2,01% -14,70% 9,55%
Indonesia 248,48% 2,36% -20,79% 328,30% 0,35%
India 95,07% 2,90% 79,44% 12,45% -6,05%
Israel 108,47% 13,08% -0,90% 43,10% 29,99%
Italy 95,40% -0,49% 2,14% 97,50% -2,66%
Japan 167,57% 1,61% 14,67% 118,67% 5,01%
Kenya 15,74% -14,93% 13,18% 22,65% -1,99%
Korea, Republic of 422,65% -0,76% 6,21% 419,20% -4,50%
Sri Lanka 78,95% 10,90% 4,53% 18,77% 29,98%
Morocco 53,10% 5,10% 0,70% 39,36% 3,80%
Madagascar -33,85% 8,17% 70,30% -73,94% 37,81%
Malawi 22,55% 30,81% 25,81% -33,93% 12,70%
Netherlands 38,77% -2,36% 3,98% 49,99% -8,87%
Norway 67,40% 1,23% 18,38% 37,97% 1,25%
New Zealand 4,80% 1,41% -0,32% -0,57% 4,26%
Pakistan 66,21% 32,46% 42,82% -27,04% 20,42%
Peru -33,56% -28,76% -0,07% 0,54% -7,17%
Philippines 24,41% 10,28% 7,01% -14,22% 22,90%
El Salvador 3,22% 2,81% 0,25% -2,83% 3,06%
Sweden 26,29% -3,97% 6,44% 34,24% -7,97%
Syrian Arab Republic 126,30% 4,37% -5,04% 83,33% 24,56%
Tunisia 103,62% 29,59% -0,09% 39,49% 12,74%
Turkey 107,44% 3,04% 0,91% 94,07% 2,80%
Uruguay 30,30% 6,99% -6,41% 5,47% 23,37%
USA 23,76% 0,85% 4,21% 12,50% 4,67%
South Africa 17,02% -12,17% 1,41% 31,10% 0,21%
Zimbabwe -6,22% 9,36% 3,33% -25,13% 10,83%
Portugal 160,32% 3,48% 22,25% 130,16% -10,59%
Mean 64,83% 4,28% 8,80% 44,15% 7,08%  
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b) From First to Last 13-years Period 

Contribution to Percentage Change in Output per Worker of
Percentage

       Country Change in Output Change in Change in Capital Stochastic
per Worker Efficiency Technology Deepening Shocks

