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LIE SYMMETRY METHODS FOR
MULTIDIMENSIONAL LINEAR, PARABOLIC PDES

AND DIFFUSIONS

MARK CRADDOCK AND KELLY A. LENNOX

Department of Mathematical Sciences
University of Technology Sydney

PO Box 123, Broadway
New South Wales 2007

Australia
E-mail:Kelly.A.Lennox@uts.edu.au, Mark.Craddock@uts.edu.au

Abstract. In this paper we introduce methods based upon Lie
symmetry analysis for the construction of explicit fundamental so-
lutions of multidimensional parabolic PDEs. We give applications
to the problem of finding transition probability densities for mul-
tidimensional diffusions and to representation theory.

1. Introduction

Lie symmetry methods have proven to be very effective for the com-
putation of fundamental solutions for linear PDEs. Though symmetry
analysis can be used to obtain fundamental solutions for elliptic and
parabolic problems, they are particularly useful for parabolic PDEs
on the real line. In this situation, a number of different methods are
available, each of which has its own strengths and limitations.

For parabolic problems in one space dimension, the papers [8] and
[13] show how one may construct classical integral transforms of the
desired fundamental solutions, using an SL(2,R) or Heisenberg group
symmetry. In this framework, the group parameter is regarded as a
transform parameter. In one dimension there is no problem with this.
There is only one space variable, so a suitable one parameter subgroup
of the symmetry group can yield an appropriate integral transform.

Moving to higher dimensions, we would also like to be able to com-
pute fundamental solutions by symmetry. There is however a major ob-
stacle. To put it simply, there is usually not enough symmetry available
to compute a fundamental solution by the established symmetry meth-
ods, except in certain special cases. For example, the paper [21] shows
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forthcoming PhD thesis.
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2 MARK CRADDOCK AND KELLY A. LENNOX

that group invariant solution techniques will yield fundamental solu-
tions only for certain classes of problems, where the symmetry group
has dimension greater than four. Even in those cases where group in-
variance works, the fundamental solutions obtained could easily be con-
structed as products of one dimensional fundamental solutions. This is
because for these cases the PDE is of the form ut = (Lx + Ly)u, with
[Lx, Ly] = 0, so that et(Lx+Ly) = etLxetLy .

Unfortunately, equations of the form ut = ∆u + A(x)u on Rn for
n ≥ 2 typically only have SL(2,R) as the symmetry group. So we only
have three one parameter subgroups to work with. Our aim then is
to answer the following question: Can we obtain a fundamental solu-
tion by Lie symmetry analysis if the symmetry group at least contains
SL(2,R)? We will show that the answer is yes, if we also use the linear-
ity of the PDE. In two space dimensions the problem can be regarded
as completely solved and we can obtain very useful expressions in n
dimensions.

In the next section we discuss the symmetries that we need and the
background material. In Section 3 we consider some Fourier transform
results in the case when the PDE also has Heisenberg group symme-
tries. In Sections 4 and 5 we discuss methods for finding fundamental
solutions in the case when we only have SL(2,R) symmetries and Sec-
tion 6 contains applications to representation theory. Examples are
given throughout to illustrate the results.

The authors wish to thank the Australian Research Council, St
George’s Bank Ltd and Professor Eckhard Platen.

2. Symmetries of the PDE ut = ∆u + A(x)u

We are interested in this paper in PDES of the form

ut = ∆u + 2∇φ · ∇u + B(x)u, x ∈ Ω ⊆ Rn. (2.1)

The coefficients 2φx1 , 2φx2 etcetera are called the drift functions. Equa-
tions of this form are of importance in the theory of stochastic pro-
cesses, since the transition probability density for the processes gov-
erned by the stochastic differential equations (SDE)

dX i
t = 2φxi

(X1
t , ..., Xn

t )dt +
√

2dW i
t , i = 1, ..., n (2.2)

is a fundamental solution of the Kolmogorov forward equation (2.1) for
B = 0.

Our starting point will be the equation

ut = ∆u + A(x)u, x ∈ Ω ⊆ Rn. (2.3)

For n = 2 the Lie symmetries were calculated by Finkel, [16]. An
equation of the form (2.3) can be transformed into one of the form
(2.1) by letting u = eφv. This change of variables leads to the equation

vt = ∆v + 2∇φ · ∇v + (∆φ + |∇φ|2 + A(x))v. (2.4)
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If we suppose that

∆φ + |∇φ|2 + A(x) = B(x), (2.5)

then we are lead to the PDE vt = ∆v + 2∇φ · ∇v + B(x)v.
The quasilinear equation (2.5) can obviously be linearised by letting

w = eφ. The result is that ∆w+A(x)w = B(x)w. Thus finding station-
ary solutions of (2.3) is equivalent to finding drift functions for (2.1)
with B = 0. We also observe that any equation of the form (2.1) with
B = 0 and ∆φ + |∇φ|2 = 0, can be transformed to the n dimensional
heat equation.

The particular classes of functions A that we are interested in are of
the form

A(x) =
1

x2
1

k

(
x2

x1

, ...,
xn

x1

)
+

n∑
i=1

(cix
2
i + aixi) + E, (2.6)

where k is an arbitrary continuous function and c1, ..., cn, , a1, ..., an and
E are arbitrary constants. Actually we can take E = 0 without loss of
generality, by letting v = eEtu in the equation. If A is of this form then
(2.3) has nontrivial symmetries. In fact we have the following simple
result.

Proposition 2.1. Let u be a solution of (2.3) and let

A(x) =
1

x2
1

k

(
x2

x1

, ...,
xn

x1

)
,

for some function k. Then for ε sufficiently small, so is

ũε(x1, ...., xn, t) =
exp

(
− ε‖x‖2

1+4εt

)

(1 + 4εt)
n
2

u

(
x1

1 + 4εt
, ...,

xn

1 + 4εt
,

t

1 + 4εt

)
.

Proof. Applying Lie’s algorithm to the PDE shows that it has an in-
finitesimal symmetry v =

∑n
i=1 4xit∂xi

+ 4t2∂t − (‖x‖2 + 2nt)u∂u. Ex-
ponentiating this symmetry completes the proof. ¤

The next result is immediate.

Corollary 2.2. Suppose that ∆φ + |∇φ|2 + 1
x2
1
k

(
x2

x1
, ..., xn

x1

)
= 0 and u

satisfies ut = ∆u + 2∇φ · ∇u. Then for ε sufficiently small

ũε(x1, ...., xn, t) =
1

(1 + 4εt)
n
2

e−
ε‖x‖2
1+4εt

+φ( x1
1+4εt

,..., xn
1+4εt)−φ(x1,...,xn)

× u

(
x1

1 + 4εt
, ...,

xn

1 + 4εt
,

t

1 + 4εt

)
,

is also a solution.

The symmetries when the constants ci, ai are nonzero are slightly
more complicated and we will present the ones we need later.
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2.0.1. Finding Drifts. For applications, we will need to be able to com-
pute drift functions. There are a number of practical ways in which
this may be done. We will illustrate the two dimensional situation. In
n dimensions similar techniques can be used.

Suppose we wish to solve the equation

φxx + φyy + φ2
x + φ2

y +
1

x2
k

(y

x

)
= 0. (2.7)

Linearisation is one method, but this leads to a second order PDE.
A simpler approach if all we wish to find are explicit solutions, is to

let r = y/x. Then φx = − y
x2 φr, φy = 1

x
φr, φxx = y2

x4 φrr + 2 y
x3 φr and

φyy = 1
x2 φrr. So that (1 + r2)φrr + 2rφr + (1 + r2)φ2

r + k(r) = 0.
We then let F (r) = φr and obtain the Riccati equation

(1 + r2)F ′ + 2rF + (1 + r2)F 2 + k(r) = 0. (2.8)

Every Riccati equation can be linearised, and in this case we set F =
G′/G. This gives (1 + r2)G′′ + 2rG′ + k(r)G = 0. We then have the
drifts given by

φx = − y

x3

G′(y/x)

G(y/x)
, φy =

1

x

G′(y/x)

G(y/x)
. (2.9)

For example, k(r) = − 2
r2 leads to G(r) = c1

r
+ c2

(r−tan−1(r))
r

, and so

φx =

(
c1x

2 + c2yx + c1y
2 − c2 (x2 + y2) tan−1

(
y
x

))

x (x2 + y2)
(
c1x + c2y − c2x tan−1

(
y
x

)) (2.10)

φy = −x
(
c1x

2 + c2yx + c1y
2 − c2 (x2 + y2) tan−1

(
y
x

))

y (x2 + y2)
(
c1x + c2y − c2x tan−1

(
y
x

)) . (2.11)

For drift equations of the form φxx + φyy + φ2
x + φ2

y = C(x2 + y2) the

change of variables r = x2 + y2 will also lead to a Riccati equation.

3. Multi-dimensional Integral Transforms

Though there are many ways of obtaining fundamental solutions, the
integral transform method has very attractive features. See [8] for an
extensive discussion of the method for parabolic equations on the line.

In one dimension the situation is simple. In [9] it was proved that
if the PDE ut = A(x, t)uxx + B(x, t)ux + C(x, t)u has at least a four
dimensional symmetry group, we can always find a point symmetry
which maps a nonzero solution to a Fourier or Laplace transform of
a fundamental solution. Typically we use stationary solutions, if they
are available. We can obtain transition probability densities for Itô
diffusions, as well as multiple fundamental solutions very efficiently via
this technique. See [13] for examples.
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In higher dimensions, the stationary solutions will be solutions of
elliptic PDEs and hence there will now be infinitely many linearly in-
dependent stationary solutions. So we can find potentially infinitely
many linearly independent fundamental solutions, which could be of
great interest in studying properties of these equations.

There are cases where we can actually find integral transforms of
fundamental solutions via symmetry. In some cases we are able to
use the SL(2,R) symmetries to obtain the desired transforms. Let us
consider an interesting example involving a multidimensional process
that appears to be new.

Example 3.1 (A Generalisation of Bessel Processes). Let (B1
t , ..., B

n
t ) be

a standard n dimensional Brownian motion, and consider the distance
from the origin, Zt =

√
(B1

t )
2 + · · ·+ (Bn

t )2. Zt is an n dimensional
Bessel process. A standard reference for such processes is Revuz and
Yor [24]. The Itô formula shows that

dZt =
n− 1

2Zt

dt + dWt,

where W is a standard Brownian motion. Our aim is to consider a
generalization of this process, specifically the multidimensional process
X = (X1

t , ..., Xn
t ), where

dX i
t =

2ai∑n
i=1 aiX i

t

dt +
√

2dW i
t , Xt > 0, i = 1, 2, 3, ..., (3.1)

with ai > 0, i = 1, 2, ..., n. We begin with the n = 2 case, introducing
the function φ(x, y) = ln(ax+by) where a and b are constants, which we
assume to be real and positive. One easily checks that the Kolmogorov
forward equation

ut = uxx + uyy +
2a

ax + by
ux +

2b

ax + by
uy, (3.2)

has a symmetry

Uε(x, y, t) =
e−

ε(x2+y2)
1+4εt

+φ( x
1+4εt

, y
1+4εt)−φ(x,y)

1 + 4εt
u

(
x

1 + 4εt
,

y

1 + 4εt
,

t

1 + 4εt

)
.

