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THE EVALUATION OF AMERICAN COMPOUND OPTION PRICES

UNDER STOCHASTIC VOLATILITY

CARL CHIARELLA♯ AND BODA KANG†

Abstract. A compound option (the mother option) gives the holder the right, but

not obligation to buy (long) or sell (short) the underlying option (the daughter option).

In this paper, we consider the problem of pricing American-type compound options

when the underlying dynamics follow Heston’s stochastic volatility model. We use

a partial differential equation (PDE) approach to obtain a numerical solution. The

problem is formulated as the solution to a two-pass free boundary PDE problem which

is solved via a modified sparse grid approach and is found to be accurate and efficient

compared with the results from a benchmark solution based on Monte Carlo simulation

combined with the Method of Lines.

Keywords: American compound option, stochastic volatility, free boundary problem,

sparse grid, combination technique, Monte Carlo simulation, method of lines.

JEL Classification: C61, D11.

1. Introduction

The compound option goes back to the seminal paper of Black & Scholes (1973). As well

as their famous pricing formulae for vanilla European call and put options, they also

considered how to evaluate the equity of a company that has coupon bonds outstanding.

They argued that the equity can be viewed as a “compound option” because the equity

“is an option on an option on · · · an option on the firm”. Geske (1979) developed

the first closed-form solution for the price of a vanilla European call on a European

call. It turns out that a wide variety of important problems are closely related to the

valuation of compound options. Some examples include pricing American puts in Geske

& Johnson (1984) and hedging volatility risk by trading options on straddles in Brenner,

Ou & Zhang (2006).

A compound option (called the mother option) gives the holder the right, but not

obligation to buy (long) or sell (short) the underlying option (called the daughter option).

♯ carl.chiarella@uts.edu.au; School of Finance and Economics, University of Technology, Sydney, Aus-
tralia.
†Corresponding author: boda.kang@uts.edu.au; School of Finance and Economics, University of Tech-
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For simplicity, we describe the European-type compound option as an example. Suppose

that a compound option expires at some date TM with the strike price KM and the

daughter option on which it is contingent, expires at a later time TD(> TM ) with the

strike price KD. Under Geometric Brownian Motion dynamics, the price of a European

call on a European call, M(S, t), (or call on call in short) may be written as a conditional

expectation under the risk neutral measure of the discounted payoff at the maturity of

the mother option where the payoff is the positive part of the differences between the

price of the daughter option at that time and the strike of the mother option. Similarly,

one can define call on put, put on call, and put on put.

Compound options are common in many multi-phase projects, such as product and drug

development, where the initiation of one phase of the project depends on the successful

completion of the preceding phase. For example, launching a product that involves a

new technology requires successful testing of the technology; drug approval is dependent

on successful Phase II trials, which can be conducted only after successful Phase I tests.

With compound options, at the end of each phase, one has the option to continue to

the next phase, abandon the project, or defer it to a later time. Each phase becomes an

option that is contingent upon the exercise of earlier options. For phased projects, two

or more phases may occur at the same time (parallel options) or in sequence (staged or

sequential options). These options are mostly American with the right to buy (call) or

sell (put) on or before the expiry of each option. We refer the reader to Kodukula &

Papudesu (2006) for more examples of compound option in real option applications.

Derivative securities are commonly written on underlying assets with return dynamics

that are not sufficiently well described by the geometric Brownian motion (GBM) process

proposed by Black & Scholes (1973). There have been numerous efforts to develop

alternative asset return models that are capable of capturing the leptokurtic features

found in financial market data, and subsequently to use these models to develop option

prices that better reflect the volatility smiles and skews found in market traded options.

One of the classical ways to develop option pricing models that are capable of generating

such behaviour is to allow the volatility to evolve stochastically, for instance according

to the square-root process introduced by Heston (1993). Compound options of all types

are very sensitive to volatility and this is the motivation for considering American-type

compound options under stochastic volatility in this paper.

Han (2003) in his thesis and Fouque & Han (2005) introduce a fast, efficient and robust

approximation to compute the prices of compound options such as call-on-call options

within the context of multiscale stochastic volatility models. However, they only consider

the case of a European option on a European option. Furthermore their method relies

on certain expansions, so its range of validity is not entirely clear.
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In the case of European options on European options under GBM dynamics, there

exist “almost” explicit integral-form solutions. However, in situations involving more

general dynamics (such as stochastic volatility), either explicit solutions do not exist

or the integrals become difficult to evaluate. In contrast it turns out that the PDE

approach provides a very efficient and flexible way to compute prices of compound

options. The use of this approach is not restricted to European-type options, and can

also include American type, Asian type, or other exotic types of options. In this paper,

we demonstrate the PDE approach to pricing American-type compound options. We

assume that both the mother and the daughter options may be American-type. The

American meaning of the mother option is same as the conventional American option,

namely the holder of the compound option can exercise the mother option any time

before the maturity TM . Upon exercising, the holder will hold a daughter option from

the early exercise time and we assume that the holder can exercise the daughter option

any time from now until the maturity TD. In principle, the method we develop is able

to price all four kinds of compound options, but here we only give details of the case of

American call on American call.

