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Abstract

In Operations Research, the equipment replacement process is usually modeled in discrete
time. The optimal replacement strategies are found from discrete (or integer) programming
problems, well known for their analytic and computational complexity. An alternative
approach is represented by continuous-time vintage capital models that explicitly involve
the equipment lifetime and are described by nonlinear integral equations. Then the optimal
replacement is determined via the optimal control of such equations. These two alternative
techniques describe essentially the same controlled dynamic process. We introduce and
analyze a model that unites both approaches. The obtained results allow us to explore such
important effects in optimal asset replacement as the transition and long-term dynamics,
clustering and splitting of replaced assets, and the impact of improving technology and
discounting. In particular, we demonstrate that the cluster splitting is possible in our
replacement model with given demand in the case of an increasing asset lifetime.
Theoretical findings are illustrated with numeric examples.
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1 Introduction

In Operations Research (OR), the equipment replanemodels are usually represented as
sequential decision problems (see, e.g., [5-9,21324, 26-30]). In economic growth theory,
similar processes are describedviytage capital model§VCMs) [2, 4, 12, 15-20, 25, 31, 35,
36], which explicitly involve the lifetime of capit equipment. These two alternative techniques
describe the same controlled dynamic process asskpe well developed theories. The majority
of OR replacement models are discrete while thetrobsvCMs are continuous. A critical
comparison of these models would be beneficialbfaith management science and economics.
This paper attempts to combine these two modelpgyaaches to obtain new insight into the
rational equipment replacement under improvingnetigy. It provided a rigorous mathematical
analysis of continuous and discrete replacemenieta@hd compares the outcomes with existing
results. A similar discrete-to-continuous analysias recently provided by Bambi [1] for

optimization models with time-to-build structureazpital.

Mathematically, the VCMs are represented by noaedim Volterra integral equations with
unknowns in the integration limits. Following R.8wl [31], thereplacement decisiom VCMs

is to efficiently replace the old vintages of capivith new capitalinder technological change
Malcomson [25] developed an optimization VCM fore tltapital equipment replacement
decisions of an individual firm. In the 90’s, th&€Ms were intensively used in economic growth
theory (see Benhabib and Rustichini [2], Boucekki®rmain, and Licandro [4], Cooley,
Greenwood, and Yorukoglu [10], Greenwood, Herkowdirzd Krusell [12], van Hilten [14], and
the references therein). A consistent optimizatiechnique for the VCMs with endogenous
capital lifetime was developed by Yatsenko in [3R-Z&nd applied to various models by
Hritonenko and Yatsenko in [15-20].

The OR equipment replacement problems fall into twondamental categorieserial and
parallel replacementFollowing Hartman [13], the parallel replacemeonsiders assetshat are
economically interdependent and operate in parallbe economic interdependenczan be

caused by various economic factors, which include:

. the requirement of keeping a prescribed numbesséta in service at all times (capacity
demand constraints) as in Sethi and Chand [30kaBy5ethi, and Sorger [5], Chand,
McClurg, and Ward [7];

% In this paper, we use the termschines, equipmerandassetsnterchangeably.



. prespecified output demand constraints as in Rajga [27];

. restrictions on capital expenditures (rationing dritthg constraints) as in Hartman [13]

or Karabakal, Lohmann, and Bean [23];

. additional fixed replacement costs that occur wea or more assets are replaced as in

Jones, Zydiak, and Hopp [22].

The first three factors exhibifonstant return-to-scalewith respect to the number of machines.
The last forth assumption (fixed charge) introduitesseconomy of scale in purchase prices that
makes the replacement problem essentially morediff Theparallel replacement problenvith

a fixed chargen stationary environmentvas solved by Jones, Zydiak, and Hopp in [22] and
expanded to the case of capital budgeting consdraind a finite horizon by Hartman in [13].
Another possible case of non-constant return-téesaa the dis-economy of scale in maintenance

costs considered by Jones and Zydiak in [21].

Technological changé€rC) is the key external factor that impacts thelacement process. TC is
commonly described as the improved efficiency atiliced operating and maintenance costs of
possible replacement assets. Rogers and Hartmah d&@inguish continuous TC and
discontinuous TC. The mainstream of studies oneifpgipment replacement under TC (e.g.,
Bethuyne [3], Regnier, Sharp, and Tovey [28], Regand Hartman [29], and Sethi and Chand
[30]) considers the serial replacement. On the rotfamd, the continuous VCMs involve the

amount of assets as a continuous variable anddartsie parallel replacement under TC.

The present paper considers a determinigticallel replacementmodel with the economic
interdependence caused by demand and budgetingaiatss under generabntinuous TCThe
paper contribution into the OR replacement litemtincludes new analytic and qualitative

techniques and rules for the optimal equipmentitife under continuous TC.

The majority of equipment replacement modelsdiserete(or integei) programmingproblems

based the following assumptions: the time is disc(mteger), the service lives of machines are
discrete (integer), and the numbers of machinesdm@ete (integer). This paper investigates
what happens if we relax these assumptions anddsnthe corresponding continuous optimal

control problems.

The paper is organized as follows. In Section 2discrete model of parallel equipment
replacement (similar to [7]) is constructed in teems of unknown equipment lifetime. Section 3
introduces the modified discrete replacement muadidl the elementary period length 0<7<1.