We wish to extract a fundamental solution of the PDE from this.
Since there is only one group parameter, we cannot immediately realise
this as an integral transform. However, if we take u = 1, then this
symmetry can be split into the product and sum of two transformations.
If we let

Ūε,δ(x, y, t) =
e−

y2 δ
1+4 t δ

− x2 ε
1+4 t ε (a (x + 4 t x δ) + b y (1 + 4 t ε))

(a x + b y) ((1 + 4 t δ) (1 + 4 t ε))
3
2

,

this is actually a solution of (3.2), and Ūε,ε(x, y, t) = Uε(x, y, t), with

u = 1. It satisfies the initial condition Uε,δ(x, y, 0) = e−εx2−δy2
. So we
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look for a fundamental solution p(t, x, y, ξ, η) such that∫ ∞

0

∫ ∞

0

e−εξ2−δη2

p(t, x, y, ξ, η)dξdη = Uε,δ(x, y, t). (3.3)

This is a generalised Laplace transform. We convert it to a Laplace
transform by letting ξ2 = z, η2 = w. So that∫ ∞

0

∫ ∞

0

e−εz−δwp(t, x, y,
√

z,
√

w)
dzdw

4
√

zw
= Uε,δ(x, y, t). (3.4)

This means that

p(t, x, y,
√

z,
√

w)
1

4
√

zw
= L−1[Uε,δ(x, y, t)], (3.5)

where L is the two dimensional Laplace transform. This can be writ-
ten as the sum of two Laplace transforms, each of which is a product
of one dimensional Laplace transforms. The individual inversions are
elementary with the aid of tables and we have

L−1[Uε,δ(x, y, t)] =
1

4πt(ax + by)
e−

x2+y2+z+w
4t ×

[
a√
w

sinh(
x
√

z

2t
) cosh(

y
√

w

2t
) +

b√
z

cosh(
x
√

z

2t
) sinh(

y
√

w

2t
)

]
.

Now z = ξ2 and w = η2, so

p(t, x, y, ξ, η) =
1

πt(ax + by)
e−

x2+y2+ξ2+η2

4t ×
[
aξ sinh(

xξ

2t
) cosh(

yη

2t
) + bη cosh(

xξ

2t
) sinh(

yη

2t
)

]
.

This is a fundamental solution of the original PDE. Notice that be-
cause ∫ ∞

0

∫ ∞

0

e−εξ2−δη2

p(t, x, y, ξ, η)dξdη = Uε,δ(x, y, t), (3.6)

and U0,0(x, y, t) = 1, it follows that
∫∞
0

∫∞
0

p(t, x, y, ξ, η)dξdη = 1. Thus
this fundamental solution is also a probability density. Using the Itô
formula one can now check that it in fact is the transition probability
density for the two dimensional process

dXt =
2a

aXt + bYt

dt +
√

2dW 1
t , dYt =

2b

aXt + bYt

dt +
√

2dW 2
t , (3.7)

where both a, b > 0.

Corollary 3.1. The joint density of a two dimensional Bessel process
and a one dimensional reflected standard Brownian motion is

p(t, x, y, ξ, η) =
2

πtx
e−

x2+y2+ξ2+η2

2t ξ sinh(
xξ

t
) cosh(

yη

t
).

Proof. Take b → 0 and let t → 1
2
t. ¤
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Remark 3.2. The PDE (3.2) can be reduced to the heat equation by
setting u(x, y, t) = e−2 ln(ax+by)v(x, y, t). From this we may obtain a
fundamental solution

q(t, x, y, ξ, η) =
1

4πt

(
ax + by

aξ + bη

)2

e−
(x−ξ)2+(y−η)2

4t . (3.8)

But this is not the transition probability density we found. To obtain
the desired transition density, we need to consider fundamental solu-
tions of the heat equation valid on the first quadrant. Our method is
more efficient.

By a similar calculation we can find the transition probability density
for

dX i
t =

2ai∑n
i=1 aiX i

t

dt +
√

2dW i
t , X i

0 = xi, i = 1, ..., n, (3.9)

with ai > 0, i = 1, 2, ....

Proposition 3.3. The associated transition density for the n dimen-
sional process Xt = (X1

t , ..., Xn
t ) satisfying (3.9), may be found by in-

verting the n dimensional generalized Laplace transform

Uε1,...,εn(x1, ...., xn,t) =
1√

1 + 4ε1t · · ·
√

1 + 4εnt
exp

(
−

n∑
i=1

εix
2
i

1 + 4ε1t

)

× exp

(
φ

(
x1

1 + 4ε1t
, ....,

xn

1 + 4εnt

)
− φ(x1, ..., xn)

)
,

where φ(x1, x2, ..., xn) = log(a1x1 + · · ·+ anxn).

Proof. One easily checks that the given function Uε1,...,εn(x1, ..., xn, t) is
a Laplace transform and a solution of the Kolmogorov forward equation
for the diffusion. That the inverse transform integrates to one can be
readily checked and we also may easily show, (see the proof of Theorem
3.6), that the inverse Laplace transform is a fundamental solution. ¤

Remark 3.4. We can compute the joint density of a two dimensional
Bessel process and n − 1 independent reflected Wiener processes by
taking a2 = · · · = an = 0.

There is another connection between this n dimensional process and
the standard Bessel process.

Lemma 3.5. If Zt =
√∑n

i=1(X
i
t)

2, where

dX i
t =

2ai∑n
i=1 aiX i

t

dt +
√

2dW i
t , X i

0 = xi, i = 1, ..., n, (3.10)

then Zt is an n dimensional Bessel process.

Proof. This is just an application of the Itô formula. ¤
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The problem of obtaining integral transforms when we only have
access to SL(2,R) symmetries is not yet fully resolved. There are
some interesting approaches available, but we will not discuss them
here. When we have Heisenberg group symmetries, the situation is
easier.

We illustrate with the two dimensional heat equation, which has
symmetries of the form v1 = 2t∂x − xu∂u, v2 = 2t∂y − yu∂u. If we
exponentiate these symmetries, we see that if u(x, y, t) is a solution of
ut = uxx + uyy then so are

ρ(exp εv1)u(x, y, t) = e−εx+ε2tu(x− 2εt, y, t) (3.11)

ρ(exp δv2)u(x, y, t) = e−δy+δ2tu(x, y − 2δt, t). (3.12)

If we apply these symmetries one after the other we obtain that

Uε,δ(x, y, t) = e−εx−δy+(δ2+ε2)tu(x− 2εt, y − 2δt, t) (3.13)

is a solution. Now we use the right hand side of (3.13) and let u = u0

be a stationary solution. Let p(t, x, y, ξ, η) be a fundamental solution
of the two dimensional heat equation. Using the basic principle behind
the construction of our integral transforms, (see [11]) we have

∫ ∞

−∞

∫ ∞

−∞
Uε,δ(ξ, η, 0)p(t, x, y, ξ, η)dξdη = Uε,δ(x, y, t) (3.14)

which is the same as∫ ∞

−∞

∫ ∞

−∞
e−εξ−δηu0(ξ, η)p(t, x, y, ξ, η)dξdη

= e−εx−δy+(δ2+ε2)tu0(x− 2εt, y − 2δt). (3.15)

But (3.15) is nothing more than the two dimensional, two sided Laplace
transform of p. Suppose we take u0 = 1 and replace ε with iε and δ
with iδ. Then we have∫ ∞

−∞

∫ ∞

−∞
e−iεξ−iδηp(t, x, y, ξ, η)dξdη = e−iεx−iδy−(δ2+ε2)t. (3.16)

We have thus obtained the two dimensional Fourier transform of the
heat kernel. Let us consider another example of this approach to finding
fundamental solutions.

Example 3.2. We will compute a fundamental solution of the PDE

ut = uxx + uyy + (ax + by + c)u, (x, y) ∈ R2. (3.17)

We use the exponential solution u(x, y, t) = e
1
3
t((a2+b2)t2+3c+3(ax+by)).

The PDE has a symmetry

ũε,δ(x, y, t) = e
(a2+b2)t3

3
+ct+b(y−itδ)t+a(x−itε)t−(δ2+ε2)t−iyδ−ixε. (3.18)
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Using a similar argument to the case of the heat equation above, we
have a fundamental solution

p(t, x, y, ξ, η) =
e

(a2+b2)t3

3
+ct

(2π)2

∫

R2

eiξε+iηδeb(y−itδ)t+a(x−itε)t−(δ2+ε2)t−iyδ−ixεdεdδ

=
ect

4πt
e−

(x−ξ)2+(y−η)2

4t
+ 1

2
t(a(x+ξ)+b(y+η))+ 1

12
(a2+b2)t3 .

Similarly, one can show that the n dimensional PDE

ut = ∆u + (
n∑

i=1

aixi + c)u, (3.19)

has a fundamental solution

p(t, x, y) =
ect

(4πt)
n
2

exp

(
1

12

n∑
i=1

a2
i t

3 − ‖x− y‖2

4t
+

t

2

n∑
i=1

ai(xi + yi)

)
.

It is possible to compute these types of Fourier transforms whenever
there is a Heisenberg group of symmetries. There are two cases where
this occurs. The first result is the following.

Theorem 3.6. We consider the PDE

ut = ∆u + 2∇φ · ∇u + B(x)u, x ∈ Rn, (3.20)

where φ is a solution of the quasi-linear PDE

∆φ + |∇φ|2 + A(x) = B(x),

and A(x) =
∑n

i=1 aixi + an+1. Suppose also that u0 is a stationary
solution such that the function

K(t, x, ε) = e−i
Pn

k=1 εk(xk−akt2)−Pn
k=1 ε2kt+z(x,ε)u0(x1 − 2iε1t, ..., xn − 2iεnt)

where, z(x, ε) = φ(x1 − 2iε1t, ..., xn − 2iεnt) − φ(x1, ..., xn)is positive
definite. Then there is a fundamental solution p(t, x, y) of (3.20) such
that ∫

Rn

e−i
Pn

k=1 εkykp(t, x, y)u0(y)dy = K(t, x, ε). (3.21)

Proof. By Bochner’s Theorem, (c.f. Theorem 3.2.3 of [5]), K(t, x, ε) is
a Fourier transform. Now the PDE (3.20) has a Lie symmetry, given
by

ρ(exp(iε1v1)) · · · ρ(exp(iεnvn))u(x, t) = e−i
Pn

k=1 εk(xk−akt2)−Pn
k=1 ε2kt+z(x,ε)

× u(x1 − 2iε1t, ..., xn − 2iεnt, t)

and so K(t, x, ε) is a solution of the PDE. By Bochner’s Theorem, there
exists p(t, x, y)u0(y) such that (3.21) holds. We prove that p(t, x, y) is
a fundamental solution. To do this we observe first that

K(0, x, ε) = e−i
Pn

k=1 εkxku0(x).
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Now we let u(x, t) =
∫
Rn ϕ(ε)K(t, x, ε)dε, where ϕ is a test function of

suitably rapid decay. Notice that

u(x, 0) =

∫

Rn

ϕ(ε)e−i
Pn

k=1 εkxku0(x)dε

= u0(x)Φ(x),

where Φ is the Fourier transform of ϕ.
An application of Fubini’s Theorem then shows that∫

Rn

u0(y)Φ(y)p(t, x, y)dy =

∫

Rn

∫

Rn

u0(y)ϕ(ε)p(t, x, y)e−i
Pn

k=1 εkykdεdy

=

∫

Rn

∫

Rn

u0(y)ϕ(ε)p(t, x, y)e−i
Pn

k=1 εkykdydε

=

∫

Rn

ϕ(ε)K(t, x, ε)dε = u(x, t).