The remainder of the paper is structured as follows. Section 2 outlines the problem

of an American type compound option where the underlying asset follows stochastic

volatility dynamics. In Section 3 we outline the basic idea of the sparse grid approach

and implement a combination technique on a modified sparse grid to find the price

profile of a daughter option and apply the same technique to find the price profile of the

mother option based on the results from the previous step. A benchmark solution based

on Monte Carlo simulation (MC) for the mother option combined with the Method of

Lines (MOL) for the daughter option is implemented in Section 4. A number of numerical

examples that demonstrate the computational advantages of the modified sparse grid

approach are provided in Section 5 before we draw some conclusions in Section 6. The

details of the justification of the smooth-pasting conditions for the American compound

option are provided in the Appendix.

2. Problem Statement-Compound Option with Stochastic Volatility

Let D(S, v, t) denote the price of an American call option (the daughter option) written

on a stock of price S at time t with maturity time TD and strike price KD and M(S, v, t)

denote the price of an American call option written on the daughter option of price

D(S, v, t) with maturity time TM and strike price KM . The variable v denotes the

variance of the stock price return at time t.
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Analogously to the setting in Heston (1993), the dynamics for the share price S under the

risk neutral measure are governed by the stochastic differential equation (SDE) system
1

dS = (r − q)Sdt +
√

vSdZ1, (1)

dv = κv(θv − v)dt + σ
√

vdZ2, (2)

where Z1, Z2 are standard Wiener processes and E(dZ1dZ2) = ρdt with E the expectation

operator under the risk neutral measure. In (1), r is the risk free rate of interest and q

is the continuously compounded dividend yield. In (2) the parameter σ is the so called

vol-of-vol (in fact, σ2v is the variance of the variance process v). The parameters κv

and θv are respectively the rate of mean reversion and long run variance of the process

for the variance v. These are under the risk-neutral measure and are relates to the

corresponding quantities by a parameter that appears in the market price of volatility

risk.2

We are also able to write down the above system (1)-(2) using independent Wiener

processes. Let W1 = Z2 and Z1 = ρW1 +
√

1 − ρ2W2 where W1 and W2 are independent

Wiener processes under the risk neutral measure. Then, the dynamics of S and v can

be rewritten in terms of independent Wiener processes as

dS = (r − q)Sdt +
√

vS(ρdW1 +
√

1 − ρ2dW2), (3)

dv = κv(θv − v)dt + σ
√

vdW1. (4)

The price of an American compound option under stochastic volatility at time t, M(S, v, t),

can be formulated as the solution to a two-pass free boundary PDE problem. We first

solve the PDE for the value of the daughter option D(S, v, t) given by

KD − rD +
∂D

∂t
= 0, (5)

on the interval 0 ≤ t ≤ TD and subject to the terminal condition

D(S, v, TD) = (S − KD)+, (6)

1Of course, since we are using a numerical technique we could in fact use more general processes for
S and v. The choice of the Heston processes is driven partly by the fact that this has become a
very traditional stochastic volatility model and partly because a companion paper on the evaluation of
European compound options under stochastic volatility uses techniques based on a knowledge of the
characteristic function for the stochastic volatility process, which is known for the Heston process (see
Chiarella, Griebsch & Kang (2009)).
2 In fact, if it is assumed that the market price of risk associated with the uncertainty driving the
variance process has the form λ

√
v, where λ is a constant (this was the assumption in Heston (1993))

and κP

v , θP

v the corresponding parameters under the physical measure, then κv = κP

v + λσ, θv =
κP

v
θP

v

κP
v
+λσ

.
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and free (early exercise) boundary condition

D(d(v, t), v, t) = d(v, t) − KD, (7)

where d(v, t) is the early exercise boundary for the daughter option at time t and variance

v, and the smooth-pasting conditions

lim
S→d(v,t)

∂D

∂S
= 1, lim

S→d(v,t)

∂D

∂v
= 0. (8)

In (5) the Kolmogorov operator K is given by

K =
vS2

2

∂2

∂S2
+ ρσvS

∂2

∂S∂v
+

σ2v

2

∂2

∂v2
+ (r − q) S

∂

∂S
+ (κv(θv − v) − λv)

∂

∂v
, (9)

where λ is the constant appearing in the equation for the market price of volatility risk,

which as stated in Footnote 2 is of the form λ
√

v.

Given the values for the daughter option, we can then solve the PDE for the mother

option M(S, v, t) that satisfies

KM − rM +
∂M

∂t
= 0, (10)

on the interval 0 ≤ t ≤ TM and subject to the terminal condition

M(S, v, TM ) = (D(S, v, TM ) − KM )+, (11)

the free (early exercise) boundary condition

M(m(v, t), v, t) = D(m(v, t), v, t) − KM , (12)

and the smooth-pasting conditions:

lim
S→m(v,t)

∂M

∂S
=

∂D

∂S
, lim

S→m(v,t)

∂M

∂v
=

∂D

∂v
. (13)

where m(v, t) is the early exercise boundary for the mother option at variance v and

time t.

