
2008/69 
 
 
■ 

 
 

Discrete-continuous analysis  
of optimal equipment replacement 

 
 

Yuri Yatsenko and Natali Hritonenko 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6298398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CORE 
Voie du Roman Pays 34 
B-1348 Louvain-la-Neuve, Belgium. 
Tel (32 10) 47 43 04 
Fax (32 10) 47 43 01 
E-mail: corestat-library@uclouvain.be 
http://www.uclouvain.be/en-44508.html 



CORE DISCUSSION PAPER   
2008/69 

 
Discrete-continuous analysis of optimal equipment replacement 

 
Yuri YATSENKO 1 and Natali HRITONENKO2  

 
 

December 2008 
 

Abstract 
 

In Operations Research, the equipment replacement process is usually modeled in discrete 
time. The optimal replacement strategies are found from discrete (or integer) programming 
problems, well known for their analytic and computational complexity. An alternative 
approach is represented by continuous-time vintage capital models that explicitly involve 
the equipment lifetime and are described by nonlinear integral equations. Then the optimal 
replacement is determined via the optimal control of such equations. These two alternative 
techniques describe essentially the same controlled dynamic process. We introduce and 
analyze a model that unites both approaches. The obtained results allow us to explore such 
important effects in optimal asset replacement as the transition and long-term dynamics, 
clustering and splitting of replaced assets, and the impact of improving technology and 
discounting. In particular, we demonstrate that the cluster splitting is possible in our 
replacement model with given demand in the case of an increasing asset lifetime. 
Theoretical findings are illustrated with numeric examples. 
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1   Introduction 

In Operations Research (OR), the equipment replacement models are usually represented as 

sequential decision problems (see, e.g., [5-9, 13, 21-24, 26-30]). In economic growth theory, 

similar processes are described by vintage capital models (VCMs) [2, 4, 12, 15-20, 25, 31, 35, 

36], which explicitly involve the lifetime of capital equipment. These two alternative techniques 

describe the same controlled dynamic process and possess well developed theories. The majority 

of OR replacement models are discrete while the most of VCMs are continuous. A critical 

comparison of these models would be beneficial for both management science and economics. 

This paper attempts to combine these two modeling approaches to obtain new insight into the 

rational equipment replacement under improving technology. It provided a rigorous mathematical 

analysis of continuous and discrete replacement models and compares the outcomes with existing 

results. A similar discrete-to-continuous analysis was recently provided by Bambi [1] for 

optimization models with time-to-build structure of capital. 

Mathematically, the VCMs are represented by non-linear Volterra integral equations with 

unknowns in the integration limits. Following R.Solow [31], the replacement decision in VCMs 

is to efficiently replace the old vintages of capital with new capital under technological change. 

Malcomson [25] developed an optimization VCM for the capital equipment replacement 

decisions of an individual firm. In the 90’s, the VCMs were intensively used in economic growth 

theory (see Benhabib and Rustichini [2], Boucekkine, Germain, and Licandro [4], Cooley, 

Greenwood, and Yorukoglu [10], Greenwood, Herkowitz, and Krusell [12], van Hilten [14], and 

the references therein). A consistent optimization technique for the VCMs with endogenous 

capital lifetime was developed by Yatsenko in [32-34] and applied to various models by 

Hritonenko and Yatsenko in [15-20]. 

The OR equipment replacement problems fall into two fundamental categories: serial and 

parallel replacement. Following Hartman [13], the parallel replacement considers assets3 that are 

economically interdependent and operate in parallel. The economic interdependence can be 

caused by various economic factors, which include: 

• the requirement of keeping a prescribed number of assets in service at all times (capacity 

demand constraints)  as in Sethi and Chand [30], Bylka, Sethi, and Sorger [5], Chand, 

McClurg, and  Ward [7]; 

                                                 
3 In this paper, we use the terms machines, equipment, and assets interchangeably. 
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• prespecified output demand constraints as in Rajagopalan [27];  

• restrictions on capital expenditures (rationing budgeting constraints) as in Hartman [13] 

or Karabakal, Lohmann, and Bean [23]; 

• additional fixed replacement costs that occur when one or more assets are replaced as in 

Jones, Zydiak, and Hopp [22]. 

The first three factors exhibit constant return-to-scales with respect to the number of machines. 

The last forth assumption (fixed charge) introduces the economy of scale in purchase prices that 

makes the replacement problem essentially more difficult. The parallel replacement problem with 

a fixed charge in stationary environment was solved by Jones, Zydiak, and Hopp in [22] and 

expanded to the case of capital budgeting constraints and a finite horizon by Hartman in [13]. 

Another possible case of non-constant return-to-scales is the dis-economy of scale in maintenance 

costs considered by Jones and Zydiak in [21].   

Technological change (TC) is the key external factor that impacts the replacement process. TC is 

commonly described as the improved efficiency and reduced operating and maintenance costs of 

possible replacement assets. Rogers and Hartman [29] distinguish continuous TC and 

discontinuous TC. The mainstream of studies on the equipment replacement under TC (e.g., 

Bethuyne [3], Regnier, Sharp, and Tovey [28], Rogers and Hartman [29], and Sethi and Chand 

[30]) considers the serial replacement. On the other hand, the continuous VCMs involve the 

amount of assets as a continuous variable and consider the parallel replacement under TC. 

The present paper considers a deterministic parallel replacement model with the economic 

interdependence caused by demand and budgeting constraints under general continuous TC. The 

paper contribution into the OR replacement literature includes new analytic and qualitative 

techniques and rules for the optimal equipment lifetime under continuous TC.  

The majority of equipment replacement models are discrete (or integer) programming problems 

based the following assumptions: the time is discrete (integer), the service lives of machines are 

discrete (integer), and the numbers of machines are discrete (integer). This paper investigates 

what happens if we relax these assumptions and consider the corresponding continuous optimal 

control problems.  

The paper is organized as follows. In Section 2, a discrete model of parallel equipment 

replacement (similar to [7]) is constructed in the terms of unknown equipment lifetime. Section 3 

introduces the modified discrete replacement model with the elementary period length η, 0<η≤1. 