Thus integrating u0Φ against p produces a solution with u(x, 0) = u0Φ.
Hence p is a fundamental solution. ¤

There is a second case when we can extract fundamental solutions
by Fourier inversion.

Theorem 3.7. We consider the PDE

ut = ∆u + 2∇φ · ∇u + B(x)u, x ∈ Rn, (3.22)

where φ is a solution of the quasi-linear PDE

∆φ + |∇φ|2 + A(x) = B(x),

and A(x) = −1
4

∑n
k=1 ckx

2
k, ck > 0. Suppose also that u0 is a stationary

solution such that the function

K(t, x, ε) = e
−i
Pn

k=1 εkxk cosh(
√

ckt)−Pn
k=1 ε2k

sinh(2
√

ckt)

2
√

ck
+z(x,ε)

× u0(x1 −
2iε1 sinh(

√
c1t)√

c1

, ..., xn −
2iεn sinh(

√
cnt)√

cn

)

where, z(x, ε) = φ(x1− 2iε1 sinh(
√

c1t)√
c2

, ..., xn− 2iεn sinh(
√

cnt)√
cn

)−φ(x1, ..., xn)

is positive definite. Then there is a fundamental solution p(t, x, y) of
(3.22) such that∫

Rn

e−i
Pn

k=1 εkykp(t, x, y)u0(y)dy = K(t, x, ε). (3.23)

Proof. Using Lie’s algorithm, we can show that there is a symmetry of
the PDE of the form

Πn
k=1ρ(exp(iεkvk)u(x, t) = e

−i
Pn

k=1 εkxk cosh(
√

c1t)−Pn
k=1

sinh(2
√

ckt)

2
√

ck
ε2k+z(x,ε)

× u(x1 −
2iε1 sinh(

√
c1t)√

c1

, ..., xn −
2iεn sinh(

√
cnt)√

cn

, t).
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The remainder of the proof proceeds along the same lines as the pre-
vious theorem. ¤
Remark 3.8. The case where ck < 0 can be handled by replacing cosh
with cos etc. The case when A(x) =

∑n
k=1(−1

4
akx

2
k + bkxk + c) can be

handled by completing the square and making a change of variables of
the form x → x− α in the Fourier transform.

We may thus recover fundamental solutions by inverting Fourier
transforms. Different stationary solutions will typically yield different
fundamental solutions. This is a major advantage over other methods,
such as group invariant solutions. To obtain a transition probability
density we have the following easy result.

Corollary 3.9. If B = 0, u0 = 1 in Theorems 3.6 and 3.7, the resulting
fundamental solution has the property that

∫
Rn p(t, x, y)dy = 1.

Proof. From Theorem 3.6,
∫
Rn e−i

Pn
k=1 εkykp(t, x, y)dy = K(t, x, ε), so

that
∫
Rn p(t, x, y)dy = K(t, x, 0). Now K(t, x, 0) = 1 provided u0 = 1.

Similarly for Theorem 3.7. ¤

4. Expansions of Fundamental Solutions via Lie
Symmetries

Obtaining integral transforms of fundamental solutions for other
PDEs of our class is difficult because often there will not be enough
symmetry. Except for some special cases, the Lie point symmetry group
for a PDE of the form

ut = ∆u +
1

x2
1

k

(
x2

x1

, ...,
xn

x1

)
u, (4.1)

will always be SL(2,R) × R independent of n. In some cases we may
extract an n dimensional integral transform from the SL(2,R) symme-
tries, as Example 3.1 shows, but typically we do not have enough one
parameter subgroups. Nor can the fundamental solutions be obtained
as a product of one dimensional solutions.

However, even though the size of the Lie point symmetry group
remains the same, there is an important difference between the one
dimensional problem and the n dimensional problem. In the case of
a PDE on the line, such as ut = uxx + A(x)u, there are only two
linearly independent stationary solutions. But for n ≥ 2, the PDE (4.1)
has infinitely many stationary solutions. The idea is to combine the
superposition of solutions and the integration of an SL(2,R) symmetry
to produce an explicit fundamental solution.

The best results available are for n = 2 and we consider this situation
first, looking at higher dimensions later. A PDE of the form

ut = uxx + uyy +
1

x2
k

(y

x

)
u, (4.2)
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always has a Lie point symmetry of the form

ũε(x, y, t) =
1

(1 + 4εt)
exp

(
−ε(x2 + y2)

1 + 4εt

)
u

(
x

1 + 4εt
,

y

1 + 4εt
,

t

1 + 4εt

)
.

Let us integrate the symmetry against a test function ϕ. This pro-
duces the solution

U(x, y, t) =

∫ ∞

0

ϕ(ε)ũε(x, y, t)dε. (4.3)

This solves the Cauchy problem for (4.2) with initial data of the form
U(x, y, 0) = u(x, y, 0)Φ(x2 + y2) and Φ is the laplace transform of ϕ.
Since there are infinitely many stationary solutions, we can, by taking
linear combinations, solve an initial value problem of the form

U(x, y, 0) =
∞∑

k=1

uk(x, y)Φk(x
2 + y2). (4.4)

Here each uk is a stationary solution, and Φk is the Laplace transform
of a test function ϕk. If the stationary solutions are sufficiently rich,
we may recover essentially any initial condition. This is the basis for
the next result. It turns out that the problem is best treated in polar
coordinates.

Theorem 4.1. Suppose that K is continuous and that the Sturm-
Liouville problem

L′′(θ) + (K(θ) + λ)L(θ) = 0 (4.5)

α1L(a) + α2L
′(a) = 0 (4.6)

β1L(b) + β2L
′(b) = 0, (4.7)

has a complete set of eigenfunctions and eigenvalues, and that the
eigenvalues are all positive. Consider the initial and boundary value
problem

ut = urr +
1

r
ur +

1

r2
uθθ +

K(θ)

r2
u, (4.8)

r > 0, a ≤ θ ≤ b, a, b ∈ [0, 2π].

u(r, θ, 0) = f(r, θ), f ∈ S(R2),

α1u(r, a, t) + α2uθ(r, a, t) = 0

β1u(r, b, t) + β2uθ(r, b, t) = 0.

Then there is a solution of the form

u(r, θ, t) =

∫ ∞

0

∫ b

a

f(ρ, φ)p(t, r, θ, ρ, φ)ρdφdρ (4.9)

where

p(t, r, θ, ρ, φ) =
1

2t
e−

r2+ρ2

4t

∑
n

Ln(φ)Ln(θ)I√λn

(rρ

2t

)
, (4.10)
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in which Ln(θ), λn, n = 1, 2, 3... are the normalised eigenfunctions and
corresponding eigenvalues for the given Sturm-Liouville problem.

Proof. The key result is the fact that the PDE has a Lie group sym-
metry which in polar coordinates is given by

ũε(r, θ, t) =
1

1 + 4εt
e−

εr2

1+4εt u

(
r

1 + 4εt
, θ,

t

1 + 4εt

)
, (4.11)

valid for ε sufficiently small. We will integrate this symmetry and use
the linearity of the equations in order to construct a solution which
satisfies the specified conditions.

We use superposition and symmetry integration to produce a solu-
tion of the form

u(r, θ, t) =

∫ ∞

0

∑
n

ϕn(ε)
1

1 + 4εt
e−

εr2

1+4εt un

(
r

1 + 4εt
, θ

)
dε, (4.12)

in which each un is a stationary solution of (4.8). The functions ϕn

are chosen to guarantee that the integrals and sums are uniformly con-
vergent. The stationary solutions we choose will be separable, that
is

un(r, θ) = Rn(r)Θn(θ).

Substitution into (4.8) shows that we require

r2R′′
n + rR′

n − λRn = 0 (4.13)

Θ′′
n(θ) + (K(θ) + λ)Θn(θ) = 0. (4.14)

We choose λn and Θn(θ) = Ln(θ) to be the eigenvalues and nor-
malised eigenfunctions of the given Sturm-Liouville problem. We also
choose Rn(r) = r

√
λn . Thus our stationary solution is

un(r, θ) = r
√

λnLn(θ).

Now from the solution (4.12), we have with this choice of stationary
solution

u(r, θ, 0) =
∑

n

Φn(r2)r
√

λnLn(θ). (4.15)

We require u(r, θ, 0) = f(r, θ). Thus we must have

f(r, θ) =
∑

n

Φn(r2)r
√

λnLn(θ). (4.16)

Now since the eigenfunctions Ln are complete, if f ∈ S(R2), then we
may write

f(r, θ) =
∑

n

cn(r)Ln(θ), (4.17)

where

cn(r) =

∫ b

a

f(r, φ)Ln(φ)dφ. (4.18)
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This implies that we must choose

Φn(r2) =
1

r
√

λn

∫ b

a

f(r, φ)Ln(φ)dφ. (4.19)

Moreover, by general Sturm-Liouville theory, (see [3]), this sum con-
verges uniformly to f for each fixed r.

The solution we are working with has the form

u(r, θ, t) =

∫ ∞

0

∑
n

ψn(ε)
r
√

λn

(1 + 4εt)1+
√

λn
e−

εr2

1+4εt Ln(θ)dε. (4.20)

We wish to rewrite this expression using the Laplace transform.
So we observe that

r
√

λn

(1 + 4εt)1+
√

λn
e−

εr2

1+4εt =

∫ ∞

0

z
1
2

√
λn

4t
e−

r2+z
4t I√λn

(
r
√

z

2t

)
e−εzdz. (4.21)

Using this Laplace transform, we find that

u(r, θ, t) =

∫ ∞

0

∫ ∞

0

∑
n

ϕn(ε)
z

1
2

√
λn

4t
e−

r2+z
4t I√λn

(
r
√

z

2t

)
e−εzLn(θ)dzdε

=

∫ ∞

0

∑
n

Φn(z)
z

1
2

√
λn

4t
e−

r2+z
4t I√λn

(
r
√

z

2t

)
Ln(θ)dz, (4.22)

where we have reversed the order of integration and evaluated the ε
integral. Then we set z = ρ2 to obtain

u(r, θ, t) =

∫ ∞

0

ρ

2t
e−

r2+ρ2

4t

∑
n

Φn(ρ2)ρ
√

λnLn(θ)I√λn

(rρ

2t

)
dρ

=

∫ ∞

0

∫ b

a

f(ρ, φ)
ρ

2t
e−

r2+ρ2

4t

∑
n

Ln(θ)Ln(φ)I√λn

(rρ

2t

)
dφdρ.