The smooth-pasting conditions (8) and (13) follow by assuming that option holders will

select their exercise strategy so as to maximise the value of both American daughter

and mother option. Mathematically, this is equivalent to ensuring that ∂D/∂S, ∂D/∂v,

∂M/∂S and ∂M/∂v will be continuous for all values of S. The details of the justification

for these conditions can be found in the Appendix.

3. Sparse grid implementation

In order to tackle the computationally demanding task of solving the two nested PDEs

(5)-(8) and (10)-(13) we apply the sparse grid approach that turns out to be quite
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fast and accurate. The sparse grid combination technique for solving PDEs was first

introduced by Reisinger (2004) in his PhD thesis. Reisinger & Wittum (2007) discussed

the application of this approach to option pricing problems. The combination technique

requires the solution of the original equation only on a set of conventional subspaces

defined on Cartesian grids specified in a certain way and a subsequent extrapolation

step, but still retains a certain convergence order.

3.1. The Sparse grid combination technique. We incorporate the techniques and

algorithms used in Adolfsson, Chiarella, Ziogas & Ziveyi (2009) and the sparse grid

approach to solve the linked PDEs (5)-(8) and (10)-(13) with suitable initial, boundary

and smooth pasting conditions.

In our case, consider the 2−dimensional cube Ω := [0, Smax] × [0, vmax] and a Cartesian

grid with mesh size hj = 2−lj (corresponding to a level lj ∈ N0) in the directions j = 1, 2.

The indices j = 1 and j = 2 represent the directions of the stock price S and the variance

v respectively.

For a vector h = (h1, h2) we denote by ch the representation of a function on such the

grid with points

xh = (i1 · h1, i2 · h2) for j = 1, 2, 0 ≤ ij ≤ Nj, Nj = 1/hj = 2lj .

For a given level l, the above grid consists all possible combinations of (l1, l2) with

0 ≤ l1, l2 ≤ l. In total, there are 22(l+1) points in the grid. The curse of dimensionality

comes into effect as the level l is increased.

However, with the same level l, the sparse grid, will consist of the points

xh = (i1 · h1, i2 · h2) for j = 1, 2, 0 ≤ ij ≤ Nj, Nj = 1/hj = 2lj ,

satisfying l1 + l2 = l. It is clear that there are l+1 choices of such combinations of (l1, l2)

these ??? (0, l), (1, l−1), · · · , (l−1, 1), (l, 0). Figure 1 provides an example of a standard

sparse grid hierarchy with level l = 5 with respect to the six different combinations.

0 S_max
0

v_max

0 S_max
0

v_max

0 S_max
0

v_max

0 S_max
0

v_max

0 S_max
0

v_max

0 S_max
0

v_max

Figure 1. A sparse grid hierarchy of level 5 with respect
to each combination. From the left to right, these are
(0, 5), (1, 4), (2, 3), (3, 2), (4, 1), (5, 0) respectively
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Obviously, the above grids share the common properties that they are dense in one

direction but sparse in the other direction. If we put all of the above grids together, we

will obtain the standard sparse grid shown in Figure 2.

0 S_max
0

v_max

Figure 2. A standard sparse grid of level 5.

Let ch be the discrete vector of function values at the grid points of the standard

sparse grid. In general, ch is the finite difference solution to the PDE of interest on

the corresponding grid h. The solution can be extended to Ω by a suitable multi-linear

interpolation operator I3 in the point wise sense according to

ch(S, v, τ) = Ich,∀(S, v) ∈ Ω.

Next, we define the family C of solutions corresponding to the different sparse grids (as

in Figure 1 for instance) by C = (C(i))i∈N2 with

C(i) := c2−i ,

that is the family of numerical approximations (after proper interpolation) ch on tensor

product grids with hk = 2−ik . For example, the solution on the first grid in Figure 1

would be C(0, 5) etc. The combination technique in Reisinger & Wittum (2007) tells us

that the solution cl (l is the level of the sparse grid) of the corresponding PDE is

cl =

l
∑

n=0

C(n, l − n) −
l−1
∑

n=0

C(n, l − 1 − n). (14)

The procedure involves solving the PDE in parallel on each of the sparse grids of level

l and level l − 1 respectively. See Figure 1 for l = 5 as an example. Thus there are

(2l + 1) PDE solvers running simultaneously. The theory developed by Reisinger &

3A thorough error analysis of the multi-linear interpolation operator can be found in Reisinger (2008) who
gives a generic derivation for linear difference schemes through an error correction technique employing
semi-discretisations and obtains error formulae as well.
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Wittum (2007) shows that Equation (14) combines all solutions together to yield a

more accurate solution to the PDE.

The essential principle of the extrapolation is that all lower order error terms cancel out

in the combination formula (14) and only the highest order terms

h2
1 · h2

2 = (2−l1 · 2−l2)2 = 4−l

remain. Taking advantage of this cancelation mechanism, Eq.(14) is able to produce

quite accurate results fairly quickly. The details of the error analysis can be found in

Reisinger (2004) and Reisinger & Wittum (2007).

3.2. Modified sparse grid. We are able to apply the technique described above to

the two pass PDE system for the prices of the compound option discussed in Section 2.