Argentina 1,39% -4,04% -18,01% 23,22% 4,58%
Australia 13,88% 0,10% 5,61% 7,87% -0,14%
Austria 27,12% -5,86% 13,21% 22,11% -2,31%
Canada 18,55% 0,90% 2,69% 10,59% 3,47%
Chile 1,75% 8,26% 16,81% -18,29% -1,54%
Colombia 21,31% 3,19% -4,35% 8,76% 13,00%
Costa Rica -3,43% -1,99% 0,01% -0,52% -0,96%
Denmark 14,59% 1,03% -13,30% 11,26% 17,58%
Dominican Republic 14,66% -2,84% 21,60% 12,15% -13,48%
Egypt 50,92% 1,21% 28,06% 28,97% -9,71%
Finland 35,74% -3,70% 15,01% 21,73% 0,68%
France 22,70% -0,30% 4,82% 18,71% -1,09%
United Kingdom 22,18% 0,09% -1,12% 22,58% 0,71%
Greece 35,01% 4,64% 5,17% 19,16% 2,96%
Guatemala 4,73% 0,53% -1,88% 3,13% 2,95%
Honduras 6,48% -4,07% 0,69% 8,71% 1,40%
Indonesia 98,83% 0,58% -21,67% 107,77% 21,46%
India 40,67% -7,02% 73,08% 9,94% -20,49%
Israel 28,40% 2,82% -1,01% 17,86% 7,03%
Italy 37,44% -0,51% 1,29% 40,21% -2,74%
Japan 56,07% -4,81% 14,22% 38,10% 3,95%
Kenya 10,99% -9,79% 8,93% 11,10% 1,67%
Korea, Republic of 110,29% -2,32% 1,04% 111,24% 0,88%
Sri Lanka 46,49% 6,26% 6,14% 13,57% 14,35%
Morocco 22,29% 6,58% 0,32% 9,08% 4,85%
Madagascar -22,75% -0,89% 58,05% -49,25% -2,83%
Malawi 11,75% 10,35% 24,09% -22,66% 5,53%
Netherlands 10,38% -1,23% 5,44% 11,64% -5,06%
Norway 33,08% -2,84% 19,75% 13,84% 0,48%
New Zealand 2,81% 0,14% 1,83% 1,50% -0,66%
Pakistan 32,35% 6,61% 47,35% -13,39% -2,73%
Peru -14,52% -10,57% -0,09% -1,50% -2,88%
Philippines 11,23% 2,07% 7,94% -3,38% 4,49%
El Salvador -8,08% -16,81% 0,19% 16,33% -5,19%
Sweden 13,08% -0,15% 6,67% 5,78% 0,36%
Syrian Arab Republic 42,64% -0,27% -5,88% 60,76% -5,46%
Tunisia 35,78% 10,28% -0,26% 15,87% 6,54%
Turkey 32,45% 3,06% -0,06% 24,43% 3,35%
Uruguay 10,64% 2,84% -6,62% 5,49% 9,22%
USA 9,39% -0,33% 5,66% 9,21% -4,89%
South Africa 8,04% -7,38% 1,97% 12,86% 1,36%
Zimbabwe 3,76% 6,07% 1,98% -11,51% 8,40%
Portugal 36,81% 0,84% 16,78% 22,72% -5,33%
Mean 22,97% -0,22% 7,96% 15,30% 1,25%  
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Table 9 – Decomposition of Labor Productivity Growth for Agriculture 

a) From First to Last Year 

Contribution to Percentage Change in Output per Worker of
Percentage

       Country Change in Output Change in Change in Capital Stochastic
per Worker Efficiency Technology Deepening Shocks

Argentina 47,14% 23,16% 43,54% -59,17% 103,85%
Australia 63,04% 27,59% 88,29% -63,18% 84,32%
Austria 156,24% 12,71% 19,34% 50,87% 26,27%
Canada 192,47% 4,56% 91,98% 57,70% -7,62%
Chile 44,82% 12,58% 35,28% -27,27% 30,74%
Colombia 65,67% 15,04% 30,76% -34,45% 68,02%
Costa Rica 99,72% 30,50% 23,93% -37,24% 96,76%
Denmark 151,35% 9,79% 29,41% 44,04% 22,83%
Dominican Republic 75,75% 9,00% 30,31% -4,36% 29,38%
Egypt 39,67% 8,10% 37,56% -23,76% 23,20%
Finland 138,57% 6,07% 28,24% 118,11% -19,58%
France 279,99% 26,94% 19,24% 46,53% 71,32%
United Kingdom 78,66% 6,78% 29,02% -20,52% 63,14%
Greece 183,84% 24,96% 27,73% -11,46% 100,84%
Guatemala 22,25% 26,79% 29,45% -53,95% 61,74%
Honduras 15,95% 19,97% 31,94% -41,49% 25,19%
Indonesia 93,06% 34,52% 28,68% -39,05% 82,96%
India 42,03% 21,57% 23,87% -35,34% 45,85%
Iran 74,37% 169,14% -1,57% -82,88% 284,50%
Israel 173,93% 29,24% 0,80% 13,17% 85,81%
Italy 197,22% 33,53% 8,28% 29,46% 58,78%
Japan 258,68% 18,83% 6,68% 109,66% 34,94%
Kenya 6,92% 19,24% 28,34% -42,91% 22,37%
Korea, Republic of 395,34% 26,19% 32,55% 81,51% 63,16%
Sri Lanka -13,25% 8,14% 30,42% -41,93% 5,92%
Morocco 10,96% 24,08% 26,20% -58,73% 71,72%
Madagascar -17,99% 14,56% 26,73% -55,55% 27,07%
Malawi -30,59% 13,43% 19,75% -54,84% 13,14%
Netherlands 140,19% 5,00% 10,39% 27,62% 62,37%
Norway 100,08% 5,68% 18,29% 86,79% -14,32%
New Zealand 0,95% 0,94% 13,88% 11,51% -21,25%
Pakistan 20,61% 11,47% 24,34% -33,70% 31,25%
Peru -9,33% 7,12% 29,73% -34,48% -0,41%
Philippines 38,81% 14,91% 29,48% -45,28% 70,50%
El Salvador 40,37% 26,79% 28,99% -45,92% 58,69%
Sweden 199,32% -0,25% 36,99% 198,03% -26,50%
Syrian Arab Republic 71,98% 37,39% 37,62% -45,49% 66,87%
Tunisia 96,41% 33,47% 38,93% -23,81% 39,02%
Turkey 63,49% 39,59% 30,35% -49,57% 78,17%
Uruguay 59,25% 12,29% 34,04% -51,67% 118,91%
USA 67,95% 11,24% 65,28% -37,03% 45,08%
Venezuela 100,32% 23,80% 33,51% -28,41% 69,29%
South Africa 57,51% 17,55% 37,16% -30,78% 41,14%
Zimbabwe -33,14% 4,51% 24,17% -37,70% -17,30%
Portugal 177,78% -0,90% 32,55% 214,12% -32,68%
Mean 89,74% 20,61% 30,05% -3,62% 47,68%
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b) From First to Last 13-years Period 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contribution to Percentage Change in Output per Worker of
Percentage