Here we have replaced Φn(ρ2) with the value given by (4.19). By con-
struction this function satisfies both the initial and boundary condi-
tions and by symmetry it is a solution of the PDE. This completes the
proof.

¤

Remark 4.2. The change of variables t → it allows us to compute fun-
damental solutions of the Schrödinger equation iut = ∆u + 1

x2 k
(

y
x

)
u.

Consequently, from linearity and a single SL(2,R) symmetry, we can
recover an exact, explicit fundamental solution. We still have to solve
a Sturm-Liouville problem, but the second order ODE can, at least in
principle, be solved by power series methods. We will briefly address
the practical implementation of this result below. Now we consider
some examples.
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Let us recover the two dimensional heat kernel from the given the-
orem. In this example we wish to solve L′′(θ) + λL(θ) = 0, with
L(0) − L(2π) = 0. The eigenvalues are λ = n2, n = 0,±1,±2, ... and
the eigenfunctions are Ln(θ) = 1√

2π
einθ.

This gives us the following representation of the solution.

u(r, θ, t) =

∫ ∞

0

∫ 2π

0

f(ρ, φ)
ρ

4πt
e−

r2+ρ2

4t

∑

n∈Z
ein(θ−φ)I|n|

(rρ

2t

)
dφdρ.

Now the identity ea cos y = I0(a) + 2
∑∞

n=1 In(a) cos(ny), is on page 376
of [2]. Further ein(θ−φ) + e−in(θ−φ) = 2 cos(n(θ − φ)). So

∑

n∈Z
ein(θ−φ)I|n|

(rρ

2t

)
= I0

(rρ

2t

)
+ 2

∞∑
n=1

cos(n(θ − φ))In

(rρ

2t

)

= e
rρ
2t

cos(θ−φ). (4.23)

From this we conclude that

u(r, θ, t) =

∫ ∞

0

∫ 2π

0

f(ρ, φ)
ρ

4πt
e−

r2+ρ2

4t e
rρ
2t

cos(θ−φ)dφdρ. (4.24)

We can convert this back to Cartesian coordinates, setting x =
r cos θ, y = r sin θ, ξ = ρ cos φ and η = ρ sin φ. This gives the solu-
tion in Cartesian coordinates as

U(x, y, t) =

∫

R2

f̃(ξ, η)
1

4πt
e−

(x−ξ)2+(y−η)2

4t dξdη. (4.25)

Here U is the solution in Cartesian coordinates and the initial value
of the solution becomes f̃(ξ, η) = f(

√
ξ2 + η2, tan−1 ξ

η
). We have thus

recovered the two dimensional heat kernel from a single SL(2,R) sym-
metry.

We can also obtain fundamental solutions restricted to different do-
mains, with some different boundary conditions. Suppose that we want
a fundamental solution restricted to the first quadrant, which solves the
problem ut = ∆u subject to u(r, θ, 0) = f(r, θ) and u(r, 0, t) = 0.

To obtain this solution, we restrict the range of the θ variable to
[0, π

2
]. Then we choose stationary solutions of the heat equation of the

form un(r, θ) = 2√
π
r2|n| sin(2nθ). Hence we establish that

u(r, θ, t) =

∫ ∞

0

∫ π
2

0

f(ρ, φ)
2

πt
e−

r2+ρ2

4t

∑

n∈Z
sin(2nθ) sin(2nφ)I2|n|

(rρ

2t

)
dΩ,

is a solution of the heat equation on 0 ≤ r < ∞, 0 ≤ θ ≤ π
2

which satis-
fies u(r, θ, 0) = f(r, θ) for all θ ∈ [0, π

2
] and moreover u(r, 0, t) = 0. Here

dΩ = ρdφdρ. A solution of the initial value problem with uθ(r, 0, t) = 0
may be found by using the eigenfunctions cos(2nθ) in place of the sine
eigenfunctions used here.
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Example 4.1. We will solve the equation

ut = uxx + uyy − A

x2 + y2
u, (x, y) ∈ R2 − {0, 0}, A > 0, (4.26)

subject to the initial condition u(x, y, 0) = f(x, y), u(r, 0, t) = u(r, 2π, t).
In polar coordinates the equation is

ut = urr +
1

r
ur +

1

r2
uθθ − A

r2
u, A > 0. (4.27)

We have to solve the eigenvalue problem L′′ + (−A + λ)L = 0, with
L(0)− L(2π) = 0. The eigenvalues are λn = n2 + A and we again take
Ln(θ) = 1√

2π
einθ.

We can conclude that equation (4.27) has a fundamental solution

p(r, θ, t, ρ, φ) =
1

4πt
e−

r2+ρ2

4t

∑

n∈Z
ein(θ−φ)I√n2+A

(rρ

2t

)
.

It does not seem possible to obtain a closed form expression for this
series. We also note that we can obtain different fundamental solutions
by using different boundary conditions.

Example 4.2. We now consider the PDE

ut = uxx + uyy − µ

tan−1
(

y
x

)2
(x2 + y2)

u, µ > 0. (4.28)

In polar coordinates this becomes

ut = urr +
1

r
ur +

1

r2
uθθ − µ

r2θ2
u, (4.29)

and we suppose that θ ∈ (0, 2π] and impose the two boundary condi-
tions that u(r, 2π, t) = 0 and u(r, 0+, t) is finite. The Sturm-Liouville
problem in this case is

L′′ + (− µ

θ2
+ λ)L = 0, (4.30)

L(0+) finite and L(2π) = 0. The general solution of (4.30) is

L(θ) = c1

√
θJ 1

2

√
1+4µ(

√
λθ) + c2

√
θY 1

2

√
1+4µ(

√
λθ).

To satisfy the finiteness condition, we set c2 = 0 and choose λn so that
2π
√

λn = αn is the nth positive zero of J 1
2

√
1+4µ(θ). So if αn is the nth

zero of J 1
2

√
1+4µ(θ), then λn = α2

n/4π2 and we take

Ln(θ) =
√

θJ 1
2

√
1+4µ

(αn

2π
θ
)

.

This leads to the fundamental solution

p(r, θ, t, ρ, φ) =
1

2t
e−

r2+ρ2

4t

∞∑
n=1

√
θφ

cn

Jk

(αn

2π
θ
)

Jk

(αn

2π
φ
)

I√αn
2π

(rρ

2t

)
,

with k = 1
2

√
1 + 4µ and cn =

∫ 2π

0
θJk

(
αn

2π
θ
)2

dθ. Converting this back
to Cartesian coordinates is straightforward.
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Example 4.3. For the equation ut = ∆u − 1
4

(tan−1( y
x
))2

x2+y2 u, we solve the

equation L′′(θ) + (−1
4
θ2 + λ)L(θ) = 0, subject to L(0) = L(2π) = 0.

With 1F1 Kummer’s confluent hypergeometric function, the eigenfunc-

tions are Ln(θ, λ) = θe−
θ2

4 1F1

(
3
4
− λn

2
; 3

2
; θ2

2

)
, and the first few eigen-

values are λ1 = 1.5000005, λ2 = 3.500093883, λ3 = 5.50402734375,
λ4 = 7.556616211 etc. We then find

∫ 2π

0
|L1(θ, λ1)|2dθ = 1.25331,∫ 2π

0
|L2(θ, λ2)|2dθ = 0.835359, etc. From this we obtain our funda-

mental solution.

Example 4.4. Here we look at the equation ut = ∆u − 1
x2

x2+µy2

x2+y2 u,

where x, y, µ > 0 and µ 6= 1. We solve L′′ + (λ − 1 − µ tan2 θ)L = 0
subject to L(0) = 0 and L(π

2
+) finite. The eigenvalues are λn =

1 − µ +
(
2n + 3

2
+

√
µ + 1/4

)2

, n = 0, 1, 2, 3, .... The correspond-

ing eigenfunctions are Ln(θ) = cosα θ2F1

(−n− 1
2
, β; γ; cos2 θ

)
, where

α =
√

µ + 1/4 + 1
2
, β = n + 1 +

√
µ + 1/4, γ = 1 +

√
µ + 1/4. Con-

verting to Cartesian coordinates we obtain the fundamental solution

p(t, x, y, ξ, η) =
1

2t
e−

x2+y2+ξ2+η2

4t
(xξ)α

((x2 + y2)(ξ2 + η2))
α
2

×
∞∑

n=0

cn2F1

(
−n− 1

2
, β; γ;

x2

r2

)
2F1

(
−n− 1

2
, β; γ;

ξ2

ρ2

)
I√λn

(rρ

2t

)
,

with r =
√

x2 + y2, ρ =
√

ξ2 + η2. 1
c2n

=
∫ π

2

0
Ln(θ)2dθ.

An important application is to the calculation of transition densities.

Example 4.5. Consider the two dimensional Itô process

dXt =
Xt

X2
t + Y 2

t

dt +
√

2dWt, dYt =
Yt

X2
t + Y 2

t

dt +
√

2dBt, (4.31)

where W and B are independent Wiener processes. The transition
density is

p(t, x, y, ξ, η) =
1

4πt

√
ξ2 + η2

x2 + y2
e−

x2+y2+ξ2+η2

4t

∞∑
n=−∞

(
(x + iy)(ξ − iη)

(x− iy)(ξ + iη)

)n
2

× I√n2+1

(√
x2 + y2

√
ξ2 + η2

2t

)
. (4.32)

To see this, take A = 1 in (4.26) and let u = e
1
2

ln(x2+y2)v to convert
to the Kolmogorov forward equation ut = ∆u + x

x2+y2 ux + y
x2+y2 uy.

This shows that p is a fundamental solution. That it is real valued
is trivial. We need only to check that it is a density. This is eas-
iest in polar coordinates. Because

∫ 2π

0
einθdθ = 0 for n 6= 0, there



18 MARK CRADDOCK AND KELLY A. LENNOX

is only one term in the series that contributes to the integral. Now∫∞
0

ρ2

2tr
e−

r2+ρ2

4t I1

(
rρ
2t

)
dρ = 1, so (4.32) is a probability density.

Example 4.6. As a slightly more complex example, consider the two
dimensional Itô process

dXt =

(
Xt(c1(X

2
t + Y 2

t )2 − c2)

(X2
t + Y 2

t )(c1(X2
t + Y 2

t ) + c2)

)
dt +

√
2dWt, (4.33)

dYt =

(
Yt(c1(X

2
t + Y 2

t )2 − c2)

(X2
t + Y 2

t )(c1(X2
t + Y 2

t ) + c2)

)
dt +

√
2dBt, (4.34)

where Wt and Bt are independent Wiener processes and c1, c2 are con-
stants, at least one of which is nonzero. We require a fundamental
solution of the PDE

ut = ∆u +
x(c1(x

2 + y2)2 − c2)ux

(x2 + y2)(c1(x2 + y2) + c2)
+

y(c1(x
2 + y2)2 − c2)uy

(x2 + y2)(c1(x2 + y2) + c2)
.