However, for our model, the underlying share price has different scale characteristics

compared with the levels of the variance and we have found that it is difficult to im-

plement the above described sparse grid combination techniques using the standard

sparse grid shown in Figure 1 as it produces rather bad results. Furthermore, the stan-

dard sparse grid provides the difficulty that it is difficult to approximate accurately the

boundary conditions for some “extreme” grid points, e.g. the first (0, 5) and the last

(5, 0) grid in Figure 1 which only have two points in one direction of the direction S or

v.

In order to overcome these problems, we have modified the above approach slightly,

namely by adding a fixed number of points to both the S and v directions in each of the

grids, which results in a relative “balance” in both directions, and, indeed the numerical

results indicate that this modification produces accurate and efficient prices.

More specifically, we let both levels l1, l2 in different directions start from a small but

non zero value ls which means that the new modified levels l̂1, l̂2 are defined as

l̂1 = l1 + ls, l̂2 = l2 + ls, l1 + l2 = l, l1, l2 ∈ N0.

Then the total level of the modified sparse grid becomes 2ls + l in terms of the level

originally defined. Hence, the modified sparse grid will consist of the points

x̂h = (i1 · ĥ1, i2 · ĥ2), for j = 1, 2, N̂j = 1/ĥj = 2l̂j , l̂1 = l1 + ls, l̂2 = l2 + ls, l1 + l2 = l.

Similarly, there are still l+1 choices of combinations of (l1, l2) with (0, l), (1, l−1), · · · , (l−
1, 1), (l, 0), consequently, we will have the combinations (ls, l + ls), (ls + 1, l + ls −
1), · · · , (ls + l − 1, ls − 1), (ls + l, ls) for the modified sparse grid. Figure 3 shows an

example of a modified sparse grid hierarchy with ls = 2, l = 2 (2ls + l = 6), namely

(2, 4), (3, 3), (4, 2). Figure 4 shows the corresponding modified sparse grid.
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0 S_max
0

v_max

0 S_max
0

v_max

0 S_max
0

v_max

Figure 3. A modified sparse grid hierarchy with a initial level 2 and
total level 6 with respect to each combination.

0 S_max
0

v_max

Figure 4. A modified sparse grid with a initial level 2 and total level 6.

Analogously to Equation (14), a solution ĉls,l (ls, l are the initial level and the level

of the sparse grid respectively) of the corresponding PDE in two dimensions with the

modified sparse grid is given as

ĉ(ls ,l) =

l
∑

n=0

C(ls + n, ls + l − n) −
l−1
∑

n=0

C(ls + n, ls + l − 1 − n). (15)

We implement the modified sparse grid combination technique to solve the PDE (5)

in order to obtain the desired daughter option prices. We thus have the terminal and

boundary conditions for the PDE governing the price of the mother option. Next, we

apply the technique again to solve the PDE (10) to obtain the prices of the mother

option. We solve the PDEs (5)-(8) and (10)-(13) in each of the subspaces on a parallel

cluster, which makes the process very efficient.

In the implementation, a standard Crank Nicolson finite difference method with pro-

jected successive over-relaxation (PSOR) method has been applied to each of the modi-

fied sparse grids in Figure 3 to calculate the solution of both PDEs (5)-(8) and (10)-(13)

on the grid points, solutions at other non-grid points are obtained by the same multi-

linear interpolation as in Reisinger (2008).
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4. A Monte Carlo simulation (MC)/ Method of Lines (MOL) Benchmark

In order to develop a benchmark solution against which we can compare the accuracy

of the sparse grid approach we develop an algorithm that uses the Method of Lines to

evaluate the daughter option prices, and a Monte Carlo (MC) scheme to evaluate the

value of the mother option.

In Section 4.1, we will provide the details of the implementation of the Method of Lines.

In Section 4.2, we implement a Monte Carlo simulation for the underlying process and

obtain the prices of the mother option based on the available daughter option prices.

4.1. The Method of Lines. The key idea behind the method of lines is to replace

a PDE with an equivalent system of one-dimensional ordinary-differential equations

(ODEs), the solution of which is more readily obtained using numerical techniques.

When volatility is constant, the system of ODEs is developed by discretising the time

derivative. For the PDE (5), we must in addition discretise the derivative terms involving

the variance, v. We begin by setting vm = m∆v, where m = 0, 1, 2, ...,M . Typically we

will set the maximum variance to be vM = 100%. Furthermore, we disctretise the time

to expiry according to τn = n∆τ , where τN = T . We denote the option price along the

variance line vm and time line τn by D(S, vm, τn) = Dn
m(S), and set

V (S, vm, τn) ≡ ∂D(S, vm, τn)

∂S
= V n

m(S), (16)

which is of course the option delta at the particular grid point.

We now select finite difference approximations for the derivative terms with respect to

v. For the second order term, at the grid point (S, vm, τn) we use the standard central

difference scheme

∂2D

∂v2
=

Dn
m+1 − 2Dn

m + Dn
m−1

(∆v)2
. (17)

Similarly for the cross-derivative term at the grid point (S, vm, τn), we use the central

difference approximation

∂2D

∂S∂v
=

V n
m+1 − V n

m−1

2∆v
. (18)

Since the coefficients of the second order derivative terms go to zero as v → 0, we use an

upwinding finite difference scheme for the first order derivative term (see Duffy (2006)),

such that, at the grid point (S, vm, τn) we have

∂D

∂v
=







Dn
m+1

−Dn
m

∆v
if v ≤ α

β
,

Dn
m−Dn

m−1

∆v
if v > α

β
,

(19)
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where α = κvθv and β = κv + λv. Since the second order derivative terms both vanish

as v → 0, upwinding helps to stabilise the finite difference scheme with respect to v.