Section 4 proves that the parameterized model leads to the discrete model of Section 2 at η=1 and 
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a continuous VCM at η→0. Section 5 explores the corresponding continuous replacement 

problem that appears to be well known in the VCM theory. Section 6 returns to the discrete model 

and analyzes its dynamics, particularly the clustering and splitting effects first discovered by 

Jones, Zydiak, and Hopp [22] in the absence of TC. Section 7 summarizes the major paper 

results, their possible generalizations, and some open problems.  

 

2  Basic discrete model of equipment replacement 

We start with a parallel replacement model under the same assumptions as in [7, 8, 26] but 

expressed in the terms of unknown machine lifetime. Following [5-8, 26, 30], a production shop 

keeps P, P≥1, machines of a particular type at all times (P=1 in [5, 30]). The industry operates 

under conditions of improving technology, which means that newer vintages of machines are 

better (require less maintenance). In economics, these conditions are known as technological 

change (TC) embodied in new capital equipment (new vintages of machines). The performance 

of operating machines (measured by maintenance costs) deteriorates as the machines become 

older. So, the shop should consider selling each machine at a certain point of time and buying a 

new machine. The same situation repeats with the new machine so the shop will make a chain of 

replacement decisions.  

Let us consider a (finite or infinite) planning horizon {1,…,T} in the integer discrete time  t=…,-

1, 0,1,2,…. To simplify the model, we assume that only one technology (type of machines, 

vintage) is available at each time t (see Section 7 about the case of many available technologies). 

As in [5, 7, 30], we define the technology as (Πt, Qt,k, St,k), where Πt   is the purchased price and 

installation cost of a machine bought at time t (the machine of vintage t),  Qt,k  is the maintenance 

cost for the vintage t machine during the time period k≥t, and St,k  is the salvage value of the 

vintage t machine at the end of period k ≥ t. Since the purchased price Πt   involves a certain 

installation (switching) cost, we assume that Πt >St,k for all k≥t. Because of deterioration, the 

sequence Qt,k non-decreases and St,k non-increases when the machine age a=t−k increases. At this 

point, we make a general assumption of the continuous TC that the sequence Qt,k decreases in t 

for any fixed machine age a=t−k. More specific cases of this dependence will be considered 

below. 

Jones, Zydiak, and Hopp [22] analyzed a parallel replacement problem in the stationary 

environment and discovered two important replacement principles: the “older cluster 
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replacement rule” (an optimal replacement policy always replaces older machines first) and the 

“no-splitting rule”  (machines of the same age are either kept or replaced at the same time 

period). As shown in [22], the first rule holds in stationary environment under continuous 

deterioration (when the maintenance cost is non-decreasing and the salvage value is non-

increasing in the asset age).  

In this paper, we presume that the “older cluster replacement rule” is valid in the non-stationary 

environment under continuous deterioration and TC. Under this rule, we can choose the machine 

life as a control. Namely, instead of tracking the replacement chain for each machine as in [7, 30], 

we introduce the following decision variables:  

   - the lifetime (service life) Lt of the youngest machine replaced in period t and  

   - the number mt of new machines purchased during the period t, 1≤t≤T.   

In terms of [26, 30], the machine lifetime Lt is equal to the difference t−At between the 

regeneration point t and the purchase point At of the machine. For the clarity, we assume that 

machines are replaced at the end of a period. Then, a machine purchased in period t−Lt will be 

used during the periods t−Lt+1 through t and be replaced in period t. The requirement that the 

total number of operating machines is equal to P is expressed by the following demand 

constraint:  

                                                        .,...,1    ,
1

TtPm
t

Ltk
k

t

==∑
+−=

                                              (1) 

Let the shop be in business for a while and have P machines at t=0. Then, the initial condition of 

the replacement problem at t=0 is  

                                                                       ,
0

1

0

0

Pm
Lk

k =∑
+−=

                                                   (2) 

where mk
0 is the known number of machines purchased in each period  k, − L0 ≤ k ≤ 0, during the 

known prehistory. The constraints (1)-(2) completely determine vector {Lj, 1≤j≤t}  under a given 

{ mj, 1≤j≤t} , and vice versa.         

The discrete replacement models use the regeneration monotonicity property, which means that 

scrapped and replaced machines should not be used again. In the terms of Lj, this requirement can 

be expressed as  
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                                                Lj+1 ≤ Lj +1,      1 ≤ j ≤ T.                                                           (3) 

Under the no-splitting rule, the machines of the same age are always replaced during the same 

period. Then, the number of machines replaced in period [j, j+1] is obtained by subtracting the 

demand constraint (1) at t=j  from itself at t=j -1: 

                                                             ∑
−

−= −

=
j

j

Lj

Ljk
kj mm

1

.                                                            (4) 

Depending on the Lj dynamics, the following situations are possible: mj=0 if Lj=Lj-1+1  (no 

machine is replaced), mj =
jLjm − if Lj = Lj-1, or  mj =

jj LjLj mm −− ++
−

...
1

 if Lj<L j-1 (the machines 

of several vintages j-L j-1,…,j-L j are replaced in the same period j).  

As shown below in Section 6, the “no-splitting rule” is common in the optimal replacement 

dynamics under TC. However, we will not assume it in the general case. If this rule is violated, 

then the capacity demand constraint (1) holds but the number of replaced machines is found 

differently. Namely, if the cluster of currently replaced assets 
jLjm −  purchased at j-L j is split over 

the period [j, j+l], l >0, then instead of (4) we have   

                                                       ∑
+

=
− =

lj

jk
kLj mm

j
,                                                                  (5) 

where mk, j≤ k≤ j+l, are determined by additional requirements (see Section 6.2).  

Following [1,3,7,8,13,22,28], the discounted total cost of replacement policy over the T-period 

horizon [0,T] can be written as  

                       ,)( ,
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where the first term represents the total price of purchased machines, the second term is the total 

maintenance cost, and the last term stands for the total salvage value of the replaced machines.  

The parameter ρ, 0<ρ ≤1, denotes the discount factor during the unit time interval. 