Section 4 proves that the parameterized model leatlee discrete model of Section Z&tl and



a continuous VCM at7-0. Section 5 explores the corresponding continuemacement

problem that appears to be well known in the VCRotly. Section 6 returns to the discrete model
and analyzes its dynamics, particularly the clisteand splitting effects first discovered by
Jones, Zydiak, and Hopp [22] in the absence of $€ction 7 summarizes the major paper

results, their possible generalizations, and sopes @roblems.

2 Basic discrete model of equipment replacement

We start with a parallel replacement model under ghme assumptions as in [7, 8, 26] but
expressed in the terms of unknown machine lifetif@lowing [5-8, 26, 30], a production shop
keepsP, P=1, machines of a particular type at all tim@s1 in [5, 30]). The industry operates
under conditions of improving technologwhich means that newer vintages of machines are
better (require less maintenance). In economiassethconditions are known #schnological
change(TC) embodied in new capital equipment (neéwtagesof machines). The performance
of operating machines (measured by maintenances)cdsteriorates as the machines become
older. So, the shop should consider selling eacthina at a certain point of time and buying a
new machine. The same situation repeats with thhiemachine so the shop will makechain of

replacement decisions

Let us consider a (finite or infinite) planning fmm {1,...,T} in the integerdiscrete time 4...,-

1, 0,1,2,.... To simplify the model, we assume thally mne technology (type of machines,
vintage) is available at each tirhésee Section 7 about the case of many availabletdogies).
As in [5, 7, 30], we definéhe technologws (7, Q.w Sk, where/7, is the purchased price and
installation cost of a machine bought at titr{ehe machine of vintagd, Qx is the maintenance
cost for the vintage machine during the time peridét, andSy is the salvage value of the
vintaget machine at the end of peridc> t. Since the purchased pri¢é involves a certain

installation (switching) cost, we assume t#at>S x for all k>t. Because of deterioration, the

sequencé),x non-decreases ar#lk non-increases when the machine agek increases. At this
point, we make a general assumption of the contiguicC that the sequen€®y decreases ih
for any fixed machine aga=t—k. More specific cases of this dependence will besered

below.

Jones, Zydiak, and Hopp [22] analyzed a parallgllacement problem in the stationary

environment and discovered two important replacémprinciples: the “older cluster



replacement rule”(an optimal replacement policy always replacemldachines first) and the
“no-splitting rule” (machines of the same age are either kept or aeglat the same time
period). As shown in [22], the first rule holdls stationary environmentnder continuous

deterioration (when the maintenance cost is non-decreasing hedsalvage value is non-

increasing in the asset age).

In this paper, we presume that the “older clustptacement rule” is valid in th@on-stationary
environmenunder continuous deterioration and TC. Under tthliis, we can choose the machine
life as a control. Namely, instead of tracking teplacement chain for each machine as in [7, 30],

we introduce the following decision variables:
- the lifetime (service lifel.; of the youngest machimeplacedin periodt and
- the numbem; of new machines purchased during the petidgt<T.

In terms of [26, 30], the machine lifetimle is equal to the differencé-A; between the
regeneration point and the purchase poif of the machine. For the clarity, we assume that
machines are replaced at the end of a period. Tdhemachine purchased in peribe.; will be
used during the periodsl+1 throught and be replaced in peridd The requirement that the

total number of operating machines is equalPtds expressed by the followindemand

constraint
dYm =P, t=1..T. (1)

Let the shop be in business for a while and Haweachines at=0. Then, the initial condition of

the replacement problemtaf is

S =P, ®)

k=—Lg+1

wherem( is the known number of machines purchased in padbd k, —Lo< k< 0, during the
known prehistory. The constraints (1)-(2) complet#termine vectorlyj, 1<j<t} under a given

{m;, 1<j<t}, and vice versa.

The discrete replacement models userdgeneration monotonicity propertywhich means that
scrapped and replaced machines should not be ga&d & the terms df;, this requirement can

be expressed as



Li+1sLj+1, 1<j<T. (3)

Under the no-splitting rule, the machines of thmasage are always replaced during the same
period. Then, the number of machines replaced iiogdj, j+1] is obtained by subtracting the

demand constraint (1) &tj from itself att=j-1:

j-L
m, =

(4)

j
k=i-Lj

Depending on thd; dynamics, the following situations are possiti@=0 if Lj=Lj,+1 (no

machine is replacedyy =m,_ if Lj=L;,, or m=m;_ +..+m;_  if Lj<L;, (the machines
of several vintagegL.1,... J-Lj are replaced in the same perjpd

As shown below in Section 6, the “no-splitting fule common in the optimal replacement
dynamics under TC. However, we will not assuma ithie general case. If this rule is violated,

then the capacity demand constraint (1) holds betrtumber of replaced machines is found

differently. Namely, if the cluster of currentlyplaced assetmj_Lj purchased gtL; is split over

the periodj, j+l], | >0, then instead of (4) we have
m., = m, (5)

wheremy, j< k< j+, are determined by additional requirements (se&i@e6.2).

Following [1,3,7,8,13,22,28], the discounted tatakt of replacement policy over thieperiod

horizon [0T] can be written as
T T 1 T L
‘](r):zpjnjmi +Z,0’ Zijkmk—Zp’ Z Sj,j—kmj—k! (6)
j=1 =L k=il [ =

where the first term represents the total pricewthased machines, the second term is the total
maintenance cost, and the last term stands fototak salvage value of the replaced machines.

The parametep, 0<p <1, denotes the discount factor during the unit timerval.

Now we can formulate the machine replacement probés the nonlinear integer-valued

optimization problenfOP)

min _J(T) (7)



with the unknown controlg;JI andmI, Lj=0, m=0, I<j<T, subjected to constraints (1), (3)

and the initial condition (2)I(is the set of integer numbers).

