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1 Introduction

Filtering is a powerful methodology that aims to extract information about hidden
variables from observed data. In particular, the variables of interest can occur
as realizations of continuous time hidden Markov chains. The observation of the
hidden, time varying variables can be perturbed by other stochastic processes.
Therefore, the need arises for filtering methods, which allow to detect in an
adaptive manner as much information about the hidden variables as possible.

The systematic construction and investigation of filters for hidden Markov chains
goes back to Wonham (1965), Zakai (1969) and Fujisaki, Kallianpur & Kunita
(1972). The stochastic filtering theory is the subject of a seminal monograph by
Kallianpur (1980). Later the question of finding discrete-time approximations for
optimal filters was considered by Clark & Cameron (1980), Newton (1986, 1991)
and Kloeden, Platen & Schurz (1993). Moreover, the application of the balanced
implicit method to stochastic differential equations (SDEs) in filtering has been
considered in Fischer & Platen (1999).

Unfortunatelly, in all the discrete time approximation methods numerical stabil-
ity issues may arise, which in turn can prevent their use in important practical
situations. There is a wide range of literature which deals with the issue of
numerical stability. In particular, implicit or predictor-corrector methods are
used to control the propagation of errors. We refer for this approach to pa-
pers by Talay (1982), Klauder & Petersen (1985), Milstein (1988), Hernandez &
Spigler (1993), Saito & Mitsui (1993), Kloeden & Platen (1992), Milstein, Platen
& Schurz (1998), Higham (2000), Alcock & Burrage (2006), Bruti-Liberati &
Platen (2008) and Platen & Shi (2008). There are various numerical schemes
that perform well on some SDEs for certain parameter ranges and sufficiently
small step sizes. However, numerical instabilities caused by the presence of mul-
tiplicative noise in the Zakai SDE are, in general, not easily overcome by most of
these methods. For larger time step sizes numerical instabilities potentially arise,
which limits the applicability of the filtering methodology. The issue of numerical
stability can be, however, circumvented when it is possible to simulate exact or
quasi-exact solutions of the Zakai equation at the observation points. The fol-
lowing study is focused on the application of such exact solution method to the
multi-dimensional, multiplicative noise SDEs arising from the Zakai equation of
hidden Markov chain filtering. This critical task has to be effectively and reliably
performed to make a hidden Markov chain filter successful. Observations are, in
practice, only available at discrete-time instants. Therefore, they may occur at
any given frequency. If the observations are rare and the standard discrete time
numerical schemes fail, then the proposed quasi-exact solution method for hidden
Markov chain filters may still result in reliable estimates.

For illustration and comparison we will consider an example involving the discrete-
time numerical solution of hidden Markov chain filters which was discussed also
in Fischer & Platen (1999). Here the hidden signal process is corrupted by a
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Brownian motion. We compare selected discrete time numerical solutions of the
Zakai equation to some quasi-exact solution proposed in this paper. This study
illustrates the practical usefulness of the quasi-exact solution from the engineering
point of view.

This paper is organized as follows: in Section 2 we describe in detail the Wonham
filter problem and the resulting Zakai equation for hidden Markov chain filters.
Section 3 presents the exact solution of some multi-dimensional, multiplicative
noise SDEs with a view towards hidden Markov chain filters, while Section 4
covers discrete time numerical approximations including some of those discussed
in Fischer & Platen (1999). In Section 5 we consider an example of hidden Markov
chain filters and Section 6 concludes.