Now we can formulate the machine replacement problem as the nonlinear integer-valued 

optimization problem (OP) 

                                                    )(min
,...,1,

TJ
Tj,Lm jj =

                                                                 (7) 
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with the unknown controls Lj∈IIII and mj∈IIII, Lj≥0, mj≥0, 1≤j≤T,  subjected to constraints (1), (3) 

and the initial condition (2) (IIII is the set of integer numbers).  

In the case of one machine, we have P=1 and mj=0 or mj=1, 1≤j≤T. Then, the purchase points are 

the instants when mj=1 and the machine lifetime can be determined as Lk = k-j+1 if mj=1, ms=0 

at j<s<k, and mk=1.   

       

3  Parameterized discrete model of equipment replacement 

In this section, we construct a modified version of discrete model (1)-(7) with the step length η, 

0<η≤1. The goal is to obtain a parameterized model, which will produce a continuous-time 

model of equipment replacement when the parameter η goes to zero. A challenge is that some 

model characteristics (such as productivity rates and expenses) depend on the time scale. 

To define an appropriate time scale parameterization for model (1)-(7), we split each unit period 

[j, j+1] of the original time j=1,…,T into N smaller equidistant time intervals [j, j+1/N,  j+2/N, 

…, j+(N-1)/N,  j+1], where N>1 is an integer. We will need case N=1 as well. Then the time scale 

parameter η is the length of the elementary time period:  η =1/N,   0<η≤1. 

As result, we have the parameterized discrete time scale tk = k/N, k=…,-1,0,1,2,…, in addition to 

the original integer time scale  j=…,-1, 0,1,2,… . The planning horizon [0,T] is now split into NT 

of elementary intervals [tk-1, tk] of the length η, k=1,…, NT,   N=1/η. The parameter η, 0<η≤1, 

can be interpreted as a characteristic time of the replacement decision. Roughly speaking, η 

reflects how often the replacement decision is implemented (every day, week, month, etc.). 

Smaller values of η  mean that the replacement decision is made more often and uses N>1 values 

of technology parameters Πt, Qt,k, St,k during each unit interval [j, j+1].  

The lifetime Lj of the machines, their purchased price  jΠ  and salvage value kjS ,  do not depend 

on the time scale and remain the same as in model (1)-(6) but are supposed to be measured more 

often at times tk = k/N.  

However, the model also includes some scale-independent characteristics with the meaning of 

rates per time unit. Indeed, if the original time unit [0,1] is one year and [0, η] is one day, then 

the replacement of one machine per year does not mean replacing one machine every day of the 

year. As we divide each unit-length period [j, j+1] into N sub-periods [tk, tk+η], k = jN, jN+1,…, 
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j(N+1)-1, our decision variable mj obviously depends on N: the number of machines replaced 

during the elementary period [tk-1, tk-1+η] is equal to mj/N = ηmj. If N=10 and we replace 2 

machines per unit period, then we replace 2 * η = 0.2 machines per each “sub-period” of the 

length η=0.1. To handle this situation, we use the new scale-independent variable: the machine 

replacement intensity (replacement speed) m̂ k, related to the number mk of replacements during 

the elementary period as mk=η m̂ k. 

Similarly, we introduce the scale-independent maintenance expense intensity kjQ ,
ˆ , such that the 

maintenance cost Qj,k of vintage tj during the elementary period [tk-1, tk]  is Qj,k =η kjQ ,
ˆ . 

Finally, the discount factor over the elementary period of length η is ρ1/Ν=ρη. 

Now we can construct the modified replacement model in parameterized time tk = kη, k∈IIII. The 

decision variables in the modified model will be the replacement intensity m̂ k and the machine 

lifetime Lk, 1≤ k≤ NT.  Then, the total number of operating machines is equal to  

                                                               ./,...,1    ,ˆ
1/

ηη
η

TkPm
k

Lkj
j

k

==∑
+−=

                                 (8) 

The discounted total cost of replacement policy over the horizon [0,T] can be written as  
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and we formulate the machine replacement problem in the parameterized discrete time as 

                                                        )( min 
,...,1,ˆ

TJ
NTj,Lm jj

η=
                                                           (10) 

with 2TN discrete-valued unknown variables Lk and m̂ k, 1≤ k≤ NT,  subjected to constraint (8), 

                                        LkN∈IIII,   m̂ k N∈IIII,   Lk≥0,   m̂ k≥0,    Lk+1 ≤ Lk +η,    

and the initial condition   

                                                                      , ˆ
0

1

0

0

Pm
NLj

j =∑
+−=

η                                                (11) 
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where the given numbers m̂ j
0, − L0N ≤ j ≤ 0, represent the replacement intensity during the 

known prehistory [−L0, 0].   

If η=1, then m̂ j = mj , kjQ ,
ˆ = kjQ , , and model (8)-(11) coincides with the basic model (1)-(7).  

 

4  Continuous time replacement model 

The model (8)-(11) produces a continuous optimization problem when η→0. 

Theorem 1. The discrete-time discrete-valued OP (8)-(11) corresponds to the continuous time 

problem                                                         I
m,L

min ,                                                                        

       , ))]('1))((()),(()(),()()([
 

0 

 

)( ∫ ∫ −−−−+=
−

−T t

tLt

rt dttLtLtmttLtSdmtQtmtΠeI τττ   (12) 

r =−lnρ, with respect to the unknown functions m(t) and L(t), t∈[0,T), T≤∞, that satisfy 

constraints 

                                                   ,)(
 

)( ∫ −
=

t

tLt
dmP ττ                                                                 (13) 

                                           L(t)≥0,     L’ (t) ≤ 1,                                                             (14) 

                                           m(t) ≥0,          t∈[0, T),                                                         (15) 

and the initial conditions   

                                      L(0) = L0 > 0,  m(τ) = m0(τ),  τ∈[-L0, 0].                                (16) 

Proof. Expressions (12)-(13) follow from applying the standard definition of Riemann integral to 

formulas (8),(9), and (11). The conversion of (8) to (13) is trivial and (11) also leads to (13) at 

t=0. To prove the transformation of (9) into (12), let us consider two interior sums in (9) first. 