This PDE reduces to (4.26) and we see that the transition density is

p(t, x, y, ξ,η) =
1

4πt

(c1(ξ
2 + η2) + c2)

√
x2 + y2

(c1(x2 + y2) + c2)
√

ξ2 + η2
e−

x2+y2+ξ2+η2

4t

×
∞∑

n=−∞

(
(x + iy)(ξ − iη)

(x− iy)(ξ + iη)

)n
2

I√n2+1

(√
x2 + y2

√
ξ2 + η2

2t

)
.

The proof is similar to the previous example.

Example 4.7. We present a further example which is cautionary in
nature. Consider the PDE

ut = ∆u +
2y(ay − bx)

(ax + by) (x2 + y2)
ux +

2x(bx− ay)

(ax + by) (x2 + y2)
uy, (4.35)

with a, b constants. We can reduce this to (4.26) with A = −1. Even
though one of the eigenvalues is now negative, we can still obtain a
fundamental solution using the same analysis and this is

p(t, x, y, ξ,η) =
1

4πt

(aξ + bη)
√

x2 + y2

(ax + by)
√

ξ2 + η2
e−

x2+y2+ξ2+η2

4t

×
∞∑

n=−∞

(
(x + iy)(ξ − iη)

(x− iy)(ξ + iη)

)n
2

I√n2−1

(√
x2 + y2

√
ξ2 + η2

2t

)
.

It is tempting to identify this as the transition probability density
for the Itô process whose generator is given by the right hand side of
(4.35), but this fundamental solution is not real valued, so it is not a
probability density. This shows that we must be careful when we try to
obtain transition probability densities by making changes of variables in
the Kolmogorov equation. We will produce a real valued fundamental
solution in Example 4.10 below.
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We can establish another result in the two dimensional case, for a
somewhat different type of problem.

Theorem 4.3. Suppose that the Sturm-Liouville problem

L′′(θ) + (K(θ) + λ)L(θ) = 0 (4.36)

α1L(a) + α2L
′(a) = 0 (4.37)

β1L(b) + β2L
′(b) = 0, (4.38)

has a complete set of eigenfunctions and eigenvalues, and that the
eigenvalues are all positive. Consider the initial and boundary value
problem1

ut = urr +
1

r
ur +

1

r2
uθθ +

K(θ)

r2
u− 1

4
cr2u,

r > 0, a ≤ θ ≤ b, a, b ∈ [0, 2π], c > 0.

u(r, θ, 0) = f(r, θ), f ∈ S(R2),

α1u(r, a, t) + α2uθ(r, a, t) = 0

β1u(r, b, t) + β2uθ(r, b, t) = 0.

Then there is a solution of the form

u(r, θ, t) =

∫ ∞

0

∫ b

a

f(ρ, φ)p(t, r, θ, ρ, φ)ρdφdρ (4.39)

where

p(t, r, θ, ρ, φ) =

√
c√

2(cosh(2
√

ct)− 1)
e
−
√

c(r2+ρ2) sinh(2
√

ct)

4(cosh(2
√

ct)−1) ×
∑

n

1

I√λn
2

(√
cρ2

4

)Γn(r, ρ, t)Ln(φ)Ln(θ), (4.40)

and

Γn(r, ρ, t) = L−1

(
1√

ε2 − c
16

e

„
aεr2

ε2− c
16

«

I√λn
2

(
br2

ε2 − c
16

))
,

a = c
8(cosh(2

√
ct)−1)

, b = c3/2

32(cosh(2
√

ct)−1)
and Ln(θ) and λn, n = 1, 2, 3, ...

are the normalised eigenfunctions and corresponding eigenvalues for
the Sturm-Liouville problem.

Proof. The details of the proof are similar to those for Theorem 4.1.
Symmetries of these types of equations involve exponentials in t and
the idea is to find a symmetry with the property that Uε(r, θ, 0) =

1Note that the 1
4 multiplying c in the PDE is purely for notational convenience.
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e−εr2
u(r, θ, 0). The necessary symmetry turns out to be

Uε(r, θ, t) =
e
− εcr2(cosh2(

√
ct)+sinh2(

√
ct)+2

√
cε sinh(2

√
ct)

1+16cε2 sinh2(
√

ct)+4
√

cε sin(2
√

ct)

√
1 + 8cε2(cosh(2

√
ct)− 1) + 4

√
cε sinh(2

√
ct)

× v

(
r√

1 + 8cε2(cosh(2
√

ct)− 1) + 4
√

cε sinh(2
√

ct)
, θ, T (ε, t)

)
,

where T (ε, t) = coth−1(4
√

cε+coth(
√

ct))√
c

. We now let εc → ε.

Again we build a solution by superposition and integration to obtain

u(r, θ, t) =

∫ ∞

0

∑
n

ϕn(ε)Un
ε (r, θ, t)dε, (4.41)

where the stationary solutions are of the form vn(r, θ) = R(r)L(θ) and

r2R′′ + rR′ − (
1

4
cr4 + λ)R = 0, L′′ + (K(θ) + λ)L = 0, (4.42)

and L satisfies the given boundary conditions. We will let

vn(r, θ) = I√λn
2

(√
cr2

4

)
Ln(θ). (4.43)

where Ln is the nth eigenfunction and λn the corresponding eigenvalue.
For the solution (4.41) we have

u(r, θ, 0) =
∑

n

Φn(r2)I√λn
2

(√
cr2

4

)
Ln(θ).

and Φn is the Laplace transform of ϕn. Expanding f as a series of
eigenfunctions we have

f(r, θ) =
∑

n

f̂(r, n)Ln(θ) (4.44)

where as before f̂(r, n) =
∫ b

a
f(r, ξ)Ln(φ)dφ, so that

Φn(r2) =
1

I√λn
2

(r2)

∫ b

a

f(r, φ)Ln(r, φ)dφ. (4.45)

The Laplace transform identity we need here is more difficult to obtain,
but one can show that∫ ∞

0

√
cΓn(r, z, t)√

8(cosh(2
√

ct)− 1)
e
−
√

c(r2+z) sinh(2
√

ct)

4(cosh(2
√

ct)−1) e−εzdz

=
e
− εcr2(cosh2(

√
ct)+sinh2(

√
ct)+2

√
cε sinh(2

√
ct)

1+16cε2 sinh2(
√

ct)+4
√

cε sin(2
√

ct)

√
1 + 8cε2(cosh(2

√
ct)− 1) + 4

√
cε sinh(2

√
ct)

× I√λn
2

(
cr2

4(1 + 8cε2(cosh(2
√

ct)− 1) + 4
√

cε sinh(2
√

ct))

)
.
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Consequently we can write (4.41) as

u(r, θ, t) =

∫ ∞

0

∫ ∞

0

∑
n

ϕn(ε)
√

cLn(θ)Γn(r, z, t)√
8(cosh(2

√
ct)− 1)

e
−
√

c(r2+z) sinh(2
√

ct)

4(cosh(2
√

ct)−1) e−εzdµ

=

∫ ∞

0

∑
n

Φn(z)

√
cLn(θ)Γn(r, z, t)√

8(cosh(2
√

ct)− 1)
e
−
√

c(r2+z) sinh(2
√

ct)

4(cosh(2
√

ct)−1) e−εzdε.

Here dµ = dzdε. Letting z → ρ2 and replacing Φn(ρ2) with (4.45)
completes the proof. ¤

We note that the inverse Laplace transform of the theorem does not
seem to be known analytically. It can however be computed numeri-
cally. See [1] and [10] for the numerical inversion of Laplace transforms.

Because the eigenfunction equations are the same in Theorems 4.1
and 4.3, we may readily adapt the exact examples given previously to
our second class of equations.

Example 4.8. Consider the PDE ut = ∆u − A
x2+y2 u − 1

4
c(x2 + y2)u.

Applying the previous theorem and using the eigenfunction calculation
from Example 4.26, we find

p(t, r, θ, ρ, φ) =

√
ce
−
√

c(r2+ρ2) sinh(2
√

ct)

4(cosh(2
√

ct)−1)

2π
√

2(cosh(2
√

ct)− 1)

∑

n∈Z

Γn(r, ρ, t)ein(θ−φ)

I√n2+A
2

(√
cρ2

4

) ,

where r =
√

x2 + y2, ρ =
√

ξ2 + η2, etc.

4.1. Practical Implementation of the 2D Expansion Theorems.
Our discussion of this subject will be brief, giving only the basic ideas.
Given a function K we need to solve the Sturm-Liouville problem

L′′(θ) + (K(θ) + λ)L(θ) = 0 (4.46)

α1L(a) + α2L
′(a) = 0 (4.47)

β1L(b) + β2L
′(b) = 0, (4.48)

in order to write down a fundamental solution. There are many prob-
lems for which we may write down the eigenvalues and eigenfunctions
explicitly. Bailey, Everitt and Zettl maintain a database of such prob-
lems, [22]. Unfortunately for most choices of K, closed form solutions
are not available.

There are two different approaches. We can obtain analytical approx-
imations to the eigenfunctions and eigenvalues. We can also compute
them numerically. There are different techniques that can be used for
each approach.

To illustrate the first approach, suppose that a = 0. We then have
the following easy result.
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Proposition 4.4. Suppose that K(θ) =
∑∞

k=0 Akθ
k and that L is a

solution of L′′(θ) + (K(θ) + λ)L(θ) = 0, L(0) = 0, L(b) = 0. Then we
may write L(θ) =

∑∞
n=0 cnθ

n, where c0 = 0 and

cn+2 = − (Bn + λ)cn

(n + 2)(n + 1)
,

n = 0, 1, 2, 3, ... and Bn =
∑n

j=0 cjAn−j.

Proof. The ODE has only ordinary points, so the general theory of
ODES (e.g. Rabenstein [23]), tells us that L(θ) =

∑∞
n=0 cnθ

n. It is then
easy to establish that

∑∞
n=2 n(n− 1)cnθ

n−2 +
∑∞

n=0(Bn + λcn)θn = 0,
so that

∑∞
n=0 ((n + 2)(n + 1)cn+2 + Bn + λcn) θn = 0. Now L(θ) =

c0 + c1θ + · · · , hence L(0) = c0 = 0. ¤
We may then approximate the eigenvalues as zeroes of the partial

sums of the series expansion. Knowing the eigenvalues, we then easily
obtain the eigenfunctions. Packages such as Mathematica will greatly
simply the process. This method will often be effective, but Taylor
series sometimes do not converge rapidly enough to be computationally
useful.

Alternatively, the eigenvalues may be computed numerically and
much work has been done on this. Suppose that the boundary con-
ditions are L(a) = L(b) = 0. A simple method is to use the finite
difference approximation

L′′(θi) ≈ Li−1 − 2Li + Li+1

h2
, (4.49)

where Li = L(θi) and θi = a + hi, i = 1, ..., n − 1 and h = b−a
n

. Then
we have the (n− 1)× (n− 1) system

Li−1 − 2Li + Li+1

h2
+ K(θi)Li + λLi = 0, (4.50)

L0 = Ln = 0, i = 1, ..., n−1. We thus consider the (n−1)×(n−1) matrix
M , where Mii = K(θi)− 2

h2 , Mii+1 = Mi+1i = 1
h2 and all other entries

are zero. The negative of the eigenvalues of the tridiagonal matrix M
will provide approximations to the eigenvalues of the Sturm-Liouville
problem.

