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Abstract 
 
This paper compares the performance of “aggregate” and “disaggregate” predictors in forecasting 
contemporaneously aggregated vector ARMA processes. An aggregate predictor is built by 
forecasting directly the aggregate process, as it results from contemporaneous aggregation of the 
data generating vector process. A disaggregate predictor is obtained by aggregating univariate 
forecasts for the individual components of the data generating vector process. The necessary and 
sufficient condition for the equality of mean squared errors associated with the two competing 
methods is provided in the bivariate VMA(1) case. Furthermore, it is argued that the condition of 
equality of predictors as stated in Lütkepohl (1984b, 1987, 2004) is only sufficient (not necessary) 
for the equality of mean squared errors. Finally, it is shown that the equality of forecasting 
accuracy for the two predictors can be achieved using specific assumptions on the parameters of 
the VMA(1) structure. Monte Carlo simulations are in line with the analytical results. An 
empirical application that involves the problem of forecasting the Italian monetary aggregate M1 
in the pre-EMU period is presented to illustrate the main findings. 
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1 Introduction

This paper focuses on the issue of forecasting contemporaneous time series aggregates. Our study

is motivated by the practical problem of predicting aggregate economic variables like private con-

sumption in national accounting, which is the sum of individual private consumptions over all

households. Another interesting example is presented by Lütkepohl (2007): the gross domestic

product (GDP) in one year is the sum of private consumption, gross private investment, govern-

ment purchases, and net exports for that year. Assume that we are interested in predicting at the

“macro” level. The main questions we try to answer may be summarized as follows: should we

directly forecast the GDP or should we project its subcomponents and sum the forecasts? Under

what conditions do these two prediction methods deliver equal accuracy?

There are many other relevant cases in virtually every field of economics. Consider Euro-zone

inflation forecasting. As is well known, Euro area inflation (overall index) is a contemporaneous

aggregation along the countries and along the sectors. Therefore, as underlined by Espasa, Albacete

and Senra (2002) and Benalal et al. (2004), several methods can be used to predict this aggregate.

For instance, it is possible to compare forecasts based on the aggregate overall harmonized index

of consumer prices (HICP) and on the main HICP subindexes (energy, unprocessed food, etc.) at

the area-wide level. Alternately, it makes sense to compare predictions based on the aggregate

HICP overall index and on the HICP overall index for each of the Euro area countries.

The problem of forecasting aggregate variables using competitive predictors has been exten-

sively discussed in econometrics. As a consequence, there is abundant literature on the effects of

contemporaneous aggregation on forecasting. This literature has basically followed two related

strands of research: an empirical one and a theoretically oriented one.

On the empirical side, Fagan and Henry (1998) and Dedola, Gaiotti and Silipo (2001) focus

on the informational content of national contributions to model and estimate a money demand

equation for the Euro area. Both papers find that an area-wide equation has superior properties

than equations estimated at the national level. In a different context, Bodo, Golinelli and Parigi

(2000) and Zizza (2002) compare several disaggregate and aggregate predictors of the industrial

production index for the Euro area. Zellner and Tobias (2000) examine the effects of aggregation

in forecasting the median growth rate of eighteen industrialized countries. Espasa, Albacete and

Senra (2002) evaluate a disaggregate approach (by countries and by sectors) in forecasting Euro

area inflation and show that further improvements in forecasting the aggregate can be obtained

by working at the disaggregate level.

More recently, Marcellino, Stock and Watson (2003) consider the problem of forecasting four

Euro area variables (inflation, real GDP, industrial production and unemployment) pooling country-

specific forecasts and directly forecasting the aggregate variables. Baffigi, Golinelli and Parigi

(2004) study the choice of the level of model aggregation in forecasting the Euro area GDP.

Hubrich (2005) compares the precision of forecasting directly the aggregate inflation as opposed

to aggregating forecasts for inflation subindexes. Hsiao, Shen and Fujiki (2005) raise the issue

of whether Japan has a stable money demand function using both aggregate and disaggregate
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data. Sbrana (2008a) focuses on the forecasting accuracy of Euro area and specific national mod-

els in forecasting aggregate money demand. No attempt is made in this introduction to give an

exhaustive survey of all the contributors to the aggregation debate.