2 Hidden Markov Chain Filters

Let us now introduce filters for hidden, continuous time, finite state Markov
chains. Let (Ω,AT ,A, P ) with A = (At)t∈[0,T ] and T ∈ [0,∞) be the underlying
filtered probability space and suppose that the hidden state process ξ = {ξt, t ∈
[0, T ]} is a continuous time, homogeneous Markov chain on the finite state space
X = {a1, a2, . . . , ad}, d ∈ {0, 1, . . .}. Its d-dimensional probability vector p(t) =
(p1(t), . . . , pd(t))

⊤ at time t, with components

pi(t) = P (ξt = ai) (2.1)

for each ai ∈ X , satisfies then the vector ordinary differential equation (ODE)

dp(t)

dt
= Ap(t), (2.2)

where A is the intensity matrix and the initial probability vector equals p(0) = p0.
The solution of the vector ODE (2.2) is then of the form

p(t) = exp{At}p0. (2.3)

Here exp{·} denotes the matrix exponential defined as

exp{A} =
∞
∑

k=0

Ak 1

k!
. (2.4)

In addition, suppose that the m-dimensional observation process W = {W t, t ∈
[0, T ]} is the solution of the SDE

dW t = h(ξt) dt + dW ∗
t (2.5)

for t ∈ [0, T ] with W 0 = W ∗
0 ∈ ℜm, m ∈ {1, 2, . . .}. This type of disturbance

of a signal by a Wiener process is called a Wonham filter problem, see Wonham
(1965).
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In the SDE (2.5) the noise process W ∗ = {W ∗
t , t ∈ [0, T ]} with W ∗

0 = 0 is an m-
dimensional standard Wiener process with respect to the real world probability
measure P . The Wiener process W ∗ is assumed to be independent of the hidden
state process ξ. Finally, let

Yt = σ {W s, s ∈ [0, t]}

denote the observation sigma-algebra generated by the observations W s for s ∈
[0, t]. This means, Y = (Yt)t∈[0,T ] is the filtration that represents the release of
observed information, whereas A = (At)t∈[0,T ] with At = σ{ξs, W s : s ∈ [0, t]}
expresses the evolution of the total information.

Our task is to filter as much information about the hidden state process ξ as we
can from the observation process W . With this aim we shall evaluate for a given
function g : X → ℜ the Wonham filter, which is the conditional expectation

ĝ(ξT ) = E
(

g(ξT )
∣

∣YT

)

with respect to the real world probability P . The function g(·) could be chosen,
for instance, as an indicator function 1{ξT =ai}, which yields ĝ(ξT ) as a probability.
It could also represent a power function (ξT )q, which leads to ĝ(ξT ) describing
the qth moment of the hidden Markov chain.

By application of the Girsanov transformation one obtains a probability measure
Ṗ , where

dṖ = L−1
T dP (2.6)

with

LT = exp

{

−
1

2

∫ T

0

|h(ξs)|
2 ds +

∫ T

0

h(ξs)
⊤ dW s

}

(2.7)

such that W is a Wiener process with respect to Ṗ , while L is assumed to be a
martingale. Here LT = dP

dṖ
is the corresponding Radon-Nikodym derivative. Note

that we express in this situation the real world probability measure P in terms of
the new probability measure Ṗ for which W is a standard vector Wiener process
given by (2.5).

Let us introduce the unnormalized conditional probability σ(ξt)
i for the state

ai ∈ X at time t by the conditional expectation

σ(ξt)
i = Ė

(

1{ξt=ai}Lt

∣

∣Yt

)

(2.8)

with respect to the new probability measure Ṗ for i ∈ {1, 2, . . . , d} and t ∈ [0, T ].
It follows from the Kallianpur-Striebel formula, see Fujisaki, Kallianpur & Kunita
(1972), that the conditional probabilities of ξt given in Yt are

P
(

ξt = ai

∣

∣Yt

)

= E
(

1{ξt=ai}

∣

∣Yt

)

=
σ(ξt)

i

∑d

k=1 σ(ξt)k
(2.9)
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for ai ∈ X and t ∈ [0, T ]. Here the d-dimensional process σ(ξ) = {σ(ξt) =
(σ(ξt)

1, . . . , σ(ξt)
d)⊤, t ∈ [0, T ]} of unnormalized conditional probabilities satisfies

the Zakai equation

σ(ξt) = p(0) +

∫ t

0

Aσ(ξs) ds +

m
∑

k=1

∫ t

0

Dk σ(ξs) dW j
s (2.10)

for t ∈ [0, T ]. This is a homogeneous linear Itô SDE. In (2.10) Dk is the d×d diag-
onal matrix with iith component hk(ai) for i ∈ {1, 2, . . . , d} and k ∈ {1, 2, . . . , m}.