Next we must select a discretisation for the time derivative. Initially we use a standard

backward difference scheme, given at the grid point (S, vm, τn) by

∂D

∂τ
=

Dn
m − Dn−1

m

∆τ
. (20)

This approximation is only first order accurate with respect to time. For the case of the

standard American put option, it is known from Meyer (2009) that the accuracy of the

method of lines increases considerably by using a second order approximation for the

time derivative, specifically

∂D

∂τ
=

3

2

Dn
m − Dn−1

m

∆τ
− 1

2

Dn−1
m − Dn−2

m

∆τ
. (21)

Thus we initiate the method of lines solution by using (20) for the first several time

steps, and then switch to (21) for all subsequent time steps.

Applying (17)-(21) to the PDE (5), we now need to solve a system of second order ODEs

at each time step and variance grid point. For the first few time steps, the ODE at the

grid point v = vm and τ = τn is

vmS2

2

d2Dn
m

dS2
+ ρσvmS

V n
m+1 − V n

m−1

2∆v
+

σ2vm

2

Dn
m+1 − 2Dn

m + Dn
m−1

(∆v)2

+
α − βv

2

Dn
m+1 − Dn

m−1

∆v
+

|α − βv|
2

Dn
m+1 − 2Dn

m + Dn
m−1

∆v

+ (r − q)S
dDn

m

dS
− rDn

m − Dn
m − Dn−1

m

∆τ
= 0, (22)

and for all subsequent time steps the ODE has the form

vmS2

2

d2Dn
m

dS2
+ ρσvmS

V n
m+1 − V n

m−1

2∆z
+

σ2vm

2

Dn
m+1 − 2Dn

m + Dn
m−1

(∆v)2

+
α − βv

2

Dn
m+1 − Dn

m−1

∆v
+

|α − βv|
2

Dn
m+1 − 2Dn

m + Dn
m−1

∆v

+ (r − q)S
dDn

m

dS
− rDn

m − 3

2

Dn
m − Dn−1

m

∆τ
+

1

2

Dn−1
m − Dn−2

m

∆τ
= 0. (23)

We require two boundary conditions in the v direction, one at v0 and the other at vM .

For large values of v, the rate of change of the option price with respect to v diminishes.

So for sufficiently large values of v, one can treat this rate of change as zero without any

impact on the accuracy of the solution at other values of v. Thus we set ∂C/∂v = 0

along the variance boundary v = vM . To handle the boundary condition at v is zero,we

fit a quadratic polynomial through the option prices at v1, v2 and v3, and then use this

to extrapolate an approximation of the price at v0. This provides us with a satisfactory
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estimate of the price along v0 for the purpose of generating a stable solution for small

values of v4.

After taking the boundary conditions into consideration, at each time step n we must

solve a system of M−1 second order ODEs along the variance lines. We solve the ODEs

for increasing values of v, using the latest available estimates for Dn
m+1, Dn

m−1, V n
m+1

and V n
m−1. The initial estimates for Dn

m and V n
m are simply Dn−1

m and V n−1
m , then we

use the latest estimates for Dn
m and V n

m found during the current iteration through the

variance lines. At a grid value of S we continue to iterate through the (v, τ) grid until

the price profile converges to a desired level of accuracy, and then proceed to the next

value of S.

The generic first order form for (22) and (23) is of the form

dDn
m

dS
= V n

m, (24)

dV n
m

dS
= Am(S)Dn

m + Bm(S)V n
m + Pn

m(S), (25)

where Pn
m(S) is a function of Dn

m+1, Dn
m−1, V n

m+1, V n
m−1, Dn−1

m and Dn−2
m which can

be obtained by rearrange (22)-(23) respectively. We solve (24)-(25) using the Riccati

transform, full details of which are provided by Meyer (2009). Note that we are only able

to apply the Riccati transform to the system (24)-(25) provided that both equations are

treated as ODEs. We use an iterative technique in which the prices and the derivative

terms are updated until the price converges.

