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Abstract 
 

This paper examines a three-stage model of divisionalization where, first, two parent 
firms create independent units, second, the parent firms allocate cost reduction levels 
over these units, and third, the resulting units compete in a Cournot market given their 
current costs of production. The introduction of the cost reduction phase is shown to 
reduce the incentives toward divisionalization severely, relative to other existing 
models. Namely, the scope for divisionalization in equilibrium reduces as the 
marginal cost of the cost reducing investment decreases, and eventually vanishes. A 
second-best welfare analysis shows that, for any given market structure, the 
equilibrium investment decisions of the parent firms are socially optimal. In addition, 
to no divisionalization outcome is sustainable in equilibrium only if it is socially 
optimal. 
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I. INTRODUCTION. This paper deals with divisionalization, i.e. the practice

pursued by a parent firm of dividing its production among a number of competing

units. Many recent studies argue that a major incentive for divisionalization is the

commitment effect it generates toward a relatively large output on the part of the

parent firm. In this regard, Baye et al. (1996) show that if the cost of creating a new

division is small, then each firm forms autonomous units in equilibrium. This fact

seems to work against the conventional rationale that increasing competition is detri-

mental to firms, while provides a strategic ground for thinking about the diffusion

of such procedures as divisionalization, franchising and divestiture. A comparable

issue relates to the point made by Salant et al. (1983) that exogenous mergers in a

Cournot market may not be profitable to the merging firms to the extent that the

outsiders react to the merger by expanding too much their production. It is compa-

rable since horizontal mergers can be seen as the inverse action for divisionalization.

In a close spirit, firms bringing to the marketplace several divisions, aim to mimic a

Stackelberg-leader behavior. Even so, this reduces equilibrium profits and increases

social welfare relative to the non divisionalization scenario. In addition, as the cost

of divisionalization gets smaller, the equilibrium aggregate output converges to that

of perfect competition.2

The main finding that firms may choose to enhance product market competition

through divisionalization has proved to be robust to the inclusion of further assump-

tions like product or spatial differentiation.3 Here I consider divisionalization in a

context where two parent firms also decide on the allocation of cost reducing invest-

ments over their divisions. This specification traces back to a traditional look on the

2A similar result is in Corchón and González-Maestre (2000).
3 See, for instance, Ziss (1998) and González-Maestre (2001).
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subject at hand according to which the fundamental effect of divisionalization is in

separating strategic from operational issues.4 In the analysis to follow the strategic

issue is about allocating resources to divisions and lies within the competence of a par-

ent firm, while the operational decision pertains to product market competition and

is up to the firm’s units. Formally, I examine the following three-stage game. In the

divisionalization stage, two parent firms simultaneously decide how many divisions to

form. The resulting divisions are ordained to operate in the market as independent

units, while each parent firm acts by the same criterion as a general office which col-

lects the sum of its divisions’ profits net of the cost of divisionalization. In the second

or investment stage, the parent firms simultaneously undertake separate actions, i.e.

one for each of their divisions. An action here is an investment lowering the constant

marginal cost of the respective division. The parent firms allocate investments over

units in order to maximize their divisions’ aggregate (non cooperative) profit net of

the investment cost. Finally, in the market stage, all the divisions created in the first

stage engage in Cournot competition, given their actual marginal costs.

The investment problem faced by a parent firm in stage two is clearly reminiscent

of that addressed by a precompetitive cartel allocating investments over its mem-

bers, and extensively analyzed by d’Aspremont and Jacquemin (1988), Kamien et al.

(1992), Amir et al. (2003), and many others in the literature on R&D joint ventures.

In this case however, and unlike the standard framework for the mentioned line of

research, the strategic interaction in the investment phase is not completely collusive,

postulating collusive behavior only for those divisions headed by the same parent com-

pany, while displaying competition between those others relating to different firms. A

second, relevant difference is that while precompetitive cartelization is usually meant

4See, for instance, Tirole (1988) and the references therein.
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to involve firms already active in an industry, the first stage divisionalization process

considered here is fundamentally one of firm creation. More specifically, the present

setting should not be rephrased in terms of two-joint venture oligopolistic competi-

tion with endogenous number of members, since the more appropriate way to model

the latter would probably describe a problem of coalition formation between a given

number of existing firms.

The introduction of the investment phase into a standard model of divisionaliza-

tion alters the incentives for firms to form divisions. As summarized in the central

result of this paper, the ultimate action of it is to discourage divisionalization severely.

The first and immediate effect of embarking in the cost reducing investment is that

the overall cost of creating independent units gets a rise equal to the total expenditure

borne by the parent firm in stage two. The above, however, turns out not to limit

firms’ divisionalization decisions. On the contrary, the scope for divisionalization is

shown to increase the larger the marginal cost of the investment. This seemingly coun-

terintuitive statement is entirely in line with a second, decisive effect of investment in

this model. By lowering the marginal cost of each firm’s independent units, investing

in stage two makes the competitive effect of starting a new division stronger, either

because this division will operate at a low marginal cost, or because it will engage in

market competition with very fierce rivals. When the cost of investment is relatively

small and hence at least some of a firm’s divisions achieve a large cost reduction level,

this inhibits the process of division creation. The analysis is separated in two parts

according as to whether the best response of a parent firm in stage two involves a

symmetric or asymmetric investment allocation over units. For the symmetric case, I

show that there exists a unique symmetric equilibrium (and possibly other asymmet-

ric ones) and that the latter sometimes involves no divisionalization, even when the
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cost of creating a new division is equal to zero. For the asymmetric case the result

is more striking. Given an upper bound on the number of competing divisions, there

exists a unique equilibrium, always involving no divisionalization, whatever the cost

of divisionalization is.