The least-squares estimate at time t for g(ξt) with respect to the given observa-
tions at time t, that is with respect to the sigma-algebra Yt, is then the Wonham

filter , which is given by the conditional expectation

ĝ(ξt) = E
(

g(ξt)
∣

∣Yt

)

=

∑d

k=1 g(ak) σ(ξt)
k

∑d

k=1 σ(ξt)k
(2.11)

for t ∈ [0, T ].

3 Quasi-exact Filters

Let us consider the following d-dimensional multiplicative noise SDE

dXt = AX tdt +
m
∑

k=1

DkX tdW k
t , (3.1)

with a solution that is representing a vector geometric Brownian motion, where
X = {X t = (X1

t , X2
t , . . . , Xd

t )⊤, t ∈ [0,∞)}, A = [ai,j]di,j=1 and Dk = [dk,i,j]di,j=1,
k ∈ {1, 2, . . . , m}. Here, W k, k ∈ {1, 2, . . . , m}, are the elements of the vector
SDE (2.5), that describes the observation process.

It turns out that if the matrices A, D1, D2, . . . , Dm are constant and commute,
that is, if

ADk = DkA and DkDn = DnDk (3.2)

for all k, n ∈ {1, 2, . . . , m}, then an explicit solution of the SDE (3.1) can be
expressed by

X t = ΨtX0, (3.3)

for t ∈ [0,∞). Here, Ψt is the matrix exponential

Ψt = exp

{

At −
1

2

m
∑

l=1

(

Dl
)2

t +
m
∑

r=1

DrW r
t

}

, (3.4)

for t ∈ [0,∞).
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The proof follows from the Itô formula applied to (3.3). Note that

dX t = d [Ψt] X0 = d

[

exp

{(

A −
1

2

m
∑

l=1

(

Dl
)2

)

t +

m
∑

r=1

DrW r
t

}]

X0 (3.5)

= d

[

exp

{(

A −
1

2

m
∑

l=1

(

Dl
)2

)

t

}

m
∏

r=1

exp {DrW r
t }

]

X0,

since the matrices
(

A −
1

2

m
∑

l=1

(

Dl
)2

)

t and

m
∑

r=1

DrW r
t (3.6)

commute for all t ∈ [0,∞). Therefore,

dXt = d

[

exp

{(

A −
1

2

m
∑

l=1

(

Dl
)2

)

t

}]

m
∏

r=1

exp {DrW r
t }X0 (3.7)

+ exp

{(

A −
1

2

m
∑

l=1

(

Dl
)2

)

t

}

d

[

m
∏

r=1

exp {DrW r
t }

]

X0

=

(

A −
1

2

m
∑

l=1

(

Dl
)2

)

exp

{(

A −
1

2

m
∑

l=1

(

Dl
)2

)

t

}

×
m
∏

r=1

exp {DrW r
t }X0dt

+
m
∑

k=1

Dk exp

{(

A −
1

2

m
∑

l=1

(

Dl
)2

)

t

}

m
∏

r=1

exp {DrW r
t }X0dW k

t

+
1

2

m
∑

k=1

(

Dk
)2

exp

{(

A −
1

2

m
∑

l=1

(

Dl
)2

)

t

}

×
m
∏

r=1

exp {DrW r
t }X0d[W k]t.

This equation simplifies to

dXt = AX tdt +
m
∑

k=1

DkX tdW k
t , (3.8)

since the quadratic variation of the kth observation process equals

[W k]t =

∫ t

0

ds = t, (3.9)