In the case of one machine, we h&# andm=0 ormj=1, I<j<T. Then, the purchase points are
the instants whem=1 and the machine lifetime can be determinetiask-j+1 if m=1, m=0
atj<s<k, andme=1.

3 Parameterized discrete model of equipment replacement

In this section, we construct a modified versiordisicrete model (1)-(7) with the step length
0<n<1. The goal is to obtain parameterizedmodel, which will produce a continuous-time

model of equipment replacement when the paramgigoes to zero. A challenge is that some

model characteristics (such as productivity ratesexpenses) depend on the time scale.

To define an appropriate time scale parameterizdto model (1)-(7), we split each unit period
[j, j+1] of the original timg=1,...,T into N smallerequidistant time intervalf, j+1/N, j+2/N,
..., JF(N-1)/N, j+1], whereN>1 is an integer. We will need cadel as well. Then théme scale

parameter; is the length of thelementarytime period: 7 =1/N, 0<<1.

As result, we have thearameterized discrete time scale=tk/N, k=...,-1,0,1,2,..., in addition to

the original integer time scalg=...,-1, 0,1,2,... . The planning horizon TD,s now split intoNT
of elementary intervalfi.1, t] of the lengths, k=1,...,NT, N=1/7. The parametes, 0<7<1,
can be interpreted as characteristic time of the replacement decisi®oughly speakingg
reflects how often the replacement decision is @nmnted (every day, week, month, etc.).
Smaller values ofy mean that the replacement decision is made mtea ahd useBl>1 values

of technology parameterg, Q.x, Sk during each unit intervaj,[j+1].

The lifetimeL; of the machines, their purchased pri€g, and salvage valu§, , do not depend

on the time scale and remain the same as in may¢6) but are supposed to be measured more

often at timeg, = k/N.

However, the model also includes some scale-indigencharacteristics with the meaning of

rates per time unit. Indeed, if the original tim&tJ0,1] is one year and [@7] is one day, then
the replacement of one machiper yeardoes not mean replacing one machemery dayof the

year. As we divide each unit-length peripdj+1] into N sub-period$ty, tct77], k =N, jN+1,...,



j(N+1)-1, our decision variabley obviously depends oN: the number of machinegplaced
during the elementary perioftc.1, t.1+/] is equal tomy/N = 7m,. If N=10 and we replace 2
machines per unit period, then we replace 2 %= 0.2 machines per each “sub-period” of the
length 7=0.1. To handle this situation, we use the newestalependent variable: teachine
replacement intensitgreplacement speedfiy, related to the numbery of replacements during

the elementary period as=7 My.

Similarly, we introduce the scale-independerdintenance expense intens@vk, such that the

maintenance cos, x of vintaget; during theelementary periofiti.1, tJ is Qjk =/7ijk .

Finally, the discount factor over tleéementary periodf length/y is pllsz".

Now we can construct the modified replacement matdgarameterized timg = ks, k(. The
decision variablesn the modified model will be the replacement instiéy M and the machine

lifetime Lk, 1< k< NT. Then, the total number of operating machinesjigkto

[
n Y i =P, k=1..T/n. (8)

j=k-L/n+1

The discounted total cost of replacement policyr ¢lre horizon [O[] can be written as

i Liln
J,(M) = an”’Um +/72p”‘f7 ZQ,kmk ﬂZp’” Z S, 4 9)
j=1 k=j-L;/n j=1 k=Lj/n

and we formulate the machine replacement probletimeiparameterized discrete tirae
_ min J, (T) (10)
jje 1=

with 2TN discrete-valuedinknown variabley and My, 1< k< NT, subjected to constraint (8),
LNCOI, mNOI, L0, M0, Lyi< Lg+7,

and the initial condition

0
n >.m=pP, (11)

j=—NLp+1



where the given numberEhjo, - LN <j <0, represent the replacement intensity during the

known prehistory ., O].

A

If 7=1, thenm;=my, Q, x=Q;«,» and model (8)-(11) coincides with the basic mod$i(7).

4 Continuoustimereplacement model

The model (8)-(11) produces a continuous optimiregiroblem whemy - 0.

Theorem 1. The discrete-time discrete-valued OP (8)-(11yasponds to the continuous time

problem minl
m,L

= OT e [II()m(t) + | :_L(I)Q(t, 1)mM(r)dr - S(t - L(t),t)m(t - L(t))(L- L'(t)]dt, (12)

r =—Inp, with respect to the unknown function§t) andL (t), tCJ[0,T), T<co, that satisfy

constraints

P= :_Lm m(7)dr, (13)
(=0, L'(@®)<1, (14)
mt)>0,  tO[0, T), (15)
and the initial conditions
(® =Lo >0, m(7) =my(7), 7[-Lo, O]. (16)

Proof. Expressions (12)-(13) follow from applying therstard definition of Riemann integral to
formulas (8),(9), and (11). The conversion of @)13) is trivial and (11) also leads to (13) at
t=0. To prove the transformation of (9) into (12), let consider two interior sums in (9) first.
These sums are correct because the nuniégsin their limits are integer by the restriction

L NOI. Then,

i, Co. |
Z sz,kmk”jojt_L(t)Q(T,t)m(T)dT where t=j; and

k=j-L;/n



Li/n j=Li/n

S Sz Y Sumaf U Sromdr

. t L(t=
k=L, /7 k=j=L,/7 n=L(t=)