To illustrate, consider the test problem of finding the eigenvalues
of y′′ + λy = 0, with y(0) = y(1) = 0. We know that the eigenval-
ues are λ = n2π2 and the eigenfunctions are C sin(nπx) for arbitrary
constants C. If we take n = 5 in (4.50) and solve the resulting eigen-
value problem, we obtain the approximate first eigenvalue λ̄1 = 9.54915
which compares reasonably well with the true value of λ1 = 9.8696. For
the second eigenvalue however, we find the approximate eigenvalue of
λ̄2 = 34.5492 compared to the true value of λ2 = 39.4784.

Taking n = 100 gives λ̄1 = 9.86879 and λ̄2 = 39.4654, which are
good approximations. In fact one can get good approximations to the



MULTIDIMENSIONAL PDES 23

first six eigenvalues with this step size, but the accuracy decreases con-
siderably as n increases. This simple minded approach is therefore
not recommended if we need a large number of eigenvalues. For large
numbers of eigenvalues, more sophisticated methods, such as those de-
veloped in [19], must be used. Good error estimates for the eigenvalues
are also available, see for example [25]. See also the SLEIGN project
and its more recent extensions, [4].

Given that we have computed the eigenvalues, we can then calculate
the corresponding eigenfunctions. These can be obtained in a number
of different ways. A simple approach is to compute the eigenvectors of
the system (4.50) corresponding to each eigenvalue, then interpolate.
For our test problem, using n = 10, we find λ1 = 9.789 and using the
Eigenvector command of Mathematica 6, we obtain the corresponding
eigenvector, with entries rounded to three decimal places

e1 = (1, 1.902, 2.618, 3.078, 3.236, 3.078, 2.618, 1.902, 1).

The real eigenfunctions are C sin(πx) and it is not hard to see that the
entries of this eigenvector are approximately equal to 3.078 sin

(
nπ
10

)
,

n = 1, ..., 9.
Using the InterpolatingPolynomial command in Mathematica 6, we

find the first approximate eigenfunction to be

L1(x) = −0.0801455x10 + 0.400727x9 − 0.140713x8 − 1.84151x7

− 0.0464004x6 + 8.26755x5 − 0.00325058x4 − 16.7226x3

− 0.0000338842x2 + 10.1664x.

Now we easily compute
∫ 1

0
L1(x)2dx = 0.5 which matches the true value

of
∫ 1

0
sin2(πx)dx. L1 provides an excellent approximation to the true

eigenfunction. For example sin( π
20

) = 0.156434 = L1(
1
20

), sin(3π
20

) =

0.45399 = L2(
3
20

) etc. Other forms of interpolation can also be used,
such as approximation by rational functions, but we will not consider
this here.

Example 4.9. Suppose that L(0) = L(2π) = 0 and K(θ) = −
√

1 + θ/10.
We implemented the previous algorithm in Mathematic 6. Using n =
10 we compute the first eigenvalues to be λ1 = 1.389, λ2 = 2.112, λ3 =
3.233, ... The first eigenfunction is approximated by

L1(θ) = 0.008θ11 − 0.285θ10 + 4.343θ9 − 37.824θ8 + 208.078θ7−
752.207θ6 + 1799.99θ5 − 2796.18θ4 + 2674.44θ3 − 1404.6θ2 + 302.233θ,

and
∫ 2π

0
L2

1(θ)dθ ≈ 181.19. We can compute as many eigenfunctions
as we need and from this and Theorem 4.1, we can write down an
analytic expression for a fundamental solution of the PDE ut = urr +
1
r
ur + 1

r2 uθθ −
√

1+ 1
10

θ

r2 u, to whatever degree of accuracy we desire.
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More can be said about implementation of these expansion results,
but the basic ideas are straightforward.

4.2. Fundamental Solutions with Distributional Terms. We have
seen in Example 4.7 that finding a transition probability density by re-
duction of the Kolmogorov equation to another PDE is not always
straightforward. This is to be expected from the one dimensional case.

As an example, the PDE ut = uxx − A
x2 u has a known fundamental

solution given by K(t, x, y) =
√

xy

2t
exp

(
−x2+y2

4t

)
I 1

2

√
1+4A

(
xy
2t

)
. Now in

[8], the diffusion X = {Xt : t ≥ 0}, satisfying the SDE

dXt =
2aXt

2 + aXt

dt +
√

2XtdWt, X0 = x > 0, a > 0, (4.51)

was considered. The PDE ut = xuxx + 2ax
2+ax

ux can be reduced to

ut = uxx − 3
4x2 u by letting x → √

x and t → 1
4
t, then defining

u(x, t) = eψ(x)ũ(x, t) for ψ(x) = ln
( √

x
2+ax2

)
. Using K(t, x, y) we find the

fundamental solution q(t, x, y) = 1
t

2+ay
(2+ax)

√
x
y
e−

(x+y)
t I1

(
2
√

xy

t

)
, but q is

not a probability density. The transition density for (4.51) is actually

p(t, x, y) =
e−

(x+y)
t

(2 + ax)t

[√
x

y
(2 + ay)I1

(
2
√

xy

t

)
+ tδ(y)

]
. (4.52)

The problem is that q was constructed from the ‘wrong’ fundamental
solution. The reduced PDE has another fundamental solution

K(t, x, y) = 2 e
−(x2+y2)

4 t y

√
y

x

(
xI1(

x y
2 t

)

4 t y
+ δ(y2)

)
, (4.53)

and using the change of variables with (4.53) will produce the desired
transition density.

In higher dimensions, similar phenomena can occur. Consider the
PDE

ut = urr +
1

r
ur +

1

r2
uθθ − A

r2
u, (4.54)

for which we found a fundamental solution earlier. Let A = 1, but now

use the stationary solutions un(r, θ) = r−
√

n2+1einθ. We then form the
solution

u(r, θ, t) =

∫ ∞

0

∞∑
n=−∞

ψn(ε)einθ (1 + 4εt)
√

n2+1−1

r
√

n2+1
e−

εr2

1+4εt dε. (4.55)

This leads to

f(r, θ) =
∞∑

n=−∞
Φn(r2)

1

r
√

n2+1
einθ =

∞∑
n=−∞

f̂(r, n)einθ.

So that Φn(r2) = r
√

n2+1
∫ 2π

0
f(r, φ)e−inφdφ.
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In order to carry out the analysis used in Theorem 4.1, we need to
be able to invert Laplace transforms of the form F (λ) = λaek/λ, where
a ≥ 0. The following result is proved in [14].

Proposition 4.5. The following Laplace transform inversion formula
holds when n is a non-negative integer.

L−1[λne
k
λ ] =

n∑

l=0

kl

l!
δ(n−l)(y) +

(
k

y

)n+1
2

In+1

(
2
√

ky
)

. (4.56)

If µ > 0 is not an integer then

L−1[λµe
k
λ ] =

(
k

y

)µ+1
2

I−µ−1(2
√

ky).

Here δ(l) is the lth derivative of the Dirac delta function. These inverse
Laplace transforms are to be treated as distributions.

Consult the book [26] to see how these distributions are to be eval-
uated. From Theorem 4.5 we have∫ ∞

0

e−
r2+z

4t

(
1

4
√

zt
I1

(
r
√

z

2t

)
+

1

r
δ(z)

)
e−εzdz =

1

r
e−

εr2

1+4εt . (4.57)

We also have

L−1

(
(1 + 4εt)

√
n2+1−1

r
√

n2+1
e−

εr2

1+4εt

)
=

1

4tz
√

n2+1
e−

r2+z
4t I−√n2+1

(
r
√

z

2t

)
.

This leads to the solution

u(r, θ, t) =

∫ ∞

0

∫ 2π

0

f(ρ, φ)p(t, r, θ, ρ, φ)ρdφdρ, (4.58)

in which p(t, r, θ, ρ, φ) =

1

2t
e−

r2+ρ2

4t

(
I1

(rρ

2t

)
+

∑

n 6=0

ein(θ−φ)I−√n2+1

(rρ

2t

)
+

2ρt

r
δ(ρ2)

)
.

So we have constructed a second fundamental solution involving dis-
tributions. Such fundamental solutions can be constructed for all the
PDEs covered by the expansion theorems that we have constructed so
far. For example, one may prove the following.

Theorem 4.6. Suppose that K is continuous and that the Sturm-
Liouville problem

L′′(θ) + (K(θ) + λ)L(θ) = 0 (4.59)

α1L(a) + α2L
′(a) = 0 (4.60)

β1L(b) + β2L
′(b) = 0, (4.61)
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has a complete set of eigenfunctions and eigenvalues, and that λn is
never a perfect square. Consider the initial and boundary value problem

ut = urr +
1

r
ur +

1

r2
uθθ +

K(θ)

r2
u, (4.62)

r > 0, a ≤ θ ≤ b, a, b ∈ [0, 2π].

u(r, θ, 0) = f(r, θ), f ∈ S(R2),

α1u(r, a, t) + α2uθ(r, a, t) = 0

β1u(r, b, t) + β2uθ(r, b, t) = 0,

Then there is a solution of the form

u(r, θ, t) =

∫ ∞

0

∫ b

a

f(ρ, ϕ)p(t, r, θ, ρ, ϕ)ρdρdϕ (4.63)

where

p(t, r, θ, ρ, ϕ) =
1

2t

∑
n

e−
r2+ρ2

4t Ln(θ)Ln(ϕ)I−√λn

(rρ

2t

)
, (4.64)

in which Ln(θ) and λn, n = 1, 2, 3... are the normalised eigenfunctions
and corresponding eigenvalues for the given Sturm-Liouville problem.

Other results are possible, but we will not attempt to give an ex-
haustive list. Let us now revisit Example 4.7.

Example 4.10. This example shows why it is crucial that we be able
to obtain more than one fundamental solution for certain problems.
We consider equation (4.35) again. The average of two fundamental
solutions is a fundamental solution. So using Theorem 4.6 and Example
4.7, we obtain the real valued fundamental solution

p(t, x, y, ξ, η) =
1

8πt

(aξ + bη)
√

x2 + y2

(ax + by)
√

ξ2 + η2
e−

x2+y2+ξ2+η2

4t

×
∞∑

n=−∞

(
(x + iy)(ξ − iη)

(x− iy)(ξ + iη)

)n
2 (

I√n2−1

(rρ

2t

)
+ I−√n2−1

(rρ

2t

))
,

where r =
√

x2 + y2, ρ =
√

ξ2 + η2. This is also a probability density.