       Country Change in Output Change in Change in Capital Stochastic
per Worker Efficiency Technology Deepening Shocks

Argentina 25,35% 10,39% 45,95% -33,42% 16,84%
Australia 15,65% 7,88% 93,18% -44,71% 0,37%
Austria 64,58% 7,52% 20,71% 20,04% 5,64%
Canada 56,87% -1,84% 85,72% 26,20% -31,81%
Chile 18,99% 5,75% 36,13% -14,60% -3,22%
Colombia 16,92% 9,06% 30,55% -36,21% 28,73%
Costa Rica 21,74% 12,12% 25,20% -26,62% 18,19%
Denmark 75,35% 5,27% 29,96% 30,05% -1,45%
Dominican Republic 29,34% 4,55% 30,06% -7,34% 2,65%
Egypt 4,10% 4,24% 38,84% -27,96% -0,15%
Finland 69,22% 5,25% 26,92% 57,48% -19,56%
France 102,29% 14,61% 18,96% 20,86% 22,76%
United Kingdom 33,80% 4,31% 27,31% -14,35% 17,64%
Greece 72,30% 12,75% 27,82% -5,90% 27,05%
Guatemala -0,87% 13,10% 29,30% -42,73% 18,37%
Honduras 4,31% 15,19% 31,28% -41,42% 17,75%
Indonesia 37,71% 16,56% 25,71% -31,28% 36,76%
India 15,63% 12,25% 21,39% -27,07% 16,36%
Iran 21,84% 87,68% 3,16% -65,56% 82,75%
Israel 67,11% 17,78% -0,65% 0,77% 41,73%
Italy 74,99% 19,25% 7,71% 13,89% 19,62%
Japan 97,86% 10,53% 8,34% 51,35% 9,17%
Kenya 2,22% 10,87% 26,83% -29,49% 3,10%
Korea, Republic of 107,34% 10,57% 36,94% 26,32% 8,40%
Sri Lanka 0,39% 5,83% 31,10% -25,67% -2,66%
Morocco 1,26% 11,96% 24,47% -42,27% 25,88%
Madagascar -10,56% 8,54% 24,85% -39,03% 8,25%
Malawi -10,68% 10,44% 21,56% -37,93% 7,20%
Netherlands 51,90% 2,62% 11,24% 18,28% 12,49%
Norway 45,65% 3,54% 17,61% 45,87% -18,00%
New Zealand 0,81% -1,16% 16,22% 42,90% -38,58%
Pakistan 6,28% 8,36% 23,76% -30,60% 14,18%
Peru -2,07% 3,98% 30,06% -17,77% -11,94%
Philippines 19,02% 9,54% 30,23% -34,62% 27,61%
El Salvador 8,23% 14,79% 29,84% -38,07% 17,25%
Sweden 86,15% 0,34% 35,50% 81,81% -24,69%
Syrian Arab Republic 46,83% 24,98% 37,25% -36,16% 34,09%
Tunisia 21,94% 14,76% 38,64% -23,93% 0,75%
Turkey 33,00% 19,65% 31,31% -28,29% 18,05%
Uruguay 20,16% 5,58% 35,77% -35,19% 29,35%
USA 21,48% 3,35% 66,08% -21,64% -9,69%
Venezuela 53,90% 12,51% 34,38% -20,48% 28,01%
South Africa 49,35% 10,07% 37,94% -11,98% 11,75%
Zimbabwe -12,11% 8,09% 23,03% -32,93% -1,46%
Portugal 27,94% -2,83% 31,22% 64,67% -39,06%
Mean 33,19% 10,90% 30,21% -9,44% 9,48%