~ St - L(t), )it — Lty L2 2O '“;’7 ~L{t=)] - SE-LODME-LOL- L)

Finally, ato=e™", (9) leads to

Tin j Li/n
J,(M= ”Ze_m 1T, + Z”anmk Y. S
k=j-L;/n k=Lj/n

o jOT e " [I1(t)m(t) + j :_L(t)é(r,t)rh(r)d r—S(t—L(t),t)m(t — L(t))(L—L'(t))]dt

For brevity, we omit the “hat” symbol in the obtathfunctionsm(t) and é(r,t) .
The theorem is proved. [ |

The unknown variablesf the OP (12)-(16) are the lifetim€t) of the machines replaced at time
t and the replacement intensity (thestantaneousspeed of the replacemen)(t), tOJ[O,T).
Inequality (14) is equivalent to the regeneratioonotonicity property (3) of the discrete model
(1)-(6). The functiong/(t), Q(7;t), and(7;t) are assumed to be giventafo,T), 7[-L,,T). The
functions /7(7) and Q(7,t) represent the embodied TC and decrease (imewer equipment is

more efficient).

The salvage cost component in the objective funatiq12) includes the derivative of the
unknown L(t) and causes certain difficulties during the OPhami® Let us assume that the
salvage value is negligiblg(7,t)=0 (it is true, at least, for high-tech product€ls as computer,
networks, electronics, see also [28]). Then, the(T#-(16) is

minl = rman jOT e "[II(t)m(t) + J.tt_L(t)Q(r,t)m(r)d r]dt a7)

m,L
with respect to the unknown functiomsandL under restrictions (13)-(15) and initial conditson
(16).

The problem (13)-(17) is, in fact, a well-known plem of the cost minimization for a firm using
a continuum of vintage capital equipment. Similptimization problems were first introduced by
Malcomson [25] and investigated by van Hilten id][1Boucekkine, Germain, and Licandro in

[4], Hritonenko and Yatsenko in [17-20, 35]. Mattainally, a major new feature of such

10



problems lies in th@ew type of control functiorthat appear in the integration limits of integral
equations. A systematic treatment of the OP (13)-(das provided in [35] for the case of
variableP(t). Possible dependence®bnt includes thenon-stationary demanconsidered in the
discrete settings in [7, 30]. Also, an additionastrictionm(t)<mya{t) in [35] reflectsbudgeting

constraintscommon in the discrete replacement models.

5 Optimal equipment lifetimein continuous mode

The papers [20, 35] describe the complete dynawfidghe OP (13)-(17) such as the solution
structure and turnpike properties for both infififece) and finite <) horizons. Here we omit

technical details and refer an interested readgr5&0, 32-35].

Lemma (necessary and sufficient condition for an extremia8]. A measurable functiom*(t),
tO[0,T), and the corresponding* (t), tLJ[0,T), T<co, are a solution to the OP (13)-(1i7)and
only if

>0 at m*t) =0,
@=0 at m*®)>0, tO[O,T),
where

min{t+C*(t),T} —r(u

=] e O[QU - L* (u),u) -Q(t,u)ldzr M (), tO[0T), (18)

is the OP gradienit (t) with respect tam, I:(t) is the future lifetime of the machine boughtt at

+L (t) is the instant when this machine should be scidppe

it) = [t-L ()], (19)
and k(t)]* denotes the inverse &ft).

Gradient (18) relates the equipment lifetib{® of the machineeplacedatt to the future lifetime

I:(t) of the machindoughtatt. It defines the future marginal profit from therpliase of a new
machine at timé and is equal to the difference of the marginakrnee (the future rental value)
of the new machine and its price. The future revale naturally depends on the future lifetime

of machines. The independence of gradient (18)nomeflects aconstant return-to-scales

11



economy and has essential implications. Namely,sthgcture of OP solutions appears to be

defined by the nonlinear integral-functional eqoati’ (t)=0 or
[t-LO _pump) _
[ e“IQMu~L(u),u)-Qt,uldu=N(), tO[oe), (20)

with respect to the unknown functidn (t), t[0,e0). Equation (20) has been first derived in [32]
and investigated in [15-17, 33]. It states thatthie rational strategy of equipment replacement

under the embodied TC, the profit of putting a maachine into service and scrapping an older

obsolete machine is equal to the price of the newhime. A solutionL of (20) (if it exists), is
calledthe turnpike trajectoryf the OP (13)-(17).

5.1 Thestructure of optimal replacement

The qualitative analysis of the OP (13)-(17) reseateresting patterns of the rational equipment
replacement strategies under TC. In this paperfoaes on the infinite-horizon OF$w). Then

the structure of the OP solutions is pretty singyid is described by the following statement.

Theorem 2 (Yatsenko and Hritonenko [35]) a unique solutionL of eqguation (20) exists and
P(t)=const then the OP (13)-(17) with restriction(t)<m.(t) has a unique solutiom, L*) of

the following structure:

A. Transition dynamics

cmo] 0 i LO>L,
m“){wmmiftw<%,tmm”x &

where the corresponding(t) is found on [Q) from (13) at the givem* and is increasing at
L (0)>Lp and decreasing dt (0)<Lo. The lengthy20 of the interval [Q) is determined from
the condition_* (1)= L (1) and depends drf (0)—Lo|; t=0 at L (0)=L,.
B. Long-time dynamics
L*®=L (), (22)

m*(t)= m*(t— L (t))[1-dL (t)/df], tO[y, ). (23)

12



The proof is based on the necessary and sufficiendition for an extremum (Lemma) and is

provided in [35]. Theorem 2 classifies three pdssiipes of the initial machine distribution:
1) L (0)<L,, all active machines are too young and will be repddlater;
(2) L (0)>L,, someactive machines are too old and should be replaceediately;

(3) L (0)=Lo, no transition period.
Theorem 2 may be also interpreted dsarapike theorem in the strongest foriinstates that the

optimal L*(t) coincides with the turnpike trajecto& (t) except for some initial interval [0).