These sums are correct because the numbers Lk/η in their limits are integer by the restriction 

LkN∈I. Then,  
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Finally, at ρ = re− , (9) leads to 
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For brevity, we omit the “hat” symbol in the obtained functions )(ˆ tm and ),(ˆ tQ τ .  

The theorem is proved.                                                                                                               � 

The unknown variables of the OP (12)-(16) are the lifetime L(t) of the machines replaced at time 

t and the replacement intensity (the instantaneous speed of the replacement) m(t), t∈[0,T). 

Inequality (14) is equivalent to the regeneration monotonicity property (3) of the discrete model 

(1)-(6). The functions Π(t), Q(τ,t), and S(τ,t) are assumed to be given at t∈[0,T), τ∈[-L0,T). The 

functions Π(τ) and Q(τ,t) represent the embodied TC and decrease in τ (newer equipment is 

more efficient).   

The salvage cost component in the objective functional (12) includes the derivative of the 

unknown L(t) and causes certain difficulties during the OP analysis. Let us assume that the 

salvage value is negligible S(τ,t)=0 (it is true, at least, for high-tech products such as computer, 

networks, electronics, see also [28]). Then, the OP (12)-(16) is  

                     ])(),()()([minmin
 

0 

 

)( ∫ ∫ −

− +=
T t

tLt

rt

m,Lm,L
dtdmtQtmtΠeI τττ                                   (17) 

with respect to the unknown functions m and L under restrictions (13)-(15) and initial conditions 

(16). 

The problem (13)-(17) is, in fact, a well-known problem of the cost minimization for a firm using 

a continuum of vintage capital equipment. Similar optimization problems were first introduced by 

Malcomson [25] and investigated by van Hilten in [14], Boucekkine, Germain, and Licandro in 

[4], Hritonenko and Yatsenko in [17-20, 35]. Mathematically, a major new feature of such 
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problems lies in the new type of control functions that appear in the integration limits of integral 

equations. A systematic treatment of the OP (13)-(17) was provided in [35] for the case of 

variable P(t). Possible dependence of P on t includes the non-stationary demand considered in the 

discrete settings in [7, 30]. Also, an additional restriction m(t)≤mmax(t) in [35] reflects budgeting 

constraints common in the discrete replacement models.  

 

5  Optimal equipment lifetime in continuous model 

The papers [20, 35] describe the complete dynamics of the OP (13)-(17) such as the solution 

structure and turnpike properties for both infinite (T=∞) and finite (T<∞) horizons. Here we omit 

technical details and refer an interested reader to [15-20, 32-35].  

Lemma (necessary and sufficient condition for an extremum) [35]. A measurable function m*(t), 

t∈[0,T), and the corresponding L* (t), t∈[0,T), T≤∞, are a solution to the OP (13)-(17) if and 

only if  

                                      I'(t) ≥ 0        at       m*(t) = 0, 

                                      I'(t) = 0        at       m*(t) > 0,    t∈[0, T), 

where  

      , ),0[     ),()],()),(*([)('
}),(*ˆmin{ 

 

)( TttdutQuuLuQetI
TtLt

t

tur ∈Π−−−= ∫
+ −− τ   (18) 

is the OP gradient I'(t) with respect to m, L̂ (t) is the future lifetime of the machine bought at t, t 

+ L̂ (t) is the instant when this machine should be scrapped,  

                                                t+L̂ (t) = [t-L(t)]-1,                                                      (19) 

and [x(t)]-1 denotes the inverse of x(t).  

Gradient (18) relates the equipment lifetime L(t) of the machine replaced at t to the future lifetime 

L̂ (t) of the machine bought at t. It defines the future marginal profit from the purchase of a new 

machine at time t and is equal to the difference of the marginal revenue (the future rental value) 

of the new machine and its price. The future rental value naturally depends on the future lifetime 

of machines. The independence of gradient (18) on m reflects a constant return-to-scales 



 12 

economy and has essential implications. Namely, the structure of OP solutions appears to be 

defined by the nonlinear integral-functional equation  I'(t)=0 or  

          , ),0[     ),()],()),(([
1)]([ 

 

)( ∞∈Π=−−∫
−− −− ttduutQuuLuQe

tLt

t

tur              (20) 

with respect to the unknown function L
~

(t), t∈[0,∞). Equation (20) has been first derived in [32] 

and investigated in [15-17, 33]. It states that, in the rational strategy of equipment replacement 

under the embodied TC, the profit of putting a new machine into service and scrapping an older 

obsolete machine is equal to the price of the new machine. A solution L
~

 of (20) (if it exists), is 

called the turnpike trajectory of the OP (13)-(17). 

 

5.1 The structure of optimal replacement  

The qualitative analysis of the OP (13)-(17) reveals interesting patterns of the rational equipment 

replacement strategies under TC. In this paper, we focus on the infinite-horizon OP (T=∞). Then 

the structure of the OP solutions is pretty simple and is described by the following statement.  

Theorem 2 (Yatsenko and Hritonenko [35]). If a unique solution L
~

 of equation (20) exists and 

P(t)=const, then the OP (13)-(17) with restriction m(t)≤mmax(t) has a unique solution (m*, L* ) of 

the following structure: 

A. Transition dynamics:  

               ),,0[ 
    ,)0(

~
   if   )(

  ,)0(
~

   if         0
)(*

0max

0





∈
<
>

= µt
LLtm

LL
tm                             (21) 

where the corresponding L* (t) is found on [0,µ) from (13) at the given m* and is increasing at 

L
~

(0)>L0 and decreasing at L
~

(0)<L0. The length µ≥0 of the interval [0,µ)  is determined from 

the condition L* (µ)= L
~

(µ) and depends on |L
~

(0)−L0|; µ=0 at L
~

(0)=L0. 

B.  Long-time dynamics:    

                             L* (t)= L
~

(t),                                                                                           (22) 

                             m*(t)= m*(t− L
~

(t))[1− dL
~

(t)/dt],    t∈[µ, ∞).                                (23) 
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The proof is based on the necessary and sufficient condition for an extremum (Lemma) and is 

provided in [35]. Theorem 2 classifies three possible types of the initial machine distribution: 

(1) L
~

(0)<L0, all active machines are too young and will be replaced later; 

(2) L
~

(0)>L0, some active machines are too old and should be replaced immediately; 

  (3) L
~

(0)=L0, no transition period.   