for k ∈ {1, 2, . . . , m}.
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The above derivation shows that an SDE of the type (2.10) has an explicit so-
lution if the matrices A, D1, . . . , Dm commute. Note that D1, . . . , Dm in (2.10)
are diagonal matrices, and thus commute with each other. However, the matrix
A is not commuting with the other matrices. Therefore, we do not have an exact
explicit solution of the Zakai equation (2.10). Nevertheless, as we will illustrate
later, if we formally take the matrix exponential (3.4) in the product (3.3), then
one obtains a proxy of the solution of the corresponding Zakai equation. It turns
out that this quasi-exact solution provides in many cases an excellent approxi-
mation of the exact solution, as we will confirm numerically. This is a practically
very valuable observation. The solution will be exploited to solve approximately
and efficiently the Wonham filter problem. What, of course, needs to be done is
to show for given matrices A, D1, . . . , Dm and initial vector X0 that the quasi-
exact solution is indeed close to the exact solution. This can be achieved by
comparing the proposed approximation via discrete time simulation with a very
accurately obtained numerical approximation using an extremely small time step
size, see Kloeden & Platen (1999).

To prepare this type of comparison, let us now introduce the following equidistant
time discretization 0 = τ0 < τ1 < · · · < τn = T , such that τi = i∆, for i ∈
{0, 1, . . . , T

∆
}. Denote by Y ∆

τi
at time τi the quasi-exact approximation of the

solution σ(ξτi
) of the Zakai equation (2.10), expressed by the recursive equation

Y ∆
τi+1

= exp

{

A∆ −
1

2

m
∑

l=1

(

Dl
)2

∆ +
m
∑

r=1

Dr∆W r
τi+1

}

Y ∆
τi
, (3.10)

at the equidistant discretization points, where the ∆W r
τi+1

are increments of the
rth element of the vector observation process W . That is we have

∆W r
τi+1

= W r
τi+1

− W r
τi
, (3.11)

for r ∈ {1, 2, . . . , d} and i ∈ {0, 1, . . . , T
∆
}.

We will consider in Section 5 an example of the observation processes given by
the following SDE

dW r
t = ξtdt + dW r∗

t , (3.12)

for t ∈ [0, T ]. We then add for such a scenario simulation all jump times of the
continuous time Markov chain to the equidistant time discretization to obtain a
jump adapted time discretization 0 = t0 < t1 < · · · < tnT

= T with maximum
step size ∆ > 0, see Platen (1982). Note that nT is now a random integer. The
increments of this observation process at jump adapted discretization points can
be obtained by exact simulation given the value of the hidden Markov chain ξti

at time ti. That is

W r
ti+1

− W r
ti

= ξti(ti+1 − ti) +
√

ti+1 − tiZ
r
i+1, (3.13)

for r ∈ {1, 2, . . . , d} and i ∈ {0, 1, . . . , nT −1}. Here Zr
i+1 ∼ N (0, 1) is a standard

Gaussian random variable, for r ∈ {1, 2, . . . , d} and i ∈ {0, 1, . . . , nT − 1}. Note
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that this process is a drifted Wiener process with piecewise constant random
drift. The simulation of the increments of W r is straightforward and we can
easily obtain the increments, since we have via simulation at our disposal the
values of W r at the times ti for i ∈ {0, 1, . . . , nT}.

4 Approximate Filters

In practice, it is impossible to detect W continuously on [0, T ]. One may, however,
approximate increments of observations of W in integral form of the type

∫ τ1

τ0

dW j
s , . . . ,

∫ τn+1

τn

dW j
s , . . . ,

∫ τ1

τ0

∫ s2

τ0

dW j
s1

dW k
s2

, . . .

for each j ∈ {1, 2, . . . , m}, τn = n∆ and n ∈ {0, 1, . . . , T
∆
}. We shall see later

on that with such integral observations it is possible to construct strong discrete-
time approximations Y ∆ with time step size ∆ of the solution σ(ξ) of the Zakai
equation (2.10). This allows then for the given function g to form the approximate

Wonham filter

ĝ∆(ξt) =

∑d

k=1 g(ak) Y
∆,k
t

∑d

k=1 Y
∆,k
t

(4.1)

for t ∈ [0, T ].