This study also conducts a welfare evaluation of the industry performance for the

symmetric case mentioned above in terms of second-best criterion, i.e. conditional on

the third-stage Cournot equilibrium. I first consider a given market structure, that

is a given number of divisions, and show that the equilibrium level of cost reducing

investment in stage two is socially optimal. This does not imply that the industry

selects the socially optimal amount of investment when the number of divisions is

endogenously determined at the equilibrium of the first stage. As a second step,

however, I focus on the no divisionalization scenario and argue that the latter is

sustainable as equilibrium of the whole game only if it is socially optimal.

The paper proceeds as follows. Section II presents the model, sections III.a and

III.b deal with the cases of symmetric and asymmetric allocation of cost reductions

over divisions, respectively. Section IV explores welfare issues, and section V briefly

concludes, with a connection with the mentioned literature on collusive joint ventures

and horizontal mergers. The appendix contains the proofs of the propositions.

II. THE MODEL. I consider the effect of cost reducing investments on the in-

centives for two parent firms, indexed by i = 1, 2, to separate their production over

independent units. Accordingly, the remainder of this study examines a three-stage

oligopoly game with the following timing structure. In the first stage, parent firm i

decides on the number δi of own divisions to bring to the market. Creating a new

division has a constant cost of c > 0, which is common to both firms. The result-
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ing divisions operate as independent profit maximizer units, selling an homogeneous

product in a market with linear demand P (Q) = a − Q, where Q =
2S
i=1

δiS
j=1

qij is

total output and qij denotes the output of division ij, i.e. the jth division of firm

i. Divisions are ex ante identical in that they share the same technology with ini-

tial constant marginal cost m. I assume both a > 2m and (a−m)2 > c.5 In the

second stage however, parent firm i selects a vector xi ∈ [0,m]δi of cost reductions,

one for each of its divisions, so that the effective marginal cost of division ij becomes

mij = m−xij . The cost of obtaining xij is γ x
2
ij

2 , γ > 0, reflecting decreasing returns in

the cost reducing activity. In the third stage, the divisions created in stage one engage

in Cournot competition, given their effective production costs. Let θij = (a−mij).

The profit of division ij is written πij = (θij −Q) qij . The profit of parent firm i is

equal to the sum of its divisions’ profits net of the costs of both divisionalization and

cost reducing investments. Namely, πi =
δiS
j=1

�
πij − γ

x2i.j
2

�
− cδi.6 Since I examine

subgame perfect Nash equilibria (SPNE), I solve the game by going backward from

the third to the first stage.

Stage three is a k-division Cournot oligopoly, with k = δ1 + δ2. Division ij solves

the first order condition θij − Q − qij = 0. Summing the latter over divisions gives

Q =
2S
i=1

δiS
j=1

θij/ (k + 1), along with the equilibrium quantity and profit of division ij,

5These assumptions are standard. The former ensures that in the case where the two parent firms
decide to form only one division each, both divisions find it profitalbe to operate in the equilibrium
of the market subgame. The latter is sufficient to ensure that the equilibrium in the divisionalization
stage is interior.

6The game at hand extends the divisionalization game proposed by Baye et al. to encompass cost
reducing investments. In this respect, the cost reducing technology in stage two is the same as in
the model of d’Aspremont and Jacquemin, with the exception of a zero spillover rate.
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equal to

qcij (xi, xz) = max


(k + 1) θij − 2[

i=1

δi[
j=1

θij

 / (k + 1) , 0
 and πcij (xi, xz) = q

c
ij
2,

(1)

respectively, with i = 1, 2, i 9= z.

In stage two, parent firm i chooses xi in order to maximize the sum of its divisions’

profits conditional on the Cournot equilibrium in the market phase. As specified in

recent studies on R&D joint ventures, a crucial issue here is whether the optimal

allocation involves identical or different cost reduction levels over divisions. As a

preliminary step, following Salant and Shaffer (1998),7 I address this point by look-

ing at the case where for any pair ij and ih of firm i’s divisions, the respective cost

reduction levels xij and xih vary so that their sum remains constant, equal to w,

provided the level of cost reduction of all the other divisions is left unchanged. Let

Ri (xi, xz) =
δiS
j=1

�
πcij (xi, xz)− γ

x2ij
2

�
denote the revenue of firm i, net of the invest-

ment cost but gross of the cost of divisionalization. For given w and xz, then Ri can

be seen as a function of xij only, i.e.

Ri (xij) =
�
k(a−m+xij)−(w−xij)−F

k+1

�2
+
�
k(a−m+(w−xij))−xij−F

k+1

�2
−γ((w−xij)2+x2ij)

2 +H,

(2)

where F and H are constant terms. Since divisions are ex ante identical, Ri is

symmetric along the path of identical cost reductions. In addition, since Ri is smooth,

any interior cost reduction profile with xij = xih is a local extremal point of Ri (xij).8

7Also see Amir and Tesoriere (2007 a,b). Van Long and Soubeyran (2001) propose to apply their
results on this regard to a model where the sole incumbent in an industry decides first how many
divisions to create and then on the allocation of a cost reducing capital to them. Finally, a potential
entrant decides whether to enter or not and with how many divisions. This setup is close enough to
the present one, but it does not consider duopoly and rather focuses on the investment stage, leaving
open the question of determining the equilibrium number of divisions.