5. Expansions in Higher Dimensions

We next consider the problem of extending the results to higher
dimensions. We illustrate with the three dimensional case and then
present the general results. Consider the PDE

ut = ∆u +
1

x2
k

(y

x
,
z

x

)
u, (5.1)

where k is an arbitrary continuous function. Introducing spherical
coordinates, x = r cos θ sin φ, y = r sin θ sin φ, z = r cos φ, with r ≥
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0, θ ∈ [0, 2π], φ ∈ [0, π] the equation becomes

ut = urr +
2

r
ur +

1

r2
(

1

sin2 φ
uθθ + cot φuφ + uφφ + G(θ, φ)u), (5.2)

with G(θ, φ) = k(tan θ,cot φ sec θ)

cos2 θ sin2 φ
. The PDE in spherical coordinates has a

symmetry

Uε(r, θ, φ, t) =
1

(1 + 4εt)3/2
e−

εr2

1+4εt u

(
r

1 + 4εt
, θ, φ,

t

1 + 4εt

)
. (5.3)

As in the two dimensional case we form a solution

U(r, θ, φ, t) =

∫ ∞

0

ϕ(ε)
1

(1 + 4εt)3/2
e−

εr2

1+4εt u

(
r

1 + 4εt
, θ, φ,

t

1 + 4εt

)
dε,

and we will let the solutions u(r, θ, φ, t) be stationary solutions. We let
u(r, θ, φ) = R(r)Ψ(θ, φ) and we require

Ψ(R′′ +
2

r
R′) +

R

r2
(

1

sin2 φ
Ψθθ + cot φΨφ + Ψφφ + G(θ, φ)Ψ) = 0.

So we have

1

sin2 φ
Ψθθ + cot φΨφ + Ψφφ + (G(θ, φ) + λ)Ψ = (∆S2 + (G + λ))Ψ = 0,

(5.4)

and r2R′′ + 2rR′ − λR = 0. This gives

R(r) = c1r
1
2
(−1+

√
1+4λ) + c2r

1
2
(−1−√1+4λ).

We will take Rn(r) = r
1
2
(−1+

√
1+4λ) and choose the eigenfunctions

Ln
λ(θ, φ) of (5.4) to form an orthonormal basis for L2(S2) where S2 is

the two dimensional unit sphere. In fact, we can always choose suitable
boundary conditions such that the eigenfunctions of ∆Sn−1 + G, where
∆Sn−1 is the Laplace-Beltrami operator on the n−1 dimensional sphere
and G is continuous, form an orthonormal basis for L2(Sn−1), (see
Theorem 15.2 of Itô [20]). Then we may expand arbitrary f ∈ L2(S2)
as

f(θ, φ) =
∑

n

cnLλn(θ, φ),

where cn =
∫ π

0

∫ 2π

0
f(ξ, η)Lλn(ξ, η) sin ηdξdη. Let un = Rn(r)Ln

λ(θ, φ)
and

u(r, θ, φ, t) =

∫ ∞

0

∑
n

ϕn(ε)
e−

εr2

1+4εt

(1 + 4εt)3/2
un

(
r

1 + 4εt
, θ, φ,

t

1 + 4εt

)
dε,

where Φn is the Laplace transform of ϕn. So that we require

u(r, θ, φ, 0) =
∑

n

Φn(r2)r
1
2
(−1+

√
1+4λn)Lλn(θ, φ) = f(r, θ, φ). (5.5)
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From this we find that

Φ(r2) =
1

r
1
2
(−1+

√
1+4λn)

∫ π

0

∫ 2π

0

f(r, ξ, η)Lλn(ξ, η) sin ηdξdη. (5.6)

Let l = 1
2
(−1 +

√
1 + 4λn), then our solution is

u(r, θ, φ, t) =

∫ ∞

0

∑
n

ϕn(ε)rl

(1 + 4εt)
3
2
+l

Lλn(θ, φ)e−
εr2

1+4εt dε.

We use the Laplace transform identity

1

(1 + 4εt)
3
2
+l

e−
εr2

1+4εt =
1

4t

∫ ∞

0

( z

r2

) l
2
+ 1

4
e−

r2+z
4t Il+ 1

2

(
r
√

z

2t

)
e−εzdz,

(5.7)

and rewrite our solution as

u(r, θ, φ, t) =

∫ ∞

0

∫ ∞

0

∑
n

e−
r2+z

4t
Lλn(θ, φ)

4tr
1
2

z
l
2
+ 1

4 Il+ 1
2

(
r
√

z

2t

)
ϕn(ε)e−εzdµ

=
1

4t

∫ ∞

0

∑
n

Φn(z)e−
r2+z

4t r−
1
2 z

l
2
+ 1

4 Lλn(θ, φ)Il+ 1
2

(
r
√

z

2t

)
dz,

with dµ = dzdε. Making the change of variables z → ρ2 gives

u(r, θ, φ, t) =

∫ ∞

0

∫ 2π

0

∫ π

0

f(ρ, ξ, η)p(t, r, θ, φ, ξ, η)ρdηdξdρ, (5.8)

where

p(t, r, θ, φ, ξ, η) =
1

2t

√
ρ

r
e−

r2+ρ2

4t sin η
∑

n

Lλn(θ, φ)Lλn(ξ, η)Il+ 1
2

(rρ

2t

)
,

is a fundamental solution of (5.2). The sum is taken over all the eigen-
values.

Actually the same calculation works in arbitrary dimensions and by
the same method we can prove the following result:

Theorem 5.1. Consider the equation

ut = urr +
(n− 1)

r
ur +

1

r2
(∆Sn−1 + G(Θ))u,

u(r,Θ, 0) = f(r,Θ),

and α(Θ)Ψ(Θ) + (1 − α(Θ))∂Ψ
∂n

= 0, with α a continuous function

and ∂Ψ
∂n

the normal derivative on the surface of the unit sphere Sn−1 of
dimension n− 1. Here ∆Sn−1 is the Laplace-Beltrami operator on Sn−1

and f ∈ S(Rn). Let Θ = (θ, φ1, ..., φm−2). Then there is a solution of
the form

U(r,Θ, t) =

∫ ∞

0

∫

Sn−1

f(ρ, ξ)p(t, r,Θ, ρ, ξ)ρdξdρ, (5.9)
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where for n ≥ 2,

p(t, r,Θ, ρ, ξ) =
1

2t

(ρ

r

)n
2
−1

e−
r2+ρ2

4t

∑

λm

Lm(Θ)Lm(ξ)Iµm

(rρ

2t

)
,

(5.10)

where µm = 1
2

√
4λm + (n− 2)2 and Lm(Θ) are normalised eigenfunc-

tions of the problem ∆SL + (λ + G)L = 0 and λm are the eigenvalues.

Proof. The calculations are essentially the same as in three dimensions.
The boundary condition on the unit sphere guarantees the orthonor-
mality and completeness of the eigenfunctions Lλn . ¤
Remark 5.2. It is also possible to numerically compute the desired
eigenvalues and eigenfunctions, but this is a more difficult problem
and we will not consider it here.

Example 5.1. If Pl(Θ) denotes the lth spherical harmonic on the sphere
Sn−1, then it is well known that ∆Sn−1Pl = l(l + n− 2)Pl, see [18]. So
that the fundamental solution of ut = ∆u− A

r2 u,A ≥ 0 is

p(t, r,Θ, ρ, ξ) =
1

2t

(ρ

r

)n
2
−1

e−
r2+ρ2

4t

∞∑

l=0

Pl(Θ)Pl(ξ)Iµl

(rρ

2t

)
, (5.11)

where µl =
√

4l(l + n− 2) + (n− 2)2 + 4A. Taking A = 0 will give the
expansion for the heat kernel on Rn.

On S2 Ψm
l (θ, φ) =

√
(2l+1)(l−m)!

4π(l+m)!
Pm

l (cos φ)eimθ, l = 0, 1, 2, 3, ... and

−l ≤ m ≤ l, are the normalised spherical harmonics. Here Pm
l (x) is the

usual Legendre function, see [17]. Thus ut = ∆u − A
x2+y2+z2 u, A ≥ 0,

has the fundamental solution

p(t, r, θ, φ, ρ, ξ, η) =
1

2t

√
ρ

r
e−

r2+ρ2

4t

∞∑

l=0

l∑

m=−l

(2l + 1)(l −m)!

4π(l + m)!
Pm

l (cos φ)

× Pm
l (cos η)eim(θ−ξ)I√

l2+l+A+ 1
4

(rρ

2t

)
.

Setting A = 0 gives the expansion for the three dimensional heat kernel.

Comparison of (5.11) for A = 0 with the heat kernel leads to an
interesting summation, that may be new. We present the n = 3 version,
and the reader will easily see how it extends to arbitrary n.

Corollary 5.3. The following summation formula holds.
√

ρ

r

∞∑

l=0

l∑

m=−l

(2l + 1)(l −m)!

(l + m)!
Pm

l (cos φ)Pm
l (cos η)eim(θ−ξ)Il+ 1

2

(rρ

2t

)

=
exp

{
rρ(cos η cos φ+cos θ cos ξ sin η sin φ+sin η sin θ sin ξ sin φ)

2t

}
√

πt
.
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Proof. Compare the series expansion with the usual heat kernel and
note that the heat kernel is unique up to terms involving distributions,
which do not arise from the series. ¤

From this example we can easily compute transition densities.

Example 5.2. Consider the n dimensional Itô process

dX i
t = X i

t

c1αn‖Xt‖
√

(n−2)2+4A − c2βn

2‖Xt‖2
(
c1‖Xt‖

√
(n−2)2+4A + c2

) +
√

2dW i
t , A > 0, (5.12)

i = 1, 2, 3, ..., n,

where ‖Xt‖2 = (X1
t )2 + · · · + (Xn

t )2, αn =
(
2− n +

√
(n− 2)2 + 4A

)

and βn =
(
n− 2 +

√
(n− 2)2 + 4A

)
. The transition probability den-

sity is

p(t, x, y) =
1

2t

(
c1 + c2‖y‖

√
(n−2)2+4A

)
(
c1 + c2‖x‖

√
(n−2)2+4A

)
(‖y‖
‖x‖

)n
2
−1− 1

2
βn

× e−
‖x‖2+‖y‖2

4t

∞∑

l=0

Pl(x)Pl(y)Iµl

(‖x‖‖y‖
2t

)
,

x = (x1, ..., xn), y = (y1, ..., yn) and Pl is the lth harmonic polynomial
restricted to the unit sphere. Note that again only the l = 0 term
contributes to the evaluation of the probability distribution.