We shall say that a discrete-time approximation Y ∆ with time step size ∆ con-
verges on the time interval [0, T ] with strong order γ > 0 to the solution X of
the corresponding SDE if there exists a finite constant K, not depending on ∆,
and a δ0 ∈ (0, 1) such that

Ė
(
∣

∣σ(ξτn
) − Y ∆

τn

∣

∣

)

≤ K ∆γ (4.2)

for all ∆ ∈ (0, δ0) and τn ∈ [0, T ]. Note that the expectation in (4.2) is taken
with respect to the probability measure Ṗ under which the observation process
W is a Wiener process.

Analogously, we say that an approximate Markov chain filter ĝ∆(ξτnt
) with time

step size ∆ converges on the time interval [0, T ] with strong order γ > 0 to the
optimal filter ĝ(ξτnt

) for a given test function g if there exists a finite constant K,
not depending on ∆, and a δ0 ∈ (0, 1) such that

E
(
∣

∣ĝ(ξτnt
) − ĝ∆(ξτnt

)
∣

∣

)

≤ K ∆γ (4.3)

for all ∆ ∈ (0, δ0) and t ∈ [0, T ]. In contrast with (4.2) the expectation in (4.3)
is taken with respect to the original probability measure P . In Kloeden, Platen
& Schurz (1993) the following convergence result was derived.
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Theorem 4.1 (Kloeden-Platen-Schurz) An approximate Markov chain fil-

ter ĝ∆(ξ) with time step size ∆ converges for t ∈ [0, T ] with strong order γ > 0 to

the optimal filter ĝ(ξ) for a given bounded function g if the discrete-time approx-

imation Y ∆ used converges on [0, T ] to the solution σ(ξ) of the Zakai equation

(2.10) with the same strong order γ.

Now, we derive discrete-time strong approximations Y ∆ that are converging with
a given strong order γ > 0 to the solution σ(ξ) of the Zakai equation (2.10), which
can be used to build a corresponding approximate filter.

Given an equidistant time discretization of the interval [0, T ] with step size ∆ = T
N

for some N ∈ {1, 2, . . .}, we define the partition sigma-algebra

P1
N = σ{∆W

j
i−1 : i ∈ {1, 2, . . . , N}, j ∈ {1, 2, . . . , m}} (4.4)

as the sigma-algebra generated by the increments

∆W
j
0 =

∫ ∆

0

dW j
s , . . . , ∆W

j
N−1 =

∫ N∆

(N−1)∆

dW j
s (4.5)

for all j ∈ {1, 2, . . . , m}. Thus, P1
N contains the information about the increments

of W for the given time discretization.

The simplest discrete-time approximation is obtained from the Euler scheme. It
has for the Zakai equation (2.10) the form

Y ∆
τn+1

= [I + A ∆ + Gn] Y ∆
τn

(4.6)

with

Gn =
m
∑

k=1

Dk ∆ W k
n (4.7)

and initial value Y0 = σ(ξ0), where I is the d × d unit matrix. The scheme
(4.6) converges with strong order γ = 0.5 under the given assumptions. For a
general SDE this is the maximum order of strong convergence that can be achieved
under the partition sigma-algebra P1

N , as was shown in Clark & Cameron (1980).
However, some commutativity property of the Zakai equation (2.10) follows from
the diagonal structure of its volatility matrices, see Kloeden & Platen (1999).
This allows the strong order γ = 1.0 to be attained with the information given
by P1

N .

The Milstein scheme, which is of strong order γ = 1.0 has for the Zakai equation
(2.10) the form

Y ∆
τn+1

=

(

I + A ∆ + Gn

(

I +
1

2
Dn

))

Y ∆
τn

, (4.8)

where

A = A −
1

2

m
∑

k=1

(Dk)2. (4.9)

9



0 1 2 3 4 5 6 7 8 9 10
−20

−15

−10

−5

0

5

10

Figure 5.1: Simulation of the signal and observation processes for ∆ = 1
500

.