Theorem 2 may be also interpreted as a turnpike theorem in the strongest form. It states that the 

optimal L* (t) coincides with the turnpike trajectory L
~

(t) except for some initial interval [0,µ). 

The turnpike properties are well known for other (non-integral) models in growth theory, and 

their presence often serves as an indicator of the quality of an optimization model. The turnpike 

properties deliver some important patterns for strategic replacement decisions. For the finite-

horizon OP (13)-(17), a turnpike theorem in normal form was proved in [17, 35].  

By Theorem 2, the optimal investment control m* possesses replacement echoes [4, 17, 20, 35] 

caused by initial condition (16). Indeed, if the initial condition L(0)=L0, m(t)=m0(t), t∈[-L0, 0], 

at the left end t=0 of the horizon [0, ∞) is such that L0 ≠ L
~

(0), then it causes the appearance of 

the boundary-valued section m(t)≡0 or mmax(t), t∈[0,µ], in the optimal investment trajectory m*(t) 

during the first replacement cycle and the dissemination of the corresponding replacement echoes 

through the whole horizon [0, ∞). Such echoes are absent when L0 = L
~

(0). If L
~

(t) decreases, 

then the replacement interval shortens and the replacement echoes increase from one interval to 

other (and converse).  

The established structure of OP solutions shows that the optimal equipment lifetime L*  possesses 

turnpike properties, whereas the optimal investment m*  does not strive to any limit. The jumping 

behavior of the investment m*  is common for the replacement problems.   

 

5.2 The dynamics of optimal equipment lifetime  

By Theorem 2, the dynamics of the optimal equipment lifetime L
~

 is determined by the nonlinear 

integral equation (20). This equation is a key for the optimal replacement decision. The equation 

can be solved numerically for any given smooth functions Π  and Q. There is no general theory 

for such equations, so one needs to consider meaningful special cases. Hritonenko and Yatsenko 
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in [16] analyze this equation for exponent, power, and logarithmic functions Π (τ) and Q(τ). 

Here, we consider a more general case: 

               Q(τ,t)=Qd(t-τ) τqce− ,       Π(τ)=Π0
τpce− ,        cq, Π0>0, cp≥0,                         (24) 

where the function Qd(t-τ)>0 reflects the equipment deterioration and depends on the equipment 

age t-τ (not necessarily monotonically). The exponential TC is reflected by the dependence of 

formulas (24) on τ and can be different for the machine price Π(τ) and operating expense Q(τ,t). 

Then, the following statements are valid 

Theorem 3. Under conditions (21) and the exponential deterioration  

                                              Qd(t-τ) = Q0
)( τ−tcde ,              cd ≥ 0,                                 (25) 

equation (20) has a unique solution L
~

(t)>0, t∈[0,∞), such that : 

• if  cq < cp,  then L
~

(t) monotonically decreases and approaches 0  as  t→∞;   

• if  cq  > cp,  then L
~

(t) monotonically increases and approaches ∞  as  t→∞;   

• if  cq = cp,  then L
~

(t)≡L, t∈[0,∞), where the constant L  is determined from the non-

linear equation 

                  r Lcc dqe )( + + (cq+cd)
rLe−  = (r+cq+cd)[1+rΠ0/Q0]    at     r>0                       (26)    

          or        
Lcc dqe )( +  − (cq+cd)L = 1 + (cq+cd)Π 0/Q0         at    r = 0.                            (27) 

In particular,  L ≈ [2Π 0/(Q0(cq+cd))]  1/2    for   0 < cq+cd < r << 1. 

Proof is based on a similar result obtained in Yatsenko and Hritonenko [35] for the integral 

equation (20) without deterioration at Qd(t-τ)=Q0. Using conditions (24) and (25), equation (20) 

is rewritten in the following form: 

  . ),0[     ,][
1)]([ 

 0
)()())(()(

0 ∞∈Π=−∫
−− −−−−−−− tedueeeeeQ

tLt

t

tctuctcuLcuLuctur pdqdq      (28) 

Multiplying (28) by tcde−  and separating the factor )( tucde −  in the integrand, we obtain  

     . ),0[     ,][
1)]([ 

 

)(
0

)())(())(()()(
0 ∞∈Π=−∫

−− +−+−−−−−−−− tedueeeeQ
tLt

t

tcctccuLucuLuctuctur dpdqdqd  
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Now, setting c1=cq+cd,  c2=cp,  c3=r+cq converts the last equation into equation (33) of [35]. 

Applying Theorem 3 from [35] to this equation proves the theorem.                                      � 

The theorem does not cover all possible combinations of the parameters. In particular, equation 

(28) has a finite solution L
~

(t), t∈[0,∞), while cq+cd>0 and cp+cd>0. In the critical case cq+cd 

=0, equation (28) may have an indefinitely increasing solution L
~

(t) but such that the function 

t− L
~

(t) is bounded on the interval [0,∞). Finally, in the case cq+cd<0, equation (28) has no 

solution on the infinite interval [0,∞).  

The obtained results produce some qualitative rules of the dynamics of the optimal equipment 

lifetime:  

Property 1. In the case (24)-(25), if the operating cost Q(τ,t) decreases slower in τ  than the 

machine price Π(τ), then the long-term optimal machine lifetime L
~

(t) decreases (and 

converse). 

Property 2. In the case (24)-(25), if the TC rates cq and cp of the operating cost Q(τ,t) and 

machine price Π(τ) are the same, then the long-term optimal machine lifetime L
~

(t) is constant. 

This constant depends only on the TC and deterioration rates, the discount factor, and the 

proportion Π 0/Q0 between the initial machine price and operating cost.  

Moreover, if the TC rates of the operating cost and equipment price are equal, cq=cp, then the 

equipment lifetime is constant for any deterioration law (not necessarily exponential). Namely, 

the following result holds. 