8To see that, notice that by symmetry of Ri, any feasible reallocation of cost reductions on a
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So, the profile of interest is a maximum if Ri, evaluated at it, is strictly concave. From

(2), it follows that d2iRi(xij)

dx2ij
< 0 if and only if γ > 2. When the latter is satisfied, Ri

is strictly concave along any feasible locus of sum preserving cost reductions. This

is a sufficient condition for the optimal allocation to be symmetric, since it means

that, for any pair of firm i’s divisions, any feasible asymmetric cost reduction profile

is strictly dominated by the symmetric one lying on the sum preserving locus passing

through it. Analogously, when γ < 2, Ri is strictly convex.9 This gives the following

result.

Lemma 1: (a) If γ > 2, then the best response of parent firm i to a cost reduc-

tion allocation xz of parent firm z involves the same level of cost reduction for each

division. (b) If γ < 2, then the best response of parent firm i involves a vector of cost

reductions lying on the boundary of the feasible set [0,m]δi .

Proof: (a) The result follows from the discussion above. (b) Since Ri is strictly

convex, any interior pair of cost reductions xij and xih is dominated by the two

boundary profiles lying on the sum preserving locus passing through them. Since the

best response is well defined, it must involve a boundary profile of cost reductions.

The previous lemma allows to separate the analysis of stage two in two cases. This

is done in the following section.

III.a. SYMMETRIC COST REDUCTIONS. Assume γ > 2. Then, from

Lemma 1, in stage two, firm 1 maximizes the sum of its divisions’ profits net of

the investment costs under the constraint of identical cost reductions, taking the

w-isosum locus of the form xij + ε and xij − ε, would give parent firm i the same profit, for any ε.
9Hence γ < 2 is necessary for the optimal allocation to involve asymmetric cost reductions. I do

not consider the zero measure case γ = 2, where Ri is flat along any sum preserving locus.
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investment decision of firm 2 as given. The latter amounts to solving

max
x1 ≤ m

R1 (x1, X2) = δ1

 (δ2+1)(a−m+x1)−
δ2S
j=1

θ2j

δ1+δ2+1


2

− δ1
γ(x1)

2

2

 , (3)

where X2 =
δ2S
j=1

x2j . Let x∗1 (X2) =
2(a−m−X2)(δ2+1)

γ(1+δ1+δ2)
2−2(1+δ2)2 denote the unique root of

∂R1(x1, X2)
∂x1

, and let fx1 (X2) = max {0 , x∗1 (X2)}. Since R1 is strictly concave,10 the
reaction function of firm 1 in the investment stage is continuous and single valued

and is given by

r1 (X2) = argmax {R1 (x1,X2) : x1 ≤ m} = min {fx1 (X2) , m} , (4)

and analogously for firm 2. From (4) one obtains that stage two has a unique and

symmetric equilibrium xNi (δi, δz) =
2(a−m)(δz+1)

γ(1+δi+δz)
2−2(1+δz) , i = 1, 2, i 9= z.

11

I can finally consider the divisionalization decision of firm 1 which, in stage 1,

selects δ1 conditional on the stage-two equilibrium
�
xN1 , x

N
2

�
, in order to maximize

its profit, taking δ2 as given. Substituting xN in Ri defined in (3) allows to write the

maximization problem at hand as

max
δ1

π1 (δ1, δ2) =
δ1[
j=1

R1 (δ1,δ2)− cδ1

 , (5)

which has an analogous counterpart for firm 2. Since the Cournot equilibrium of the

market stage and the Nash equilibrium of the investment stage are both unique, every

10 In fact ∂2R1
∂x21

< 0 if and only if γ > 2 δ22+2δ2+1

(δ1+δ2+1)
2 . Concavity follows from

δ22+2δ2+1

(δ1+δ2+1)
2 < 1.

11Uniqueness follows in the usual way from a contraction argument, given the linearity of r (.) and
the fact that r�1r

�
2 < 1 (globally) can be checked to hold whenever R (x) is concave. Further, it is

interesting to compare (1) and (4). This shows that at the equilibrium both parent firms are active
in the product market. Finally, it can be shown that a sufficient condition for xN to be interior, i.e.
for xN ≤ m, is γ > 4

9
a
m
, which is assumed in the remainder of this section- see Proposition 1 below.
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Nash equilibrium of the game with the above payoff leads to a SPNE of the whole

three-stage game. So, for the sake of brevity, in the remainder of the section I will

mention the Nash equilibrium of the divisionalization stage only. For the framework

discussed here, the main result is summarized by the following proposition.

Proposition 1: Assume γ > max
�
2, 49

a
m

�
. (a) The divisionalization stage has a

unique symmetric Nash equilibrium where each parent firm creates the same number

of divisions δe. (b) There exist γ∗ > 2, and a decreasing function w(γ), such that if

and only if either γ < γ∗ or γ ≥ γ∗ and (a−m)2
c < w(γ), then δe = 1.

A proof is given in the appendix, together with the definition of both γ∗ and w(γ).

Here no divisionalization means that in equilibrium each parent firm brings to the

product market just one unit.12 The latter occurs if both the extent of the market and

the marginal cost of the investment are small relative to the cost of divisionalization,

i.e. (a−m)2
c < w(γ). In fact a very small γ, i.e. γ < γ∗, suffices independently of c.