Newton (1986) searched for a scheme which is asymptotically the “best” in the
class of strong order γ = 1.0 schemes in the sense that it has the smallest leading
error coefficient in an error estimate similar to (4.2), see Kloeden & Platen (1999).
In practice, the numerical stability of discrete-time approximations for filters is
highly important. Fischer & Platen (1999) studied the application of the bal-
anced implicit method in hidden Markov chain filtering when the time between
observations is rather large. They obtained quite reliable results for the balanced
implicit scheme even for large step sizes. In the following section we consider
an example of a Wonham filter considered also by Fischer & Platen (1999). We
show that our quasi-exact approximation of the Zakai equation performs remark-
ably well, even though the matrix A does not fully commute with the matrices
D1, . . . , Dm in the Zakai equation.

5 Wonham Filter Example

The unobservable signal process ξ = {ξt, t ∈ [0, T ]} in our example is a time
homogeneous, continuous time, real valued Markov chain with the set X =
{a1, a2, . . . , ad} of states. The scalar observation process W = {Wt, t ∈ [0, T ]} is
given by the relation

Wt =

∫ t

0

h(ξs)ds + W ∗
t , (5.1)

for t ∈ [0, T ]. One can say that W represents the time integral over the signal
process that is corrupted by a Wiener process W ∗. We estimate the hidden state
of the Markov chain ξ by observing only the values of the process W .

It is convenient to consider a d state continuous time Markov chain X = {X t, t ∈
[0, T ]} that is identical to ξ under a transformation of the state space, see Elliott,
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Figure 5.2: q1
t - obtained by the quasi-exact approximation for ∆ = 1

500
.

Aggoun & Moore (1995). We choose as the state space for X the set {e1, . . . , ed}
of unit vectors in ℜd, with e1 = (1, 0, 0, . . . , 0)⊤, e2 = (0, 1, 0, . . . , 0)⊤ and so on.
Then we write,

ξt = X⊤
t a (5.2)

with a = (a1, a2, . . . , ad)
⊤ ∈ ℜd. Let A = [ai,j]di,j=1 be the constant intensity

matrix associated with the homogeneous, continuous time Markov chain X, so
that p(t) = E(X t) satisfies the vector ordinary differential equation

dp(t)

dt
= Ap(t), (5.3)

for t ∈ [0, T ], with given initial probability vector p(0). H is the diagonal d × d

matrix that has the elements of the vector a as diagonal elements and is zero
elsewhere.

Denote by Yt the observation sigma-algebra generated by W up to time t. The
Wonham filter for X at time t is then given as

X̂ t = E(X t

∣

∣Yt).

As we have seen in Section 2, the theoretical solution to the problem of calculating
X̂ t involves the unnormalized filter for the conditional distribution of X, which
is denoted by σ(X) = {σ(X t), t ∈ [0, T ]} and satisfies the Zakai equation

dσ(X t) = Aσ(X t) dt + D σ(X t) dWt (5.4)

for t ∈ [0, T ]. The Wonham filter for X is then computed as

X̂ t = E(X t

∣

∣Yt) =
σ(X t)

σ(X t)⊤ 1
(5.5)
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Figure 5.3: Difference between q1
t obtained by the quasi-exact approximation and

the Euler scheme for ∆ = 1
500

.

for t ∈ [0, T ], see (2.11).

Let us know assume that our observation process W is a one-dimensional stochas-
tic process of the differential form

dWt = ξtdt + dW ∗
t , (5.6)

for t ∈ [0, T ]. The exact simulation of this process was already discussed in
Section 3.

Moreover, the parameters of the Markov chain X, or equivalently ξ, are chosen
to give a realistic multiplicative noise term in the Zakai equation (5.4). The
simulated hidden Markov chain X is chosen to have three states, with the vector
a taken to be a = (5, 0,−5)⊤. Numerical experiments have shown that using more
states does not change the nature of the results that we obtain. The intensity
matrix A of the hidden Markov chain is chosen to be of the simple form

A =





−1.0 1.0 0
0.5 −1.0 0.5

0 1.0 −1.0



 . (5.7)

This describes how the Markov chain jumps with prescribed intensities to neigh-
boring states. For instance, the intensity to jump from level 0 to level 5 is 0.5
per unit of time.