Theorem 4 (Yatsenko and Hritonenko [35]). If condition (24) holds and cq=cp, then for any 

function Qd(t-τ) such that Qd(x) xcqe  increases, equation (20) has the constant solution L
~

(t) ≡ L,  

t∈[0,∞),  determined from the non-linear equation: 

                                   .)]0()([ 00 

)( Π=−−∫
−−L

dd
Lucru duQLuQee q                                 (29) 

Equation (29) has a solution L>0 even when cq=cp=0 but Qd(x) strictly decreases.  

As stressed in [7], theoretic research should provide useful heuristics for practical decision 

making. Theorems 3 and 4 lead to certain approximate rules about the long-term optimal lifetime 

of equipment. These rules do not depend on the production scale and are defined only by the 

technology (Q(τ,t), Π(τ)) and the discount rate r. Hence, they can be used by any business. The 
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theorems allow us to analyze how the dynamics of the optimal lifetime depends on the intensity 

of TC and discounting. Namely, the following properties hold.  

Property 3 (TC impact on the optimal assets lifetime). If condition (24) holds, cq=cp, and  

                                                          0
)(

)(' >+
xQ

xQ
c

d

d
q ,                                                      (30) 

then the solution L
~  of equation (29) is smaller in the case of more intense TC. Specifically, if  

cq
1 >cq, then  the corresponding solution L

~ 1 < L
~

. 

Proof.  Let us denote the left-hand part of equation (29) by the implicit function F(L, cq) of two 

variables L and cq. Using the implicit function theorem, we obtain that dL/dcq  = - ∂F/∂ cq / ∂F/∂ 

L.  By (29), 

              

0)](')([

)](')([/

,0)(/

0 

)(

0 

)()(

0 

)(

<−−−−=

=−−−−−=∂∂

>−=∂∂

∫

∫

∫

−−

−−−

−−

L

ddq
Lucru

L

d
Luc

d
Luc

q
ru

L

d
Lucru

q

duLuQLuQcee

duLuQeLuQeceLF

duLuQeecF

q

qq

q

                 (31) 

at condition (30). Hence, dL/dcq>0 and the optimal L decreases when cq increases, i.e., when the 

TC intensity increases.  The property is proved.        � 

Property 3 states that the TC acceleration decreases the optimal lifetime of equipment, hence, the 

paradox [9] does not appear in our continuous model. Another interesting issue raised by Chand, 

Hsu, and Sethi [6] is the impact of discounting.  

Property 4 (The impact of discounting on the optimal lifetime). Under conditions (24) and cq=cp, 

the solution L
~  of equation (29) is larger in the case of more intensive discounting. Specifically, if 

r1 >r, then the corresponding L
~ 1 > L

~
. 

Proof  is analogous to the previous one. Considering the left-hand part of (29) as the implicit 

function F(L, r) of L and r, we obtain that dL/dr  = - ∂F/∂ r / ∂F/∂ L and   

                   ∫ <−−−=∂∂ −−L

dd
Lucru duQLuQeerrF q

0 

)( ,0)]0()([/  

hence, dL/dcq>0 and the optimal L increases when r  increases. The property is proved.      � 
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The finite-horizon case is technically more complicated because of the “zero-investment period” 

(θ,T], θ<T (see Hilten [14], Hritonenko and Yatsenko [17, 20, 35]) and is not considered here. 

Finite-horizon optimization is important for the management science that explores real situations 

when a decision maker truncates the horizon to a finite value. The well-known techniques for 

reducing the end effects in the equipment replacement models [5, 6, 8, 30], such as rolling 

horizon and minimum forecast horizon, are also promising for VCMs. 

 

6  Examples: clustering and splitting  

Let us return to the discrete replacement model. Despite the growing number of papers on the 

assets replacement under TC (Bethuyne [3], Cheevaprawatdomrong and Smith [9], Rogers and 

Hartman [29], Regnier, Sharp, and Tovey [28], Sethi and Chand [30]), its qualitative properties in 

discrete case are still unclear. Even the question whether TC delays or speeds up the optimal 

replacement is still debated (compare Bethuyne [3] and Rogers and Hartman [29]). Bethuyne [3] 

applies a necessary extremum condition to his continuous model and derives an equation for the 

optimal assets lifetime. However, his model assumptions are different from ours and lead to the 

conclusion that the optimal assets lifetime increases under TC (that contradicts our Property 3). A 

similar paradox is obtained in a discrete replacement model by Cheevaprawatdomrong and Smith 

[9] and analyzed by Hritonenko and Yatsenko in [18]. Rogers and Hartman [29] show that the 

optimal lifetime of assets decreases under more intensive TC for both exponential continuous TC 

and the discontinuous TC in the form of technological breakthroughs (the same is stated in 

Property 3).  

A discrete model of serial replacement closely related to the present paper is constructed by 

Regnier, Sharp, and Tovey [28]. They consider the case of different TC rates in the operating cost 

and machine price and show that it leads to the variable optimal lifetime. In particular, it is 

proved that the optimal lifetime decreases when the machine price decreases faster than the 

operating cost, and inverse (see our Property 1). 

One can expect the optimal lifetime L*={Lk
*, k=1,…,NT} in the discrete model to be close to the 

solution L*(t), t∈[0,T], of the continuous OP (13)-(17) for small η. The following result states 

that if the OP (13)-(17) solution is integer-valued, then both solutions coincide.   