This is of some interest since it departs from the analogous result for the standard

case in the mentioned paper by Baye et al., according to which firms create multiple

divisions in equilibrium if divisionalization costs are low enough. In that case, when

c tends to zero, the equilibrium number of divisions increases without bound and

the equilibrium output converges to that of perfect competition. Now, note that for

the model here Cournot aggregate output increases in δ13 and that xNi tends to zero

12 In this section I am treating the number of divisions as a continuous variable. As shown in
the proof, the result depends on the first derivative of a parent firm’s payoff with respect to the
number of divisions, evaluated along the diagonal, being negative at δ = 1. See Baye et al. This is
an equilibrium since staying out of the market would give the parent firms zero profit, while overall
Cournot profit with optimal investment choices and two firms is positive.
13Notice that unlike a standard one-shot Cournot game as analyzed by Amir and Lambson

(2000), here increasing the number of divisions affects the equilibrium investment choices of par-
ent companies and in turn their units’ marginal costs. Total output as a function of k is written
kqc (k, x) = k a−m+x

k+1
. Substituting xN for x and taking derivatives with respect to k yields dkq

c(k)
dn

=

γ(a−m)(n2+(γ−2)(n+1)2)
(γ(n+1)2−(n+2))2

> 0.
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as δ tends to infinity. Thus convergence to perfect competition, that is to marginal

cost pricing, is an issue even in the presence of fixed (investment) costs. However,

following the same argument reported in the proof of Proposition 1, one establishes

that with zero divisionalization costs the equilibrium number of divisions remains

finite, provided γ is not too large.14 So the scope for divisionalization reduces with

the ease of obtaining a cost reduction in stage two and vanishes when γ is sufficiently

close to 2, which is the lower bound for the present analysis.

III.b. ASYMMETRIC COST REDUCTIONS. Assume γ < 2. Thus, from

Lemma 1, the best response of parent firm i in stage two involves a cost reduction

profile lying on the boundary of the feasible set [0,m]δi . The latter is consistent with

a symmetric allocation only when each division is given the maximal cost reduction

m, otherwise it implies an asymmetric distribution of cost reductions over units. If

one looks at γ as an index of decreasing returns to investment, an explanation is

that, when this index is low, the inefficiency due to undertaking different levels of the

investment across units is offset by the gain from increasing the market share going

to the more efficient division under Cournot competition.

Now, for the case at hand, the best response in the investment phase is conditional

on (δ1, δ2). This gives room for a number of possible solutions, one for each candidate

equilibrium pair of divisions. The analysis of this case is interesting in itself and

would be relevant at least for the literature on asymmetric joint ventures, but is not

immediate15 and far beyond the scope of this paper. Here, for simplicity, I impose

14One can show that the first derivative of a parent firm’s payoff (relative to δ) evaluated along the
diagonal tends to zero from below when c tends to zero and δ to infinite, provided

�
γ2 − 3γ − 1� < 0,

i.e. γ < 3. 3028. This is sufficient for forming an infinite number of divisions never being a best
response. As an instance, setting c = 0, the Nash equilibrium involves no more than 5 divisions per
firm if γ < 5. 7044, than 4 if γ < 4. 7443, than 3 if γ < 3. 8038, and than 2 if γ < 2. 9023.
15Consider for instance the spectum of solutions for the two firm case in the cartel problem ad-

dressed by d’Aspremont and Jacquemin, as studied in Amir and Tesoriere (2007 b).
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an upper bound of two on the number of divisions available to a parent company.

Moreover, I restrict the study to a region of parameters within which the stage-two

best response calls for asymmetric cost reductions over divisions and, in particular, for

a zero cost reduction level for one of them. The result in this subsection is the following

proposition, where use is made of the definitions: w1 ≡ 3.6667, and w2(γ) ≡ 4
3(2γ−1).

Proposition 2: Assume a
m < min {w1, w2(γ)} and γ ∈ (1.6, 2). In addition,

assume that each parent firm can create at most two divisions. (a) The best response of

parent firm i in stage two to a cost reduction allocation xz of parent firm z, conditional

on δi = 2, involves a zero cost reduction for one and only one division, independently

of δz. (b) The divisionalization stage has a unique and symmetric Nash equilibrium

where each parent firm creates just one division.

A proof is given in the appendix. While Proposition 1 leaves open the possibility

of other (possibly asymmetric) equilibria, in the case of interest no divisionalization is

the only observable outcome, whatever the value of c is. This might not be surprising,

given that γ is taken to be smaller than in Section III.a. However it is interesting, since

it emphasizes the effect of investment in this model. Unlike the case of symmetric cost

reductions, under the assumptions of Proposition 2, deviating from the symmetric

equilibrium, i.e. creating a new unit, reduces the overall investment of the parent

firm.16 This is mainly because the latter internalizes the action of investment on

the new division’s profit, that is negative, so that starting a new division induces

the parent firm to rise the marginal cost of the existing one. This reduces efficiency

relative to the other company and inhibits divisionalization.

16Namely, with symmetric cost reductions, 2xN (2, 1) − xN (1, 1) = 2 (a−m)(γ−2)
(9γ−4)(4γ−1) , while with

asymmetric allocations, xN (1, 1) − xN (2, 1) = 2 (a−m)(7γ−10)
(9γ−4)(8γ−7) . See the proof of Proposition 2 for

details.
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IV. SECOND-BEST WELFARE ANALYSIS. First-best welfare maximiza-

tion mandates that price should be equal to marginal cost. Since in this framework

there are not external effects from the investment activity, the efficient way to obtain

a given cost reduction requires that the necessary investment is undertaken by one

division only. Thus, divisionalization is wasteful, since it would saddle society with

the charge of duplicating the costs of both investment and divisionalization itself.