The turnpike properties are well known for otheor{rintegral) models in growth theory, and
their presence often serves as an indicator ofjtiadity of an optimization model. The turnpike
properties deliver some important patterns fortegia replacement decisions. For the finite-

horizon OP (13)-(17), aurnpike theorem in normal formas proved in [17, 35].

By Theorem 2, the optimal investment contmoi possesseseplacement echodd, 17, 20, 35]
caused by initial condition (16). Indeed, if thétial conditionL(0)=Lo, m(t)=my(t), t0[-Lo, O],

at the left end=0 of the horizon [Q) is such thaty # L (0), thenit causes the appearance of
the boundary-valued section(t)=0 or my.(t), t0[0,4], in the optimal investment trajectomy*(t)
during the first replacement cycle and the dissation of the correspondingplacement echoes
through the whole horizon [@). Such echoes are absent wher= E(O). If L (t) decreases,

then the replacement interval shortens and thecepient echoes increase from one interval to

other (and converse).

The established structure of OP solutions showtstiieaoptimal equipment lifetime* possesses
turnpike properties, whereas the optimal investmentioes not strive to any limit. The jumping

behavior of the investment* is common for the replacement problems.

5.2 The dynamics of optimal equipment lifetime

By Theorem 2, the dynamics of the optimal equipntiéetime L is determined by the nonlinear

integral equation (20). This equation is a keytfar optimal replacement decision. The equation
can be solved numerically for any given smooth fioms /7 andQ. There is no general theory

for such equations, so one needs to consider ngfahspecial cases. Hritonenko and Yatsenko

13



in [16] analyze this equation for exponent, poward logarithmic functiong7 (7) and Q(7).

Here, we consider a more general case:
Qr)=Qut-0)e™™,  [(n=rhe ™,  cq 1>0,c=0, (24)

where the functioQy(t- 7)>0 reflects theequipment deterioratioand depends on the equipment
aget-r(not necessarily monotonically). The exponential iEQeflected by the dependence of

formulas (24) orr and can be different for the machine pri@er) and operating expen€§g(7;t).

Then, the following statements are valid

Theorem 3. Under conditions (21) and the exponential detation
d@7) = Qoe™ ™, Ca= 0, (25)

equation (20) has a unique solutiar(t)>0, t[J[0,0), such that :

. if Cg<Cp, then L (t) monotonically decreases and approaches @ -a®;
. if Cq>Cp, then L (t) monotonically increases and approackess t — o;
. if Cq=Cp, then E(t)EL, t0[0,), where the constamt is determined from the non-

linear equation

re W+ (oirc) €™ = (rHota)[1+/ Q) at >0 (26)

or e —(cpte)l=1+(cqtca)TdQy  at r=0. 27)
In particular, L = [2/7¢/(Qo(Cq+Ca))] ¥? for O <cgtCq<r << 1

Proof is based on a similar result obtained in Yatseakd Hritonenko [35] for the integral
equation (20) without deterioration @y(t- 7)=Qo. Using conditions (24) and (25), equation (20)

is rewritten in the following form:

L™ oy e —c. (U= - - _
e W[ WgalW) _ g ety = e, t0[0,). (28)

o8}

Multiplying (28) by e ' and separating the factef¢“™" in the integrand, we obtain

et
QO J‘t[t L(t)] e_r(u_t)ecd(u_t) [e—cq(u—L(u))—cd (u-L(u) _ e—(cq+cd)t]du =M Oe—(cp+cd)t o tO [O, OO) '
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Now, settingCi=Cq+Cq, C>=C, Cz=I+Cqy converts the last equation into equation (33)3H].[
Applying Theorem 3 from [35] to this equation prexbe theorem. u

The theorem does not cover all possible combinatfnthe parameters. In particular, equation
(28) has a finite solutiorl. (t), tO[0,00), while c4+Cc4>0 andcy+Cy>0. In the critical caseqtcy

=0, equation (28) may have an indefinitely incragssolution E(t) but such that the function

t—E(t) is bounded on the interval §9). Finally, in the case,+ce<0, equation (28) has no

solution on the infinite interval [®).

The obtained results produce some qualitative rofethe dynamics of the optimal equipment
lifetime:

Property 1. In the case (24)-(25), if the operating c¥r;t) decreases slower in than the
machine price/7(7), then the long-term optimal machine lifetime (t) decreases (and
converse).

Property 2. In the case (24)-(25), if the TC rateg and ¢, of the operating cos(7t) and

machine price/(7) are the same, then the long-term optimal maclietnhe L (t) is constant.
This constant depends only on the TC and deteiboratates, the discount factor, and the

proportion/7o/Qp between the initial machine price and operatind.cos

Moreover, if the TC rates of the operating cost agdipment price are equal;=C,, then the
equipment lifetime is constant fany deterioration law(not necessarily exponential). Namely,

the following result holds.