Theorem 5. Let the continuous OP (13)-(17) has a unique solution (m*, L*). If the functions m* 

and L* are piecewise–constant: 
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         m*(t) = mk
*,   L*(t) = Lk

*,   t∈ [tk-1, tk]=[η(k-1), ηk],    k=1,…,NT,    η=1/N,         (32) 

and such that mk
*N∈IIII and Lk

*N∈IIII, then {mk
*}, { Lk

*}, k=1,…,NT, is a solution of the equivalent 

discrete OP (8)-(11) obtained from the OP (13)-(17) at ρ = re− , Sjk = 0, and  

         

.,...,1     ,,...,1 

  ,),(       ,)(

0

 

)1( 

 

)1( 

 

)1( 

NTkNTNLj

dtdtQQdttΠΠ
j

j

k

kkj

j

jk

=+−=

== ∫ ∫∫ − −−

η

η

η

η

η

η
ττ

                (33) 

Proof. The discrete OP (8)-(11) is obtained from the continuous OP (13)-(17) when the unknown 

functions L(t), m(t), t∈[0,T], are piecewise-constant on the elementary intervals [tk-1, tk], 

k=1,…,NT. Then the substitution of (32) into expressions (13) and (17) leads to formulas (33) for 

the given machine maintenance cost Q(τ,t) and price Π(t). The set ΩΩΩΩI of the piecewise–constant 

admissible OP solutions (32) is a subset of the domain ΩΩΩΩ of all admissible OP solutions: ΩΩΩΩI⊂ΩΩΩΩ. 

Therefore, under condition (33) the optimal (minimal) value J* of functional (9) cannot be smaller 

than the optimal value I* of functional (17), I*≤ J*. In the case (32), we have I*=J*, hence, the 

values (32) deliver a solution of the discrete OP (8)-(11),(33). The theorem is proved.      � 

Now, we can apply the results of Section 4 about the VCM (13)-(17) to the discrete models (1)-

(7) and (8)-(11). Next subsection considers a special case of the discrete model (1)-(7), when an 

exact solution of the equivalent continuous OP can be constructed and is integer-valued.  

Unlike the majority of previous works that describe the serial replacement under TC, our discrete 

model considers the parallel replacement. It allows us to observe the clustering effect and cluster 

splitting under TC.  

  

6.1 Geometric TC and geometric deterioration  

The geometric TC means that the maintenance cost Qkj at a fixed age k-j and the equipment 

acquisition cost Πj drop by constant factors Cq and Cp after each time period: 

                     Πj = CpΠj-1,      Qkj = CqQ k-1,j-1,       0<Cq<1,    0<Cp≤1                            (34) 

(see, e.g., Cheevaprawatdomrong and Smith [9], Regnier, Sharp, and Tovey [28]). Routine 

calculations show that (34) corresponds to the exponential TC (24) at cp=−ln(Cp) and 

cq=−ln(Cq) in the continuous model. Indeed, comparing (6) and (17) at t=j , we obtain that  
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∫ , hence Πk= pce− Πk-1 and Cp= pce− . Analogously, Cq 

= qce− . Regnier, Sharp, and Tovey [28] also confirm that their discrete geometric TC model is 

similar to the continuous negative exponential TC.  

      The geometric deterioration means that the maintenance cost Qkj increases by a constant 

factor Cd when the age j-k of a machine in service increases by 1 :  

                               Qk,j+1 =CdQk,j ,        Qk,j =CdQk-1,j ,       Cd≥1.                                   (35)  

It corresponds to the exponential deterioration (25) at cd =ln(Cd) in the continuous model. 

When the TC rates in the operation cost and the purchase price are the same, cp=cq, then by 

Theorem 2 the (long-term) optimal lifetime is constant and determined by equation (26). We 

consider this case to illustrate the presence and nature of clustering. 

Let r=0.1, cq=cp=0.03, cd =0.05, Q0=1, and Π0 =2.55 in the continuous model (13)-(17). It 

corresponds to ρ≈0.9048, Cq=Cp≈0.9704, Cd≈1.051 in the discrete model (1)-(7). Then, by (26), 

the long-term optimal lifetime is L
~ ≡8, t∈[0,∞), in the continuous model. By Theorem 5, the 

lifetime L
~ ≡ 8 is also optimal in the discrete case if the corresponding replacement amounts are 

integer. The complete dynamics of the optimal replacement is analyzed below in several 

examples. Let the machine number be P=8. 

Example 1 (no transition dynamics). If there is no machine older than 8 years at time t=0, then 

we can choose the matching initial condition L0=8, and µ=0 by Theorem 1. Then:  

• If the initial machine distribution {mk
0} is flat, mk

0=1, k=-7,…,0, then the optimal 

replacement is determined by (5) as mk = mk-8 =1, k=1,…,∞. 

• If the initial distribution {mk
0} is uneven, then the optimal replacement reproduces it 

through the infinite horizon (replacement echoes). For example, if 

   mk
0=0, k=-7,-6,-5,-4  and  mk

0=2, k=-3,-2,-1,0,   

 then by (5)    
88,87,86,85  if   2

84,83,82,81  if  0
8





++++=
++++=

== − kkkkj

kkkkj
mm jj  ,   k=1,…,∞. 
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No clustering appears in this case. 

Example 2 (clustering during transition dynamics). In this case, some machines are older than 

the long-time optimal age at time t=0. Let L0=10, mk
0=2, k=-9,…,-5, and mk

0=0, k=-4,…,0. Then 

the machines purchased at k=-9,-8, are older than the optimal age L
~ ≡8 and should be replaced as 

soon as possible. Formally, we can choose mmax=6 in the OP (13)-(17), then L* (t) decreases from 

L* (0)=10 to L* (1)=8, the transition dynamics period [0,µ] is [0,1], and  

         

)]1(8,38[          ,0

]38,18[             ,2

]18,8[                 ,6

)(*









++∈
++∈
+∈

=
kkt

kkt

kkt

tm  ,               k=1,…,∞,       

in the continuous OP. By Theorem 5, (L* , m*) also delivers a solution to the discrete OP (1)-(7). 

The optimal replacement during the first replacement period is determined by formula (5) as 

∑
−

−=
=

8

10
1

j

jk
kmm = m-9 + m-8 + m-7 = 6,    m2  = m0

2-8 = m0
-6 = 2, and mk = m0

k-8 = 0,    k=3,4,5,6,7,8. 

So, the machines m-9, m-8, and m-7 are combined into a cluster of 6 machines during the first 

replacement. Later, this cluster is repeated indefinitely as : 

          

,88,...,83  if  0

,82      if           2

,81      if           6

8









++=
+=
+=

== −

kkj

kj

kj

mm jj       k=1,…,∞. 