There should be only one firm active in the market, doing the optimal amount of in-

vestment xw = min
q
a−m
γ−1 ,m

r
, and producing output Qw = a−m−xw.17 As widely

recognized, putting this into practice presents the major problems of restricting access

to the market to just one firm and imposing the marginal-cost rule. A second-best

criterion that considers welfare conditional on the Cournot equilibrium in the prod-

uct market is usually accepted as a more workable standard. This section develops a

second-best welfare analysis of the equilibrium for the case γ > 2 discussed in Section

III.a, under the additional restriction of having at least two firms active in the market.

The latter represents the appropriate benchmark for the no divisionalization scenario.

As argued above, when γ > 2, deviating from an interior symmetric profile of

investments along the sum preserving locus of cost reductions is not privately prof-

itable.18 Since along this locus the sum of firms’ marginal costs is kept constant,

given Cournot competition in the market stage, so is aggregate quantity19 and hence

consumer surplus. It follows that deviating from the symmetric profile is socially

undesirable too. So, in line with Lemma 1, second-best welfare maximization requires

17The cost of xw and c are recuperated by means of transfers.
18From (2) is Section II it is clear that such deviation would reduce industry profits also if the two

divisions of interest were headed by two different parent companies.
19 See Bergstrom and Varian (1985).
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identical cost reductions over divisions. Welfare is then written

W (k, x) =

kqc(k,x)]
0

(P (s)−m+ x) ds− k
�γ
2
x2 + c

�
, (6)

where k is the total number of divisions, qc (k, x) is the symmetric k−division Cournot

equilibrium output produced by each unit, and x is the amount of cost reduction go-

ing to each division. I first consider a given market structure, that is a given number

of divisions k, and address the issue of determining the socially optimal amount of

cost reducing investment xw (k). The first point in this section is that, given Cournot

competition in the market stage, the social value of an extra unit of cost reduction

is proportional to that assigned to it by a parent company when both firms form

the same number of divisions and each division is given the same level of cost re-

duction. This means that for any k, the investment undertaken by the industry at

the equilibrium of the second stage is socially optimal in terms of second-best welfare

criterion. However, the previous statement does not imply that the industry perfor-

mance is socially optimal when the number of divisions is endogenously determined

at the equilibrium of the three-stage game, in view of the fact that xw and xN de-

pend on the socially optimal number of divisions kw and on the equilibrium number

of divisions δe active in the product market, respectively. Since there is no reason for

kw = 2δe to hold, a complete welfare analysis would be in order. Here I limit the

study to assessing the welfare properties of the no divisionalization scenario described

in Proposition 1 above. Unlike under the fist-best standard, here society might benefit

from divisionalization since the equilibrium output kqc (k, x) is increasing in k. This

gain must be offset against the action of k on total profits through both the reduction

of xw (k) and the increase of the total cost of divisionalization c it generates. Let
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(kw, xw) denote the (unique) socially optimal pair of number of divisions and cost

reduction level per division, in terms of the mentioned second-best criterion. This

pair is determined jointly in order to maximize W (k, x). Recall, for clarity, that

xN (k) is the second-stage equilibrium cost reduction level when the total number of

divisions is k, and δe is the number of divisions established by each parent firm at the

equilibrium of the whole game. The second point in the present analysis is that the

no divisionalization scenario is sustainable in equilibrium only if it is socially optimal.

The following proposition summarizes these results.

Proposition 3: (a) Assume γ > 2. For any given k, xN (k) = xw (k). (b) Assume

γ > max
�
2, 49

a
m

�
. δe = 1 only if kw = 2.

A proof is given in the appendix. Notwithstanding the relevance of part (b) of

the proposition, social and private incentives towards divisionalization generally are

not the same. Specifically, as underlined in the proof, there are parameter regions

within which kw = 2 but there is divisionalization in equilibrium. Since xN (k) is

decreasing, at least in these cases, there should be less units operating in the product

market, at a lower marginal cost each. However, part (a) portrays a suitable scenario

for policy issues, suggesting that regulating the number of divisions for each company

in an industry is sufficient to induce the socially optimal outcome independently of

any concern about firms investment decisions. I will briefly return on this in the next

section.

V. CONCLUDING REMARKS. This section concludes the paper with two

remarks. The first relates to R&D Joint Ventures (RJV) by means of a comparison

between the welfare analysis outlined by Proposition 3 and that provided in the

literature on that subject. A RJV is a group of firms which coordinate their cost
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reducing R&D decisions before competing in the product market, in order to maximize

joint non cooperative profit. A primary interest for the mentioned studies on RJV is

the action of precompetitive collusion on social welfare. So these studies have usually

compared the scenario where the n firms active in an industry form a RJV with

that involving noncooperative behavior for the whole of the game. The comparison

is very often concerned with the case of external effects flowing from private R&D

(spillovers). In this regard, Suzumura (1992) argues that if spillovers are sufficiently

large, the fully noncooperative equilibrium R&D level is socially insufficient in terms of

second-best criterion, while the RJV equilibrium R&D level is socially insufficient for

any spillover rate, and that, with zero spillover, the non cooperative R&D equilibrium

level is socially excessive if there is a sufficiently large number of firms in the industry.