Now, let us investigate the approximate calculation of the Wonham filter. We
simulate the scenario for the signal and observation processes over the time inter-
val [0, T ] with T = 10 using the exact simulation method (3.13). The simulated
output can be seen in Fig. 5.1.

Let us now consider the probability

qi
t = X̂

⊤

t ei = E
(

X⊤
t ei

∣

∣Yt

)

(5.8)
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Figure 5.4: q1
t - obtained by the quasi-exact method with ∆ = 1

20
.
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Figure 5.5: q1
t - obtained by the Euler method with ∆ = 1

20
.

which, for i ∈ {1, 2, 3}, denotes the filtered probability that the hidden Markov
chain X is in the ith state. For illustration let us focus on q1

t , which corresponds
to the level ξ = 5, that is i = 1.

To obtain the quantity q1
t we have to solve the SDE (5.4). In order to do so we use

our quasi-exact approximation described in Section 3. Applying it to the equation
(5.4) and denoting by Y ∆

τi
the approximate solution of the Zakai equation at time

τi, we obtain the following quasi-exact approximation

Y ∆
τi+1

= exp

{

A∆ −
1

2
D∆ + D∆Wτi+1

}

Y ∆
τi
, (5.9)

where ∆Wτi+1
is obtained using (3.13). Additionally, D is a diagonal matrix with
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elements

D =





5 0 0
0 0 0
0 0 −5



 . (5.10)

In order to calculate the matrix exponential in (5.9) we use an implementation
in Matlab. If a given matrix has a full set of eigenvectors V with corresponding
eigenvalues D, then the matrix exponential of this matrix is

V exp{diag(D)}V −1. (5.11)

Note also that the matrix exponential of the diagonal matrix is a diagonal matrix,
whose diagonal elements are exponents of diagonal elements of the underlying
matrix. If this calculation is not possible to apply, Matlab’s implementation uses
the Padé approximation with scaling and squaring, see Higham (2005).

Additionally, we compare our quasi-exact approximation to the results obtained
via two numerical schemes: the Euler scheme and the Milstein scheme, as de-
scribed in Section 4. When the step size ∆ was chosen extremely small with
about 1

500
, then all three approximations produced virtually identical results.

Fig. 5.2 displays a plot of q1
t as calculated by the quasi-exact approximation with

∆ = 1
500

. This is compared to the result obtained by the Euler scheme for the
same time step size in Fig. 5.3. In this figure we show the difference between q1

t

obtained by the quasi-exact approximation and the Euler scheme for ∆ = 1
500

.
We remark that small errors occur, most likely, due to the approximate nature
of the Euler scheme as well as the Padé approximation of the matrix exponential
used in the quasi-exact method. When using the Milstein scheme the results were
practically the same. Differences between the schemes become apparent when the
time step size ∆ is chosen to be larger.

We emphasize that such a fine time discretization for the observation process
as employed in our test, however, is often not available in real world filtering
problems. Using the same realizations of the observation and signal processes
that were given in Fig. 5.1, we display in Figs. 5.4 and 5.5 the plots of the filtered
probability q1

t , see (5.8), calculated by the proposed quasi-exact approximation
and the Euler method when using the larger step size ∆ = 1

20
. For this step size we

can see that the only acceptable approximation appears to be the proposed quasi-
exact approximation of the hidden Markov chain filter. In the other case we even
obtain negative “probabilities” and other unrealistic estimates as filter values.
This undesirable effect is due to numerical instabilities of the Euler scheme. In
the given example also the Milstein scheme does not yield a useful filter.

6 Conclusion

We have proposed a quasi-exact approximation of hidden Markov chain filters,
which mimics an exact solution of a multi-dimensional geometric Brownian mo-
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tion. It turns out that, even though the drift matrix in the Zakai equation does
not perfectly commute, the quasi-exact method is rather successful in approxi-
mating hidden Markov chain filters also for large observation time steps.

The results of our experiments demonstrate that discrete time approximations,
such as the Euler scheme, cannot be used as reliably as the proposed quasi-exact
method. When the available observations are rare the quasi-exact method can
provide useful approximations where other standard methods fail.
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