 

 

 XII



Figure 4 – Counterfactual Distributions of Output per Worker for the Economy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a): Actual World Income Distribution
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(b): Effect of Technological Change
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Figure 6 – Counterfactual Distributions of Output per Worker for the Economy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 –Counterfactual Distributions of Output per Worker for Agriculture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b): Effect of Capital Deepening
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Figure 8 – Counterfactual Distributions of Output per Worker for Agriculture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 – Counterfactual Distributions of Output per Worker for Agriculture 
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Table 10 – Li’s Distribution Hypothesis Tests for the Economy 

 
Null Hypothesis (H0) 

 
T-test 

Ten percent 
significance level 

(critical value: 1.28) 

Five percent 
significance level 

(critical value: 1.64) 

( ) (92 67 )f y g y=  2.398 H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Eff=  2.639 H0 rejected H0 rejected 

( ) (92 67 * )f y g y Tec= h  2.412 H0 rejected H0 rejected 

( ) (92 67 * )f y g y FAcc=  -0.073 H0 not rejected H0 not rejected 

( ) (92 67 * * )f y g y Eff Tech=  2.643 H0 rejected H0 rejected 

( ) (92 67 * * )f y g y Eff FAcc=  -0.020 H0 not rejected H0 not rejected 

( ) (92 67 * * )f y g y Tech FAc= c  -0.026 H0 not rejected H0 not rejected 

( ) (92 67 * * * )f y g y Eff Tech FAcc=  -0.009 H0 not rejected H0 not rejected 

 

Table 11 – Li’s Distribution Hypothesis Tests for Agriculture 

 
Null Hypothesis (H0) 

 
T-test 

Ten percent 
significance level 

(critical value: 1.28) 

Five percent 
significance level 

(critical value: 1.64) 

( ) (92 67 )f y g y=  5.842 H0 rejected H0 rejected 

( ) ( )92 67 *f y g y Eff=  4.336 H0 rejected H0 rejected 

( ) (92 67 * )f y g y Tec= h  1.832 H0 rejected H0 rejected 

( ) (92 67 * )f y g y FAcc=  4.686 H0 rejected H0 rejected 

( ) (92 67 * * )f y g y Eff Tech=  0.982 H0 not rejected H0 not rejected 

( ) (92 67 * * )f y g y Eff FAcc=  3.719 H0 rejected H0 rejected 

( ) (92 67 * * )f y g y Tech FAc= c  1.350 H0 rejected H0 not rejected 

( ) (92 67 * * * )f y g y Eff Tech FAcc=  0.774 H0 not rejected H0 not rejected 
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