A minor comment is that, for the linear case discussed in this article, non coop-

erative R&D in a duopoly with zero spillover is second-best efficient by Proposition

3.20 A more significant annotation is that while full R&D cartelization of the industry

performs poorly independently of the environment, for any given market structure,

competing divisions undertake the optimal investment level. This candidates divi-

sionalization as a preferable system for organizing R&D. A practicable extension of

this research would consider technological disclosure in the form of voluntary or in-

voluntary spillovers in order to appraise R&D divisionalization as a way to internalize

the efficiency effect of sharing knowledge.

The second remark relates to the mentioned link between divisionalization and

horizontal mergers. In light of this connection, and given Propositions 1 and 2, one

would expect that the perspective of undertaking cost reducing investment should

20This encompasses the case depicted by d’Aspremont and Jacquemin. As far as I know this
property is unnoticed in the existing literature.
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alter firms’ incentives in favor of mergers. This would not rely on efficiency effects

as far as marginal costs are constant and there are decreasing returns to investment.

Consider the example made by Salant et al. to illustrate the so called and well known

80% rule, according to which mergers not involving more than this share of industry

output are not profitable: there is an industry where k Cournot competitors share the

same technology and face the same demand as in the framework analyzed throughout

this paper. If h of these firms were to merge, the number of firms would become

k − h + 1. Prior to merging the aggregate profit of the insiders would be hπ (k) =

h (a−m)
2

(k+1)2
, while post merger per firm profit would be π (k − h+ 1) = (a−m)2

(k−h+2)2 . Merger

is profitable for the insiders if and only if π (k − h+ 1) > hπ (k), which is equivalent

to k <
√
h(2−h)−1
1−√h . The latter says that for the merger to happen the number of

firms active prior to the merger must be small relative to the number of insiders. For

instance, if k = 5, then no merger involving less than four firms is profitable. Consider

now the three-stage game where, in stage one, an exogenous number of firms h decides

whether or not to merge, in stage two, the resultant number of firms decide upon a

cost reduction investment in a non cooperative way and in the same manner as a

parent firm in this paper, and, in stage three, these firms compete à la Cournot

with their actual marginal costs. Leaving the details apart,21 if the merger takes

place, given equilibrium investment decisions, then the insider obtain π∗ (k − h+ 1) =
(a−m)2γ(γ(k−h+2)2−2(k−h+1)2)

(γ(k−h+2)2−2(k−h+1))2
, while if they do not merge their aggregate profit is

hπ∗ (k) = h
(a−m)2γ(γ(1+k)2−2k2)

(γ(1+k)2−2k)2
. They decide to merge if and only if π∗ (k − h+ 1) >

hπ∗ (k). Now, the latter is a much weaker requirement than the analogous condition

for the case without investment, provided γ is small. The explanation is analogous to

21 I assume γ > 2k2

(k+1)2
.
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that used for Propositions 1 and 2 above. When the marginal cost of the investment

reduces, the anticompetitive effect of a merger increases. For instance, if k = 5 and

γ = 2 then the merger is profitable if h ≥ 3, while if γ = 1.5 it suffices h ≥ 2. Along

the same line, if k = 10 and γ = 1.7, then any merger is profitable.

Appendix

Proof of Proposition 1.

Assume γ > max
�
2, 49

a
m

�
. Let

γ1 =
2δ3+3δ2+δ

√
(4δ4+12δ3+21δ2+10δ+1)+5δ+2

1+4δ+4δ2
,

γ2 = 2
3δ3+4δ2+δ

√
(5+26δ+48δ2+34δ3+13δ4)+6δ+2

4δ3+12δ2+9δ+2
,

and γ3 =
4δ3+6δ2+17δ+δ

√
(13+60δ+124δ2+48δ3+16δ4)+6

3(1+2δ)2
.

(a) I first show that there exists a symmetric Nash equilibrium (SNE) (δe,δe) of

the game with payoff πi (δi,δz), i = 1, 2, i 9= z, as defined in (5). Treating δ as a

real number, let σ (δ) = ∂πi(δi,δz)
∂δi

���
δi=δz=δ

. Since σ (0) = γ(a−m)2+c(2−γ)
γ−2 > 0, if a

SNE exists then it must satisfy the first order condition σ (δe) = 0. Since σ (δ) is

continuous, and lim
δ → ∞

σ (δ) = −c, there exists at least one δ∗ such that σ (δ∗) = 0.

The latter condition is written

(a−m)2 γ Θ (γ, δ) = c
�
γ (1 + 2δ)

2 − 2 (δ + 1)
�3
, (A1)

where

Θ (γ, δ) = γ2
�
1 + 6δ + 12δ2 + 8δ3

�− γ
�
8δ4 + 16δ3 + 26δ2 + 18δ + 4

�
+

4
�
1 + δ3 + 3δ2 + 3δ

�
.
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(A1) implies Θ (γ, δ) > 0 which is equivalent to γ > γ1. Let now ∆ (δ) =

∂2πi(δi,δz)
∂δ2i

���
δi=δz=δ

. More specifically ∆ (δ) = −2 (a−m)2γ2Φ(γ,δ)
(4γδ2+4γδ+γ−2δ−2)4 , where

Φ (γ,δ) = γ2
�
2 + 16δ5 + 64δ4 + 88δ3 + 56δ2 + 17δ

�
−γ �8 + 48δ5 + 112δ4 + 172δ3 + 144δ2 + 56δ�+ 8 + 44δ + 72δ2 + 32δ3 − 8δ4 − 16δ5.
Since ∆ (δ) < 0 if and only if γ > γ2, since γ1 > γ2 if δ > 1, and γ2 < 2 if δ < 1,

it holds that under the first order condition (A1), γ > max {γ1, γ2}, and the second

order condition is satisfied. So (δ∗, δ∗) is a SNE.