Theorem 4 (Yatsenko and Hritonenko [35]). If condition (2Aplds andcq=Cp, then for any

function Qy(t-7) such thaQqy(x) €** increasesequation (20) has the constant soluti?ar@t) =L,

tJ[0,»), determined from the non-linear equation:
L —rur A6q U= —
[.e™1e"“PQ, (u-1) - Q, (0)]du =", (29)

Equation (29) has a solutidr»0 even wherty=c,=0 butQq(X) strictly decreases.

As stressed in [7], theoretic research should peoviseful heuristics for practical decision
making. Theorems 3 and 4 lead to certain approxmaes about the long-term optimal lifetime

of equipment. These rules do not depend on theuptimh scale and are defined only by the

technology Q(7;t), /7(7)) and the discount rate Hence, they can be used by any business. The

15



theorems allow us to analyze how the dynamics efatimal lifetime depends on the intensity

of TC and discounting. Namely, the following pradjes hold.

Property 3 (TC impact on the optimal assets lifetymé condition (24) holds¢q=c,, and

cq+%L((XX))>o, (30)

then the solutionl of equation (29) is smaller in the case of morense TC. Specifically, if
C4L >Cq, then the corresponding solutin® <L .
Proof. Let us denote the left-hand part of equation (@9jhe implicit functionF(L, c,) of two
variablesL andc,. Using the implicit function theorem, we obtaiatdL/d¢, = - &/dc,/ HII
L. By (29),
L _ _
oF /dc, = joe e g, (u-L)du>0,
L _ -
OF /9L =~[ e™[-c,e™" ™ Q,(u-L) -e*“"Q, (u-L)Jdu= (31)
L -
= [ e™e ™ [-¢,Q,(u-1) - Q' (u-L)]du<0
at condition (30). HencelL/d¢>0 and the optimal decreases whemyincreases, i.e., when the
TC intensity increases. The property is proved.®

Property 3 states that the TC acceleration decsehseoptimal lifetime of equipment, hence, the
paradox [9] does not appear in our continuous mattebther interesting issue raised by Chand,

Hsu, and Sethi [6] is the impact of discounting.

Property 4 (The impact of discounting on the optimal lifefjménder conditions (24) ang=cy,
the solutionL of equation (29) is larger in the case of morerisitee discounting. Specifically, if

r! >r, then the corresponding *>L .

Proof is analogous to the previous one. Considering ¢fftehbnd part of (29) as the implicit

functionF(L, r) of L andr, we obtain thatlL/dr = - d~/Jdr | oF/JL and
— Ly Cqu-L)
oF /dr = —rjoe e“*“™Q, (u-L)-Q,(0)]du<0,

hencedL/dg>0 and the optimal increases whenincreases. The property is proved.®
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The finite-horizon case is technically more comgigd because of the “zero-investment period”
(6T], &T (see Hilten [14], Hritonenko and Yatsenko [17, 3B]) and is not considered here.
Finite-horizon optimization is important for the negement science that explores real situations
when a decision maker truncates the horizon tmi¢efivalue. The well-known techniques for
reducing the end effects in the equipment replacém®dels [5, 6, 8, 30], such aslling

horizonandminimum forecast horizemre also promising for VCMs.

6 Examples: clustering and splitting

Let us return to the discrete replacement modespide the growing number of papers on the
assets replacement under TC (Bethuyne [3], Cheawapdomrong and Smith [9], Rogers and
Hartman [29], Regnier, Sharp, and Tovey [28], Satfd Chand [30]), its qualitative properties in
discrete case are still unclear. Even the questibether TC delays or speeds up the optimal
replacement is still debated (compare Bethuyneafig] Rogers and Hartman [29]). Bethuyne [3]
applies a necessary extremum condition to his eoatis model and derives an equation for the
optimal assets lifetime. However, his model assionptare different from ours and lead to the
conclusion that the optimal assets lifetime incesamder TC (that contradicts our Property 3). A
similar paradox is obtained in a discrete replaggmmdel by Cheevaprawatdomrong and Smith
[9] and analyzed by Hritonenko and Yatsenko in [B)gers and Hartman [29] show that the
optimal lifetime of assets decreases under moengite TC for both exponential continuous TC
and the discontinuous TC in the form of technolabibreakthroughs (the same is stated in

Property 3).

A discrete model of serial replacement closelyteglato the present paper is constructed by
Regnier, Sharp, and Tovey [28]. They consider #e=®f different TC rates in the operating cost
and machine price and show that it leads towdeable optimallifetime. In particular, it is

proved that the optimal lifetime decreases when ttazhine price decreases faster than the

operating cost, and inverse (see our Property 1).

One can expect the optimal lifetime={L,, k=1,... NT} in the discrete model to be close to the
solution L' (t), t0[0,T], of the continuous OP (13)-(17) for small The following result states
that if the OP (13)-(17) solution is integer-valugten both solutions coincide.

Theorem 5. Let the continuous OP (13)-(17) has a unique Boim’, L'). If the functionsm

andL’ are piecewise—constant:
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mt) =m¢, L) =Ly, tO[tes, td=[77(k-1), 7K, k=1,...NT, n=1N, (32)
and such thamn, NOI andL, NOI, then fm}, {Lc}, k=1,...NT, is a solution of the equivalent
discrete OP (8)-(11) obtained from the OP (13)-@tp=e", S=0, and

7

Kk
f/(i—l)J-q(k_l)Q(T’t)det,
J=-NL+1...NT, k=1..NT.