The Riccati transformation is given by

Dn
m(S) = Rm(S)V n

m(S) + W n
m(S), (26)

where R and W are solutions to the initial value problems

dRm

dS
= 1 − Bm(S)Rm(S) − Am(S)(Rm(S))2, Rm(0) = 0, (27)

dW n
m

dS
= −Am(S)Rm(S)W n

m − Rm(S)Pn
m(S), W n

m(0) = 0, (28)

and V is the solution to the final value ODE

dV n
m

dS
= Am(S)(Rm(S)V n

m + W n
m(S)) + Bm(S)V n

m + Pn
m(S), V n

m(bn
m) = 1, (29)

where we denote the free boundary at grid point (vm, τn) by b(vm, τn) = bn
m. Since Rm is

independent of τ , we begin by solving (27) and storing the solution. Next we solve (28)

for increasing values of S, ranging from 0 < S < Smax, where we select Smax sufficiently

large such that Smax > bn
m will be guaranteed. We continue stepping forward in S,

4See Chiarella, Kang, Meyer & Ziogas (2009) for more discussion of the boundary conditions at v = 0
for stochastic volatility models.
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solving (28), until we encounter the value S∗ such that

S∗ − K = Rm(S∗) + W n
m(S∗), (30)

and thus S∗ is the value of the free boundary at grid point (vm, τn)5. Once bn
m has been

determined we then solve (29) starting at S = bn
m and sweeping back to S = 0. Finally

we use the calculated values of Rm,W n
m and V n

m in (26) to determine the option price

at each grid point along the variance lines at time to maturity τn.

Boundary condition ( )Mv v=  

Initial  
Condition  
(Payoff) 

Boundary condition 0v =  

τ

v

Figure 5. One sweep of the solution scheme on the v − τ grid. The
stencil for the typical point o is displayed in Figure 6.

In Figure 5 we illustrate one sweep through the grid points on the v−τ plane. In Figure

6 we show the stencil for the typical grid point in Figure 5, this essentially shows the

grid point values of D that enter the right-hand side of (25). Figure 7 then illustrates

the solution of (28) along a line in the S direction from a typical grid point in the v − τ

plane.

4.2. Monte Carlo Simulation. There are a number of approaches to the evaluation of

American option prices via simulation, we adopt the Monte Carlo simulation approach

by Ibáñez & Zapatero (2004) to find the price of the mother option with suitable terminal

5We remind the reader that at S∗ the first of the free boundary conditions (7) becomes V n
m(S∗) = 1.
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b

b
Cn−2

m
Cn−1

m

o Cn
m

b
Cn

m+1

b

Cn
m−1

Figure 6. Stencil for the typical grid point o of Figure 5. The stencil
for Cn

m depends on (Cn
m−1, C

n
m, Cn

m+1, C
n−1
m , Cn−2

m ).

S
Smaxmaxmaxmax

( , )m nd v τ=*S

τ n Tτ

mv

v

Early ex. cond. satisfied 

Figure 7. Solving for the option prices along a (vm, τn) line.

condition (11) in which the prices of the underlying daughter option are available from

the implementation of the MOL in Section 4.1.

The basic idea of the Ibáñez & Zapatero (2004) approach is to assume that there are

only finite early exercise opportunities for the mother option and we will find all those
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early exercise boundaries or strategies first by working backwards from TM to initial

time and then we do another simulation forward from initial time to TM to find the

price of the mother option based on the known early exercise strategies. A detailed

description of the algorithm is as follows:

• A finite number of exercise opportunities 0 = t0 < t1 · · · < tn < · · · < tN = TM

are chosen.

• A suitable discretisation of the variance direction v0 < v1 < · · · < vi < · · · <

vI = 100% is considered.

• The optimal exercise strategy at every point of time tn is characterized by a

region in a two dimensional-space (vi, tn).

• Going one step backward in time, at n = N − 1 we assume there are no early

exercise opportunities between tN−1 and tN = TM , then we are able to obtain the

continuation value Cont(S, vi, tn) as the price of a European option by several

simulations starting from (S, vi) and working forward from time tN−1 to the

maturity TM . Hence we can solve equation

Cont(S, vi, tN−1) = D(S, vi, tN−1) − KM ,

for S using Newton’s method to find the optimal exercise frontier S∗

tN−1
(vi). This

procedure is repeated for every vi with i = 1, . . . , I.

• Continuing to work backward, for each n = N − 2, . . . , 1 and for any S at

the different variance levels vi, we are able to obtain the continuation value

Cont(S, vi, tn) by several simulations starting from (S, vi) and working forward

from time tn to the maturity TM based on already known optimal exercise strate-

gies. Similarly, at the different variance levels vi we solve the equation

Cont(S, vi, tn) = D(S, vi, tn) − KM

for S using Newton’s method to find the optimal exercise frontier S∗

tn(vi).

• Continuing to work backwards, we can find all optimal strategies at times t0 <

t1 · · · < tn < · · · < tN for all variance levels v0 < v1 < · · · < vi < · · · < vI .

• Finally we implement a forward MC simulation to generate paths for both the

underlying prices and the variance, starting from t0, to find the price of the

mother option M(S, v, t0) based on all the known optimal exercise strategies

calculated in the previous backward time steps.

We use Euler discretisation to approximate the paths of the underlying asset process

and variance process specified by Eqs (3)-(4) on a discrete time grid. Let [0 = t0 < t1 <

· · · < tN = TM ] be a partition of a time interval for the mother option into N equal

segments of length ∆t, so that ti = iTM/N for i = 0, 1, . . . , N.
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Figure 8. Some possible pathes in the forward Monte Carlo Simu-
lation for the Mother option for some fixed vi

(1) The discretization for the underlying process is

Sti = Sti−1
+ (r − q)Sti−1

∆t +
√

vti−1
Sti−1

[ρ∆W
(1)
ti

+ (1 − ρ2)∆W
(2)
ti

], (31)

where ∆W
(j)
ti

= W
(j)
ti

− W
(j)
ti−1

, j = 1, 2.