To show uniqueness, I demonstrate that σ (δ) has negative slope whenever σ (δ) =

0, so that the latter can occur at most once. Let Ξ (δ) = ∂σ(δ)
∂δ . Since

Ξ (δ) =

2(a−m)2γ(γ2(12δ2+12δ+3)−γ(16δ3+24δ2+26δ+9)+6δ2+12δ+6)−3c(γ(1+2δ)2−2δ−2)2(4γ(1+2δ)−2)
(γ(1+2δ)2−2δ−2)3

−3σ (δ) 4γ(1+2δ)−2
γ(1+2δ)2−2δ−2 ,

and since σ (δ) = 0 implies

3c
�
γ (1 + 2δ)2 − 2δ − 2

�2
(4γ (1 + 2δ)− 2) =

6 (2γ (1 + 2δ)− 1) (a−m)2 γ (6δ+8δ
3+12δ2+1)γ2−(26δ2+4+16δ3+8δ4+18δ)γ+12δ+4δ3+12δ2+4

(γ(1+2δ)2−2(δ+1)) ,

it follows that

Ξ (δ)|σ(δ)=0 = −2 (a−m)2 γ2×
γ2(48δ4+96δ3+72δ2+24δ+3)−γ(32δ5+80δ4+192δ3+196δ2+82δ+12)+(16δ4+64δ3+116δ2+68δ+12)

(γ(1+2δ)2−2(δ+1))4
.

Since the numerator of the right hand side of the previous identity is positive if

and only if γ > γ3, since γ1 > γ3 if δ > 1, and γ3 < 2 if δ < 1, it holds that under the

first order condition (A1), γ > max {γ1, γ3} and Ξ (δ)|σ(δ)=0 < 0. So there exists a
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unique δ∗ such that σ (δ∗) = 0, so that there exists a unique SNE for the game with

payoff as in (5).

(b) Let γ∗ = 2. 1031, and w(γ) = (9γ−4)3
γ(3γ(9γ−4)+2(16−30γ)) . w(γ) is decreasing for

γ > γ∗. Consider σ (δ) defined in (a) above and note that

σ (1) = (a−m)2γ(3γ(9γ−4)+2(16−30γ))−c(9γ−4)3
(9γ−4)3 .

The result follows from the uniqueness of the SNE, the fact that σ (0) > 0, and

the fact that σ (1) < 0 if and only if either γ < γ∗ or γ ≥ γ∗ and (a−m)2
c < w(γ).

Proof of Proposition 2.

Let w1 = 3.6667 and w2(γ) = 4
3(2γ−1). Assume γ ∈ (1.6, 2), am < min {w1, w2(γ)},

and that each parent firm can create at most two divisions.

(a) Consider parent firm 1 and focus on the stage-two investment problem for the

case δ1 = 2. From Lemma 1, the best response to a cost reduction allocation x2

involves a cost reduction profile x1 lying on the boundary of the feasible set [0,m]
2.

Let now eπ1 (x,X2) denote the second stage payoff for parent firm 1 when its first

division is given the maximal cost reduction m and the second one is given the cost

reduction level x. Specifically:

eπ1 (x,X2) =�
ka−(a−m+x)−δ2(a−m)−X2

k+1

�2
+
�
k(a−m+x)−a−δ2(a−m)(a−m)−X2

k+1

�2
− γ

2

�
m2 + x2

�
,

whereX2 =
δ2S
j=1

x2j . Note that
∂eπ1(x,X2)

∂x

���
x=0

= 2
(δ2(a−m)+X2)(1−k)−2ka+(a−m)(1+k2)

(k+1)2
<

0, and ∂2eπ1(x,X2)
∂x2 = 2 1+k2

(k+1)2
− γ < 0, for the parameters of interest. So giving the

second division a positive cost reduction is never a best response for parent firm 1

(and analogously for parent firm 2).
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(b)When making a divisionalization decision at the first stage, either parent com-

pany considers its own payoff conditional on the equilibrium in stage two for the

divisionalization scenario that would obtain, taking the first-stage decision of the

rival as given. I first consider the case where parent firm i has one division and par-

ent firm z has two divisions. At the equilibrium of stage two, xi (1, 2) = 3 a−m8γ−7 ,

xz1 (1, 2) = 2 a−m8γ−7 , and xz2 (2, 1) = 0, the latter due to part (a) above. Equi-

librium profits net of divisionalization costs are πi (1, 2) =
γ(a−m)2(8γ−9)

2(8γ−7)2 − c, and

πz (2, 1) = 2
(5+4γ2−9γ)(a−m)2

(8γ−7)2 − 2c. Second, I consider the case where both parent

firms bring to the market one division only. The equilibrium of stage two is symmetric

with each division obtaining xi (1, 1) = 4 a−m9γ−4 . Profit net of the cost of divisionaliza-

tion is πi (1, 1) = γ (a−m)
2(9γ−8)