7
11, = I1(t)dt, =
k J-a(j—l) ® Qu j (33)
Proof. The discrete OP (8)-(11) is obtained from the icmatus OP (13)-(17) when the unknown
functions L(t), m(t), tO[0,T], are piecewise-constant on the elementary interfia,, tJ,

k=1,...NT. Then the substitution of (32) into expressior) @nd (17) leads to formulas (33) for
the given machine maintenance cQtr;t) and price//(t). The seQ, of the piecewise—constant

admissible OP solutions (32) is a subset of theaiiof of all admissible OP solution§2,01Q.
Therefore, under condition (33) the optimal (mininalueJ” of functional (9) cannot be smaller
than the optimal valué of functional (17),I’< J'. In the case (32), we have=J", hence, the

values (32) deliver a solution of the discrete 8R(11),(33). The theorem is proved. ®

Now, we can apply the results of Section 4 aboatMEM (13)-(17) to the discrete models (1)-
(7) and (8)-(11). Next subsection considers a speeise of the discrete model (1)-(7), when an

exact solution of the equivalent continuous OPlmaonstructed and is integer-valued.

Unlike the majority of previous works that descrthe serial replacement under TC, our discrete
model considers the parallel replacement. It allag$o observe the clustering effect and cluster

splitting under TC.

6.1 Geometric TC and geometric deterioration

The geometric TCmeans that the maintenance cQgf at a fixed agek-j and the equipment

acquisition cosf/ drop by constant factofs; andC, after each time period:
[=Cyll.1, Qi=CqQur1j1, 0<Ce<l, 0<Cx<1 (34)

(see, e.g., Cheevaprawatdomrong and Smith [9], iRegBharp, and Tovey [28]). Routine
calculations show that (34) corresponds to theonential TC(24) at c,=—In(C,) and

C=—In(Cy) in the continuous model. Indeed, comparing (6) @T) att=j, we obtain that
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T . T K T
jo e IHm)dt=> p*m, | Imdt=Y" p*m 11,
k=1 k=1

e” -1

k - —C —C -C
where [1, = Hojk_? * dt =Il,e oK , hence/lk=e " [}.1andC,=€ ™. Analogously,Cq

p
=e “. Regnier, Sharp, and Tovey [28] also confirm thairtiliscrete geometric TC model is

similar to the continuous negative exponential TC.

Thegeometric deterioratiormeans that the maintenance cQgf increases by a constant

factorCy when the aggk of a machine in service increases by 1 :

1 =CaQx;j , Qkj=CdQx1j, Cg2l. (35)
It corresponds to thexponential deterioratio(25) atcy=In(Cy) in the continuous model.

When the TC rates in the operation cost and thehase price are the san®@=Cq, then by
Theorem 2 the (long-term) optimal lifetime is camdtand determined by equation (26). We

consider this case to illustrate the presence atge of clustering.

Let r=0.1, ¢;=C,=0.03, ¢4 =0.05, Qo=1, and /7, =2.55 in the continuous model (13)-(17). It
corresponds t@=~0.9048,C,=C,~=0.9704,C¢=1.051 in the discrete model (1)-(7). Then, by (26),
the long-term optimal lifetime id =8, t[J[0,%), in the continuous model. By Theorem 5, the
lifetime L = 8is also optimal in the discrete case if the comesing replacement amounts are

integer. The complete dynamics of the optimal regeent is analyzed below in several

examples. Let the machine numberHse.

Example 1 (no transition dynamics). If there is no machine older than 8 years at tinfe then

we can choose the matching initial conditlgr8, andi=0 by Theorem 1. Then:

« If the initial machine distribution f\’%} is flat, m®=1, k=-7,...,0, then the optimal
replacement is determined by (5)mas mg=1,k=1,... 0.

« If the initial distribution M is uneven, then the optimal replacement reproslite

through the infinite horizorr¢placement echogd~or example, if
m’=0,k=-7,-6,-5,-4 andm’=2,k=-3,-2,-1,0,

Oif j=1+8k,2+8k,3+8k,4+8k
2 if j=5+8k,6+8k,7+8k8+8k

, k=1,... 0.

then by (5)m; =m, g 2{
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No clustering appears in this case.

Example 2 (clustering during transition dynamics). In this case, some machines are older than
the long-time optimal age at tinte0. LetL=10, m%=2, k=-9,...,-5, andn’=0, k=-4,...,0. Then
the machines purchasedkat9,-8, are older than the optimal a5§8 and should be replaced as
soon as possible. Formally, we can chaogsg=6 in the OP (13)-(17), thdtr(t) decreases from
L*(0)=10 toL*(1)=8, the transition dynamics period/pis [0,1], and

6, t O1[8k 8k +1]
m (t) =2, tO[8k +18k +3] k=1,... 0,
0,  tO[8k+38(k+1)]

in the continuous OP. By Theorem b* (m*) also delivers a solution to the discrete OP 72)-(

The optimal replacement during the first replaceinpemniod is determined by formula (5) as
j-8

m, = ka = Mg+ Mg+ M7;=6, M, =mbge= ne=2, andm.= nf,s=0, k=3,4,5,6,7,8.

k=j-10

So, the machinemg, mg, andm-; are combined into aluster of 6 machines during the first

replacement. Later, this cluster is repeated indefy as :

6 if j=1+8k,
m, =m,_g =12 if ] =2+8K, k=1,...00.
0 if j=3+8Kk,...8+8K,

The optimal replacement policy is

{2,2,2,2,2,0,0,0,0,0},6,2,0,0,0,0,0,0,0,0;6,2,0,0,0,0,0,0;6,2,0,0,0,0,0,0,0,0,...