(2) The discretization for the variance process is

vti = vti−1
+ κ(θ − vti−1

)∆t +
√

vti−1
σ∆W

(1)
ti

. (32)

In simulating the Wiener increments, the fact that each increment W
(j)
ti

− W
(j)
ti−1

is

independent of all others is used. Each such increment is normally distributed with

mean 0 and standard deviation
√

∆t. To avoid negative values for variance and stock

price, we set these to zero if we encounter negative values during the simulation.

After having obtained all early exercise strategies, we do another N forward simulations

by implementing Equations (31) and (32) from the beginning with S = S0 and v = v0

up to time TM and make suitable decisions about early exercise by following the optimal

strategies found in the previous backward steps to finally find the price of the mother

option.

5. Numerical examples

To demonstrate the performance of the modified sparse grid algorithm outlined in Sec-

tion 3 we implement the method for a given set of parameter values, chosen in order

to best illustrate the impact that stochastic volatility may have on the early exercise
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boundary for an American compound option6. The parameter values used are listed in

Table 1. Stochastic volatility parameters are those used by Heston (1993).

Parameter Value SV Parameter Value
r 0.03 θ 0.04
q 0.05 κv 2.00

TD 1.0 σ 0.20
KD 100 λv 0.00
TM 0.60 ρ ±0.50
KM 7

Table 1. Parameter values used for the American call daughter option.
The stochastic volatility (SV) parameters are those used in Heston’s orig-
inal paper.

Tables 2 and 3 compare some option prices based on the modified sparse grid approach

and the Monte Carlo simulation approach and the model parameters given in Table 1.

ρ = −0.50, v = 0.04 S Runtime

Method 80 90 100 110 120 (sec)
SG (4,6) 0.0769 0.6922 2.9632 7.7044 14.7199 1510
MOL + MC (500,000) 0.0758 0.6898 2.9567 7.6920 14.7089 2997
std err 0.0006 0.0019 0.0041 0.0065 0.0078
Upper Bound 0.0770 0.6935 2.9649 7.7046 14.7241
Lower Bound 0.0747 0.6860 2.9486 7.6793 14.6937

Table 2. Compound prices (American call on American call)
computed using the sparse grid (SG), Monte Carlo simulation (MC)
together with method of lines (MOL). Parameter values are given
in Table 1, with ρ = −0.50 and v = 0.04.

It is easy to see from the values given in Tables 2 and 3 that the compound option

prices from the modified sparse grid all lie between the lower and upper bound of the

MC simulation approach. However it should be emphasized that the runtime of the

modified sparse grid approach involves the calculations of all compound option prices

within the grid whereas the runtime of the simulation approach is just that required to

work out those five prices at the five stock price values given in Tables 2 and 3. It is

clear that the modified sparse grid approach attains the same accuracy in far less time

compared to the simulation approach.

6The source code for all methods was implemented using NAG Fortran with the IMSL library running
on the UTS, Faculty of Business F&E HPC Linux Cluster which consists of 8 nodes running Red Hat
Enterprise Linux 4.0 (64bit) with 2×3.33 GHz, 2×6 MB cache Quad Core Xeon X5470 Processors with
1333MHz FSB 8GB DDR2-667 RAM.
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ρ = 0.50, v = 0.04 S Runtime

Method 80 90 100 110 120 (sec)
SG (4,6) 0.3124 1.1945 3.4102 7.6691 14.2785 1495
MOL + MC (500,000) 0.3128 1.1940 3.4061 7.6646 14.2716 2950
std err 0.0015 0.0030 0.0050 0.0070 0.0080
Upper Bound 0.3157 1.1998 3.4159 7.6783 14.2873
Lower Bound 0.3099 1.1882 3.3964 7.6509 14.2558

Table 3. Compound prices (American call on American call)
computed using the sparse grid (SG), Monte Carlo simulation (MC)
together with method of lines (MOL). Parameter values are given
in Table 1, with ρ = 0.50 and v = 0.04.
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Figure 9. Free surfaces for both the daughter option and the mother
option, with the parameters in Table 1 and ρ = −0.5.

Figures 9 and 10 display the free surfaces of both the daughter and the mother option

for both negative and positive correlation, respectively. We also derive the free surfaces

of the mother option using both Monte Carlo Simulation and finite differences with

PSOR. Clearly the free surface shape for the mother option is different from that of the

daughter option but the two surfaces for the mother option from the different approaches
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Figure 10. Free surfaces for both the daughter option and the mother
option, with the parameters in Table 1 and ρ = 0.5.

are consistent. However as we would expect the free surface obtained via Monte Carlo

Simulation is less smooth, but that could be improved by increasing the number of early

exercise opportunities.

Comparing the two approaches, we find that the modified sparse grid combination tech-

nique works well in producing both efficient and accurate prices for the compound option

under stochastic volatility dynamics. The prices and standard errors are found so that

the confidence intervals with certain confidence levels for different share prices are found

so that the comparisons make sense.