The optimal replacement policy is  

{2,2,2,2,2,0,0,0,0,0};6,2,0,0,0,0,0,0,0,0;6,2,0,0,0,0,0,0,0,0;6,2,0,0,0,0,0,0,0,0,… 

So, the clusters naturally appear even in the case of constant asset lifetime because of the “non-

optimal” initial distribution of the equipment. No cluster splitting occurs, so, the no-splitting rule 

is valid in the case of the constant lifetime.   

If the TC rates in the operation cost and the purchase price are different, cp≠cq, then the optimal 

assets lifetime is not constant and decreases or increases depending on the sign of cp-cq. A similar 

result has also been proved for a discrete serial replacement model by Regnier, Sharp, and Tovey 

in [28]. Such a case is analyzed below. 
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6.2 Increasing optimal lifetime of assets  

Now we assume that the deterioration and the TC in operating cost are exponential but the TC in 

purchase price is not. Namely, let r  =0.1, cq=0.04, cd=0.04, Q0=1, and  

                                  Π(t) = 13.77 +  4.12 te 1.0−  −  16.67 te 04.0−                                   (36) 

in the continuous model (13)-(17) (Π(t) monotonically increases from Π(0)=1.22 to 

Π(∞)=13.77). Then the (long-term) optimal lifetime of machines replaced at t is  

                                         L
~

(t)=t/2+4,             t∈[0,∞),                                                 (37) 

which can be verified by the direct substitution of r, cq, cd, Q0, (25), and (36) into equation (20). 

Correspondingly, [t− L
~

(t)]-1 = 2t+8 in (20) and the future lifetime of machines bought at t is 

L̂ (t) = [t− L
~

(t)]−1−t = t+8. The optimal lifetime L̂ (t) doubles every replacement period: 

L̂ (0)=8, L̂ (8)=16, L̂ (24)=32,  L̂ (56)=64,  L̂ (120)=128, and so on. 

Let P=4. Then L0=4, hence, by Theorem 2, there is no transition period, µ=0, and the exact 

solution of the continuous OP is  

                       L*(t) = t/2+4,        m*(t) = m*( t/2− 4)/2,     t∈[0,∞).                           (38)  

While (38) is not integer–valued, it shows the trend of optimal replacement. If we apply the rule 

(38) to the discrete model, we can choose an ε-approximate optimal lifetime as Lj = j/2+4, 

j=1,…,∞, and determine the corresponding replacement amounts. Let the initial machine 

distribution {mk
0} be concentrated around the point k=-3:  

        




−∈
−−∈

=
]0,3[         ,0

),3,4[        ,4
)(0

t

t
tm       

or, in the terms of discrete model, at the point k=-3:  m-3
0=4  and m-2

0=m-1
0=m0

0=0. Then, by (38), 

the optimal replacement will be 

       
8,7,6,5,4,3  if   0

      2,1       if   2
2/





=
=

== − j

j
mm

jLjj   

during the first replacement interval, 
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16,...,5     if   0

4,3,2,1     if   1
8





=
=

=+ j

j
mj   

during the second replacement interval, and fractional machine replacements after.  

Therefore, the optimal replacement policy is  

{4,0,0,0}; 2,2,0,0,0,0,0,0; 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0;… 

So, the initial cluster of 4 machines is split into two “two-machine clusters” during the first 

replacement and into four “one-machine clusters” during the second replacement. Next, the 

splitting pattern continues in the continuous model.   

Thus, the cluster splitting is possible in the continuous model in the case of the increasing asset 

lifetime. Hence, the no-splitting rule is not valid in the general case of replacement under TC with 

the given demand. To obtain a similar result in the discrete model, we need to relax only one 

assumption about integer-valued lifetime of the equipment. 

 

 

7 Conclusion 

In this paper, we have established new relationships between the discrete-time equipment 

replacement models and continuous-time vintage capital models (VCMs). These models describe 

the same production process but use different mathematical tools. The comparative analysis of 

these two approaches provides a new insight into some open issues of equipment renovation.  

1. We have analyzed the parallel machine replacement under the general continuous TC when 

the economic interdependence is caused by the capacity demand constraints and, possibly, capital 

budgeting constraints. This case is well explored in the corresponding continuous VCMs. Then, 

the optimal machine lifetime is separated from the optimal investment amount, is determined by a 

nonlinear integral equation, and does not depend on the economy scale. The corresponding 

optimal investment amount depends on the initial distribution of the machines. In the special case 

of the exponential TC, new analytic formulas and qualitative rules for the optimal machine 

lifetime are provided.  
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2. The no-splitting rule, earlier established by Jones, Zydiak, and Hopp [22] for the equipment 

replacement in stationary environment, is valid when the optimal equipment lifetime is constant. 

It is shown that the machine clusters naturally appear because of the non-optimal initial 

distribution of machines. In the case of an increasing optimal equipment lifetime, the possibility 

of cluster splitting is demonstrated in the continuous model. 

3. A more challenging and interesting case arises when several technological alternatives exist for 

possible replacement of a machine [5, 7]. This case has been investigated in discrete settings in 

[5] and in continuous vintage settings in [19, 20, 36]. The corresponding discrete-continuous 

analysis similar to the one provided in this paper would be helpful in choosing the optimal 

technological parameters of the replaced machines.  

4. Management applications discussed in this paper can lead to new open problems in the VCM 

theory. The models can incorporate a stochastic behavior of external prices and technology. An 

interesting issue is to assume random equipment failures in the discrete equipment replacement 

models, derive and analyze the corresponding integral equations for optimal equipment lifetime. 

It will lead to other types of technology dynamics Q(τ,t), Π(τ), different from the exponential 

TC. In particular, the shape of the deterioration factor Qd(t-τ) in (24) can be non-monotonic and 

reflect various failure distributions (Weibull, “bathtub”, and so on). Another important case 

occurs when every replacement involves an additional fixed cost that introduces the economy of 

scale. The dynamics of the optimal equipment lifetime in such cases is an open problem. Finally, 

while the optimization with a linear utility function is a common choice in the equipment 

replacement management problems, it is interesting to consider the case of concave utility that 

describes a risk adverse decision-making behavior under uncertainty.  
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