So, the clusters naturally appear even in the ohsenstant asset lifetime because of the “non-
optimal” initial distribution of the equipment. Nuster splitting occurs, so, tle-splitting rule

is valid in the case of the constant lifetime.

If the TC rates in the operation cost and the paselprice are different,#Cq, then the optimal

assets lifetime is not constant and decreasesi@ases depending on the sigregty. A similar
result has also been proved for a discrete sephcement model by Regnier, Sharp, and Tovey

in [28]. Such a case is analyzed below.
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6.2 Increasing optimal lifetime of assets

Now we assume that the deterioration and the T@parating cost are exponential but the TC in

purchase price is not. Namely, tet0.1,c,;=0.04,c4=0.04,Q,=1, and
[I(t) = 13.77 + 4.127°" - 16.67e7%* (36)

in the continuous model (13)-(17)/7(t) monotonically increases from7(0)=1.22 to

[1()=13.77) Then the (long-term) optimal lifetime of machinmeplaced at is

L (t)=t/2+4, t0[0,00), (37)
which can be verified by the direct substitutiorr of;, cq, Qo, (25), and (36) into equation (20).
Correspondingly, t[—[ ()] = 2+8 in (20) and the future lifetime of machines bought is
I:(t) = [t—E(t)]‘l—t = t+8. The optimal lifetime I:(t) doubles every replacement period:
L (0)=8, L (8)=16, L (24)=32, L (56)=64, L (120)=128, and so on.

Let P=4. ThenL,=4, hence, by Theorem 2, there is no transitionoder/=0, and theexact

solutionof the continuous OP is
L) = t/2+4, mAt) = m*(t/2-4)/2, t0[0,). (38)

While (38) is not integer—valued, it shows the tref optimal replacement. If we apply the rule
(38) to the discrete model, we can chooses@pproximateoptimal lifetime asL; = j/2+4,
j=1,...0, and determine the corresponding replacement amoluets the initial machine

distribution {m’} be concentrated around the padket3:

4, tO[-4-3),

m (t):{ 0,  tO[-30]

or, in the terms of discrete model, at the p&n8: my’=4 andm,’=m;’=m,°=0. Then, by (38),

the optimal replacement will be

2 if  j=12

m=m_ /2=
] 0 if j= 345678

during the first replacement interval,
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1if j=1234
Mg =97 ¢+ _
0 if j=5..16

during the second replacement interval, and fraatimachine replacements after.

Therefore, the optimal replacement policy is
{4,0,0,0}; 2,2,0,0,0,0,0,0; 1,1,1,1,0,0,0,0,0,0,0,0,0,0;...

So, the initial cluster of 4 machines is split ifntgo “two-machine clusters” during the first
replacement and into four “one-machine clusterstirduthe second replacement. Next, the

splitting pattern continues in the continuous model

Thus, the cluster splitting is possible in the ammius model in the case of the increasing asset
lifetime. Hence, th@o-splitting ruleis not valid in the general case of replacemedeui C with
the given demand. To obtain a similar result in diserete model, we need to relax only one

assumption about integer-valued lifetime of theigaent.

7 Conclusion

In this paper, we have established new relatiossliptween the discrete-time equipment
replacement models and continuous-time vintagetalapiodels (VCMs). These models describe
the same production process but use different matieal tools. The comparative analysis of

these two approaches provides a new insight inteesapen issues of equipment renovation.

1. We have analyzed thearallel machine replacemeninder the generaontinuous TGvhen
the economic interdependence is caused by the ibagamand constraints and, possibly, capital
budgeting constraints. This case is well explorethe corresponding continuous VCMs. Then,
the optimal machine lifetime is separated fromdpgmal investment amount, is determined by a
nonlinear integral equation, and does not dependheneconomy scale. The corresponding
optimal investment amount depends on the initigiritiution of the machines. In the special case
of the exponential TC, new analytic formulas andiligative rules for the optimal machine

lifetime are provided.
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2. The no-splitting rule, earlier established byeky Zydiak, and Hopp [22] for the equipment
replacement in stationary environment, is valid wh& optimal equipment lifetime is constant.
It is shown that the machine clusters naturally emppbecause of the non-optimal initial
distribution of machines. In the case of an indreasptimal equipment lifetime, the possibility

of cluster splitting is demonstrated in the continsi model.

3. A more challenging and interesting case arideswvgeveral technological alternatives exist for
possible replacement of a machine [5, 7]. This ¢esebeen investigated in discrete settings in
[5] and in continuous vintage settings in [19, 36). The corresponding discrete-continuous
analysis similar to the one provided in this papeuld be helpful in choosing the optimal

technological parameters of the replaced machines.

4. Management applications discussed in this peperead to new open problems in the VCM
theory. The models can incorporate a stochastievdehof external prices and technology. An
interesting issue is to assume random equipmelotrdgiin the discrete equipment replacement

models, derive and analyze the corresponding iateguations for optimal equipment lifetime.
It will lead to other types of technology dynami@ért), /7(17), different from the exponential

TC. In particular, the shape of the deterioratiactdr Qq(t-7) in (24) can be non-monotonic and

reflect various failure distributions (Weibull, “thaub”, and so on). Another important case
occurs when every replacement involves an additifixed cost that introduces the economy of
scale. The dynamics of the optimal equipment hfietin such cases is an open problem. Finally,
while the optimization with a linear utility funcin is a common choice in the equipment
replacement management problems, it is interestingpnsider the case of concave utility that

describes a risk adverse decision-making behavidetuuncertainty.
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