(9γ−4)2 − c. I finally consider the case where both parent

firms bring to the market two divisions. The equilibrium of stage two is symmetric

with the two divisions of firm i, obtaining xi1 (2, 2) = 6 a−m
25γ−28 , and xi2 (2, 2) = 0, re-

spectively, the latter due to part (a) above. Profit, net of the cost of divisionalization

for parent firm i is πi (2, 2) = 2
�
(25γ2−59γ+34)(a−m)2

(25γ−28)2 − c
�
. All the above holds for

i = 1, 2, i 9= z. In addition, for the parameters of interest, all the equilibria above

are stable under best reply dynamics, unique, and interior. For the parameters at

hand, it holds that πi (1, 2) > πi (2, 2), πi (2, 1) > πi (2, 2), πi (1, 1) > πi (1, 2), and

πi (1, 1) > πi (2, 1). So the divisionalization stage has a unique and symmetric Nash

equilibrium where each parent company sets δe = 1

Proof of Proposition 3.

(a) Assume γ > 2. Let xN (k) = min
q

(a−m)(k+2)
γ(1+k)2−(k+2) ,m

r
define the cost reduc-

tion obtained by one unit at the Nash equilibrium of the investment stage when the

total number of divisions is k. Also let xw (k) be the socially optimal cost reduction
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level given a fixed number of divisions k, in terms of second-best welfare criterion.

Finally, let other subscripts denote partial derivatives. xw (k) solves max
x ≤ m

W (k, x) =U k a−m+x
k+1

0 (a− t−m+ x) dt − k �c+ γ
2x

2
�
. Since Wxx = k (k+2)−γ(1+k)

2

(k+1)2
< 0, xw (k)

= min {x (n) ,m}, where x (n) is the unique root of Wx. Since x (n) =
(a−m)(k+2)

γ(1+k)2−(k+2) ,

xw (k) = x
N (k).

(b) Assume γ > max
�
2, 49

a
m

�
. Let

g (γ) =
�
12γ (1− 2γ) + 8 �1 + γ3

�
+ 4
s
(4γ + 1) (γ − 2)

� 1
3

.

Also let γ∗ = 2. 1031 and w(γ) = (9γ−4)3
γ(3γ(9γ−4)+2(16−30γ)) . Finally, let (kw,xw)denote

the socially optimal number of divisions and the socially optimal level of cost reduction

for each division, respectively, in terms of second-best welfare criterion, that is, given

Cournot competition in the product market and k ≥ 2. (kw, xw) solves max
x ≤ m, k ≥ 2

W (k, x) =
U k a−m+x

k+1

0 (a− t−m+ x) dt− k �c+ γ
2x

2
�
. For the parameters of interest,

xw (k) = x (n) defined in part (a) above, and the constraint on x is not binding. Treat-

ing k as a real number, let W k (k) denote Wk (k, xw (k)) =
γ(a−m)2(2(γ−2)(k+1)−k2)

2(γ(k+1)2−(k+2))2
−

c. Since W k (k) is continuous, since W k (0) =
γ(a−m)2−c(γ−2)

γ−2 > 0, and lim
k → ∞

W k (k) = −c, there exists at least one k∗ > 0 such that W k (k
∗) = 0. Consider

now dWk(k)
dk = γ2 (a−m)2 3(2−γ)(k+1)2+k3

(γ(k+1)2−(k+2))3
. The latter has a unique root k∗∗, with

dWk(k)
dk 0 ⇔ k k∗∗. So W k (k) ↑ c as k → ∞ and there is only one such

k∗. Let now |H| = nγ2 (a−m)2 3(γ(k+1)
2−k−2)−k(k+3)2

(k+1)2(γ(k+1)2−k−2)2
denote the determinant of

the Hessian of W (k, x), evaluated at x = xw (k) defined above.|H| has unique root

k∗∗∗ (γ) = 1
2g (x) +

2(γ2−2γ)
g(x) + γ − 2. In addition, k∗∗∗ (γ) > 0 for γ > 2 and |H|

0 ⇔ k k∗∗∗. Note now that at k∗ it must be
�
2 (γ − 2) (k + 1)− k2� > 0. The

latter is equivalent to k <
�
γ − 2 +s(−2γ + γ2)

�
. Since

�
γ − 2 +s(−2γ + γ2)

�
−

k∗∗∗ (γ) =
g(γ)

�
2
√
(γ2−2γ)−g(γ)

�
+4γ(2−γ)

2g(γ) , and since the latter is negative for γ > 2,
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|H| > 0 when k = k∗. Finally, Wkk = −3 (a−m+x)2
(n+1)4

< 0. So the Hessian of

W (k, x) is negative definite at (k∗, x∗) and the latter is the unique solution to the

maximization problem at hand. In the case of no divisionalization, k = 2. Now,

signW k (2) = sign
�
(a−m)2

c
(3γ−8)γ
(9γ−4)2 − 1

�
. The right hand side of the previous iden-

tity is negative if and only if either γ < 2.6667, or (a−m)
2

c < (9γ−4)2
(3γ−8)γ . Recall from part

(b) of the proof of Proposition 1 that there is not divisionalization in equilibrium if and

only if γ < γ∗ or γ ≥ γ∗ and (a−m)2
c < w(γ). Since γ∗ < 2.66667 and w (γ)− (9γ−4)2

(3γ−8)γ

< 0 for γ > 2.66667, whenever each firm forms just one division in equilibrium, it

holdsW k (2) < 0. Since the solution of the second-best welfare maximization problem

is unique and interior, and W k (0) > 0, in these cases, it must be k∗ = 2.
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