6. Conclusion

We have studied the pricing of American compound options by solving the corresponding

PDE using both a modified sparse grid approach and a benchmark based on Monte Carlo

Simulation together with the Method of Lines approach.
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It turns out that application of the standard sparse grid (SG) approach directly results

in a poor approximation since the scale characteristic of the underlying asset process is

different from that of the variance process. After modifying the sparse grid by adding

a suitable number of additional points to each direction, we are able to apply the SG

approach to solve the corresponding PDEs in a fairly accurate and efficient manner. We

apply this method twice to solve both PDEs followed by the price of the daughter option

and the price of the mother option. We develop a benchmark solution by applying the

Method of Lines (MOL) approach to solve the PDE followed by the daughter option.

Then using these results to specify the appropriate boundary conditions, we employ

Monte Carlo simulation to find the price of the mother option. The numerical results

show clearly computational advantage of the SG approach compared with the MC/MOL

approach.

In future research, the sparse grid approach can be speeded up by using better PDE

solvers, such as the Method of Lines or operator splitting in Ikonen & Toivanen (2004)

and Ikonen & Toivanen (2007) with a modified adaptive sparse grid. The method may

be applied to tackle specific examples in real options applications such as multi-stage

investment projects, where it is important to take account of stochastic volatility due

to the sensitivity of the compound options to volatility.

7. Appendix

Here we examine the smooth pasting condition (tangency condition) shown in Eq.(13)

along the optimal exercise boundary for a call on call compound option on a continuous

dividend paying asset.

At S = m(v, t), the value of the exercised mother option is D(m(v, t), v, t) − KM , so

that

M(m(v, t), v, t) = D(m(v, t), v, t) − KM , (33)

which is termed the value matching condition.

Supposing m(v, t) is a known continuous function, the pricing model becomes a boundary

value problem with a both variance and time dependent boundary. However, in the

American compound option model, m(v, t) is not known in advance. Hence it must

be determined as part of the solution. An additional auxiliary condition has to be

prescribed along m(v, t) so as to reflect the nature of optimality of the exercise right

embedded in this American-type option.

The argument in Chap. 5 of Kwok (2008) is easily extended to show that the smooth-

pasting condition (8) holds. Here we follow a similar argument to show the continuity
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of the delta of the compound option value of an American compound at m(v, t), the

optimal exercise boundary of the mother option.

Let g(S, v, t; b(v, t)) denote the solution to the PDE (10) in the domain ((S, v, t) : S ∈
(0, b(v, t)), t ∈ (0, T ]), where b(v, t) is a known boundary. The holder of the American

compound option chooses an early exercise policy which maximizes the value of the

mother option. Based on such an argument, the American compound value is given by

M(S, v, t) = max
b(v,t)

g(S, v, t; b(v, t)) (34)

for all possible continuous functions b(v, t).

For fixed v and t , for convenience, we write g(S, v, t; b(v, t)) as G(S, b), where 0 ≤ S ≤ b.

It is observed that G(S, b) is a differentiable function, concave in its second argument.

Further, we write h(b) = G(b, b) which is assumed to be a differentiable function of b. For

the American compound option, we have h(b) = D(b, v, t) − KM . The total derivative

of G with respect to b along the boundary S = b is given by

dG

db
=

dh

db
=

∂G

∂S
(S, b) |S=b +

∂G

∂b
(S, b) |S=b , (35)

where the property ∂S
∂b

= 1 along S = b has been incorporated. Let b∗ be the critical

value of b that maximizes G. When b = b∗, we have ∂G
∂b

(S, b∗) = 0 as the first derivative

condition at a maximum point. On the other hand, from the exercise payoff function of

the American compound option, we have

dh

db
|b=b∗ =

d

db
(D(b, v, t) − KM ) |b=b∗ =

∂D

∂S
(b∗, v, t).

Putting these results together, we obtain

∂G

∂S
(S, b∗)

∣

∣

∣

∣

S=b∗ =
∂D

∂S
(b∗, v, t) .

Note that the optimal choice b∗ is just the optimal exercise price m(v, t). The above

condition can be expressed in the form of the first part of Eq. (13) which is commonly

called the smooth pasting or tangency condition.

Similarly, if we only fix t, then again we could write g(S, v, t; b(v, t)) as G1(S, v, b) and

let h1(b, v) = G1(b, v, b), which as well as being a function of the free boundary b is also

a function of the variance v. Hence the total derivative of G1 with respect to v along

the boundary S = b is given by

dG1

dv
=

dh1

dv
=

∂G1

∂v
(S, v, b) |S=b +

∂G1

∂b

∂b

∂v
(S, v, b) |S=b . (36)

Analogously, since b∗ is the critical value of b that maximizes G1, so when b = b∗, we

have ∂G1

∂b
(S, b∗) = 0 as the first derivative condition at a maximum point. Again from
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the exercise payoff function of the American compound option, we have

dh1

dv
|b=b∗ =

d

dv
(D(b, v, t) − KM ) |b=b∗ =

∂D

∂v
(b∗, v, t).

Again putting all the above together, we have

∂G1

∂v
(S, v, b∗) |S=b∗ =

∂D

∂v
(b∗, v, t), (37)

which proves the second part of Eq. (13).
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