The second class of expansion theorems generalizes to the following:

Theorem 5.4. Consider the equation

ut = urr +
(n− 1)

r
ur +

1

r2
(∆Sn−1 + G(Θ))u− 1

4
cr2u, c > 0

u(r,Θ, 0) = f(r,Θ),

and α(Θ)Ψ(Θ) + (1 − α(Θ))∂Ψ
∂n

= 0, with α a continuous function

and ∂Ψ
∂n

the normal derivative on the surface of the unit sphere Sn−1 of
dimension n− 1. Here ∆Sn−1 is the Laplace-Beltrami operator on Sn−1

and f ∈ S(Rn). Let Θ = (θ, φ1, ..., φm−2). Then there is a solution of
the form

U(r,Θ, t) =

∫ ∞

0

∫

Sn−1

f(ρ, ξ)p(t, r,Θ, ρ, ξ)ρdξdρ, (5.13)

where for n ≥ 2,

p(t, r,Θ, ρ, ξ) =
2
√

c

r(n−2)/2

(
8(cosh(2

√
ct)− 1)

)−n
4
∑

λm

1

I√(n−2)2+4λm
4

(√
cρ2

4

)

× e
−
√

c(r2+ρ2) sinh(2
√

ct)

4(cosh(2
√

ct)−1) Γm(r, ρ, t)Lm(ξ)Lm(Θ),
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Γm(r, ρ, t) = L−1

(
1

(ε2 − c
16

)
n
4

e

„
aεr2

ε2− c
16

«

I√(n−2)2+4λm
4

(
br2

ε2 − c
16

))
,

and a = c
8(cosh(2

√
ct)−1)

, b = c3/2

32(cosh(2
√

ct)−1)
, and Lm(Θ) are normalised

eigenfunctions of the problem ∆Sn−1L + (λ + G)L = 0 and λm are the
eigenvalues.

The examples we have previously considered can obviously be ex-
tended to Theorem 5.4. Numerous new examples of densities and func-
tionals can be obtained by these results. A full discussion of this will
be given elsewhere, [12].

6. Applications to Representation Theory

Lie symmetries are a priori only locally defined transformations, a
fact which has been seen as placing them outside the realm of represen-
tation theory. However Craddock has shown that the Lie symmetries
of many important PDEs such as the heat equation, are actually equiv-
alent to global representations of the underlying symmetry groups; see
[6], [7]. Recently Craddock and Dooley extended this work to some
important classes of multi-dimensional PDEs, [9]. In this section, we
extend these results to the SL(2,R) symmetries of any PDE of the
form iut = ∆u + A(x)u.

For simplicity, we consider the unitary case for equations in two space
variables of the form

iut = ∆u +
1

x2
k

(y

x

)
u. (6.1)

The extension to the n dimensional case is easy. In [9] the following
irreducible projective representation of SL(2,R) was introduced. See
that paper for more details.

Definition 6.1. For <(ν) > −2, λ ∈ R∗ and f ∈ L2(R+) we define
the modified Segal-Shale-Weil representation by

Rν
λ

(
1 b
0 1

)
f(z) = e−iλbz2

f(z) (6.2)

Rν
λ

(
a 0
0 a−1

)
f(z) =

√
|a|f(az) (6.3)

Rν
λ

(
0 −1
1 0

)
f(z) =

√
|λ|f̃ν(λz). (6.4)

Here f̃ν(y) =
∫∞
0

f(x)
√

xyJν(xy)dy, is the Hankel transform of f. The
function Jν is a Bessel function of the first kind.
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We introduce the operator

Af(r, ρ, t) =

∫ ∞

0

∫ 2π

0

√
ρ

4πit
f(ρ)Ln(θ)Ln(φ)e−

i(r2+ρ2)
4t Jν

(rρ

2t

)
dφdρ

=

∫

R2

√
ρ

4πit
f(ρ)ln(θ, φ)e−

i(r2+ρ2)
4t Jν

(rρ

2t

)
dµ,

where ln(θ, φ) = Ln(θ)Ln(φ), dµ = dφdρ, ν =
√

λn, with λn the
nth eigenvalues of the Sturm-Liouville problem in Theorem 4.1, f ∈
L2(R+), be a solution of (6.1) in polar coordinates. This is constructed
by taking one term from the expansion for the fundamental solution.
The following result is an elementary consequence of Theorem 4.1.

Lemma 6.2. Let u(r, ρ, t) = Af , for f ∈ L2(R+). Then u is a solution

of the equation iut = urr + 1
r
ur + 1

r2 uθθ + K(θ)
r2 u, with K(θ) = k(tan θ)

cos2 θ
.

Notice that our intertwining operator is not a fundamental solution,
as is the case for most of the cases treated in [9]. The operator A is
nevertheless sufficient for our purposes.

Theorem 6.3. The PDE iut = ∆u+ 1
x2 k( y

x
)u has Lie symmetry group

SL(2,R)×R. Moreover if σ represents the Lie symmetry operator and
R1 represents the modified Segal-Shale-Weil projective representation
of SL(2,R), then for all g ∈ SL(2,R) and f ∈ L2(R+)

(σ(g)Af)(x, y, t) = (ARν
1(g)f)(x, y, t).

Proof. It is sufficient to prove the result in polar coordinates. That is,

we prove the equivalence for the PDE iut = urr + 1
r
ur + 1

r2 uθθ + K(θ)
r2 u.

The symmetries in polar coordinates are

σ(exp(εv1))u(r, θ, t) = u(x, y, t− ε),

σ(exp(εv2))u(r, θ, t) = e−εu(eεr, θ, e2εt),

σ(exp(εv3))u(x, y, t) =
1

1 + 4εt
exp

(
− iεr2

1 + 4εt

)
u

(
r

1 + 4εt
, θ,

t

1 + 4εt

)
,

σ(exp(εv4)u(r, θ, t) = eiεu(r, θ, t).

Then we need to show that for k = 1, 2, 3,

σ(exp(εvk))Af)(r, θ, t) = ARν
1(exp(εXk)f)(r, θ, t), (6.5)

where X2 =

(
1 0
0 −1

)
, X3 =

(
0 1
0 0

)
, X1 =

(
0 0
−1 0

)
, is a ba-

sis for the Lie algebra sl2. The result for v4 is trivial. We can then
use the fact that any element of SL(2,R) can be written as a prod-
uct of exponentials of these basis vectors. We exponentiate X2 to get

exp(εX2) =

(
eε 0
0 e−ε

)
. Thus we have

Rν
1(exp(εX2)f)(ρ) = e

1
2
εf(eερ).
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Now for the equivalence calculation.

ARν
1(exp(εX2)f)(r, θ, t) =

∫

R2

e
1
2
εf(eερ)

√
ρ

4πt
ln(θ, φ)e−

i(r2+ρ2)
4t Jν

(rρ

2t

)
dµ

=

∫

R2

e
1
2
εf(ρ)

√
e−ερ

4πt
ln(θ, φ)e−i(

r2+e−2ερ2)
4t Jν

(
re−2ερ

2t

)
e−εdµ

=

∫

R2

e−εf(ρ)

√
ρ

4πt
ln(θ, φ)e−

i(((eεr)2+ρ2)

4e2εt Jν

(
reερ

2e2εt

)
dµ

= e−εu(eεr, θ, e2εt) = σ(exp(εv2)u)(r, θ, t).

For the v3 calculation, apply the symmetry

σ(exp(εv3))u(x, y, t) =
1

1 + 4εt
exp

(
− iεr2

1 + 4εt

)
u

(
r

1 + 4εt
, θ,

t

1 + 4εt

)

to

p(r, θ, ρ, φ, t) =

√
ρ

4πit
Ln(θ)e−

i(r2+ρ2)
4t Ln(φ)Jν

(rρ

2t

)
.

Now the terms involving Jν and 1/(4πit) are unchanged by the sym-

metry. Plainly exp

(
−i

( r2

1+4εt
+ρ2)

4t
1+4εt

)
= e−iερ2

exp
(
−i(r2+ρ2)

4t

)
. Thus

(σ(exp(εv3))Af)(r, θ, t) =

∫

R2

e−iερ2

f(ρ)

√
ρ

4πit
e−i r2+ρ2

4t ln(θ, φ)Jν

(rρ

2t

)
dµ

=

∫

R2

Rν
1(exp(εX1))f(ρ)

√
ρ

4πit
e−i r2+ρ2

4t ln(θ, φ)Jν

(rρ

2t

)
dµ.

This establishes the second equivalence.

Finally, Hν

(√
ρ

2it
e
−i(r2+ρ2)

4t Jν

(
rρ
2t

))
(z) = e−

iνπ
2
√

zeitz2
Jν(rz), (see [15]).

An elementary calculation, detailed in [9], shows that

ARν
1(exp(εX3))f)(ρ) = Hν

(
eiερ2

f̃ν

)
(ρ).

Now using
∫∞

0
f̃ν(ρ)g(ρ)dρ =

∫∞
0

f(ρ)g̃ν(ρ)dρ we have

(ARν
1(exp(εX3))f)(r, θ, t) =

∫

R2

Hν

(
eiερ2

f̃ν

)
(ρ)p(r, θ, φ, t)dµ

=

∫

R2

eiεz2

f̃ν(z)ln(θ, φ)
1

2π
e−

iνπ
2
√

zeitz2

Jν(rz)dzdφ

=

∫

R2

f̃ν(z)ln(θ, φ)
1

2π
e−

iνπ
2
√

zei(t−ε)z2

Jν(rz)dzdφ

=

∫

R2

f(ρ)ln(θ, φ)

√
ρ

4πi(t− ε)
e−

i(r2+ρ2)
4(t−ε) Jν

(
rρ

2(t− ε)

)
dµ

= u(x, t− ε).

Here p(r, θ, φ, t) = ln(θ, φ)
√

ρ

4πit
e−

i(r2+ρ2)
4t Jν

(
rρ
2t

)
. This completes the proof.

¤
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This theorem may easily be extended to the PDE iut = ∆u +
1
x2
1
k

(
x2

x1
, ..., xn

x1

)
u. We work in the n dimensional form of polar co-

ordinates and we use the intertwining operator

(Af)(r,Θ, t) =

∫ ∞

0

∫

Sn−1

f(ρ)ψλk
(Θ, ξ)

ρ
1
2

2tr
n−2

2

e−
r2+ρ2

4t Il

(rρ

2t

)
dξdρ,

(6.6)

where l = 1
2

√
4λk + (n− 2)2 and ψλk

= Lk(Θ)Lk(ξ) and Lk(Θ) is the
kth eigenfunction of ∆Sn−1u+(G+λ)u = 0, with λk the corresponding
eigenvalue. The calculations are essentially identical to the previous
result. This leads to the following theorem.

Theorem 6.4. The PDE

iut = ∆u + 2∇φ · ∇u + B(x)u, x ∈ Rn, (6.7)

where ∆φ + |∇φ|2 + 1
x2
1
k

(
x2

x1
, ..., xn

x1

)
= B(x) has SL(2,R) as a global

group of Lie point symmetries and if σ represents the Lie symmetry op-
erator and R1 represents the modified Segal-Shale-Weil projective rep-
resentation of SL(2,R), then for all g ∈ SL(2,R) and f ∈ L2(R+)

(σ(g)Af)(x, y, t) = (ARν
1(g)f)(x, y, t),

with A given by (6.6).

Proof. Equation (6.7) is equivalent to iut = ∆u+ 1
x2
1
k

(
x2

x1
, ..., xn

x1

)
u and

so they have isomorphic symmetry groups. ¤

Analagous results can be established for PDEs of the form iut =

∆u+ 1
x2
1
k

(
x2

x1
, ..., xn

x1

)
u− 1

4
c(x2

1 + · · ·+x2
n) and also for equations of the

form ut = ∆u+A(x)u. The details will appear in Lennox’s thesis.
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