Turning to the theoretical papers, the first studies of the aggregation problem date back to

Theil (1954) and Grunfeld and Griliches (1960). Theil shows that using the structural information

at the disaggregate level, it is possible to improve the model specification of the aggregate variable.

On the contrary, Grunfeld and Griliches argue that contemporaneous aggregation is not necessarily

bad if the equations at the disaggregate level are not correctly specified or if the micro data are

subject to large errors. In the context of ARMA and vector ARMA models, other relevant papers

are Rose (1977), Tiao and Guttman (1980), Wei and Abraham (1981), Kohn (1982), Lütkepohl

(1984a, 1984b, 1984c, 1987, 2004), Pino, Morettin and Mentz (1987). Most of the theoretical

results are collected in Chapter 4 of Lütkepohl (1987) and in Section 2.4 of Lütkepohl (2004).

Again, no attempt is made to survey this theoretical literature. We refer to Granger (1990) for a

comprehensive review of several aggregation schemes and special topics relevant in the time series

context. The interested reader can go back to Lütkepohl (1984b, 1987, 2004) and Giacomini and

Granger (2004) for more formal work on contemporaneous aggregation and forecasting.

Our paper is related to this stream of theoretical literature. To gain some insight into our

key focus, let us refer to Wei and Abraham (1981), among others. According to these authors, to

forecast a contemporaneous aggregate of disaggregate variables, predictors can be built from a)

the whole multivariate process, b) the aggregate process or c) the individual components of the

multivariate process. If the data generating process (DGP) is known and no estimation uncertainty

is faced, it has been established in the literature that the approach in a) is optimal, in the sense

that it delivers the smallest forecast mean squared error (MSE) with respect to the methods in b)

and c).1 Intuitively, this is not surprising, since the predictor in a) uses the largest information

set (Lütkepohl, 2004). This result is formally proven by Wei and Abraham (1981) and Lütkepohl

(1984b, 1987).

Notice that most of the papers rank the forecasting approaches in a) and b). Rose (1977), p.

377, is the first to give a necessary and sufficient condition for equal forecasting efficiency of the

two predictors built following a) and b). This condition is provided assuming that the interest is in

forecasting an aggregate of independent ARIMA models and that no problems of identification or

estimation have to be faced. Tiao and Guttman (1980) assume a stationary vector moving average

DGP and state (Theorem 1 on p. 223) a necessary and sufficient condition for equal efficiency of

predictors based on a) and b). The proof of the theorem makes use of linear algebra, and a nice

geometric interpretation of the result is provided. Kohn (1982) specifies a condition under which

forecasts of the aggregate variable drawn from methods in a) and b) are equal in terms of MSE

(see Theorem 1, p. 339), assuming that the DGP is a Gaussian second-order stationary process.

This result is extended to ARMA processes and to the ARIMA case. A procedure to test the

equivalence condition is also illustrated.

However, as noted by Lütkepohl (1987), a multivariate model is more difficult to estimate than

1As noted by Lütkepohl (2007), this result does not necessarily carry over to estimated processes.
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a univariate one, due to the curse of dimensionality. Therefore, forecasting procedures b) and c)

are often used as an alternative to a). That is, in practice, we have two choices about how to

proceed:

1. Forecasting univariately each disaggregate subcomponent (individual component) and con-

temporaneously aggregating these forecasts (disaggregate approach);

2. Forecasting the contemporaneously aggregated variable directly (aggregate approach).

In general, it is unclear which of these two methods outperform the other in forecasting. For

instance, Wei and Abraham (1981) construct an example in which the predictor based on the

contemporaneously aggregated process has lower MSE than the one based on the subcomponents

(individual components) series aggregated into a single prediction for the aggregate variable (see

Example 3 in their paper). Another case is proposed in which the opposite holds true (Example

2). Two exceptions are the already cited Theorem 2 in Lütkepohl (1984b) and Proposition 4.1 -

Corollary 4.1.1 in Lütkepohl (1987), where a necessary and sufficient condition for the equality of

h-step ahead predictors is presented.2 However, in this latter monograph, it is also argued that

whether or not one predictor outperforms the other in terms of MSE “Depends on the structure

of the disaggregate process and the aggregation matrix” (p. 104). To our knowledge, no further

guidelines are given in the literature.

Our primary aim is to compare these two predictive approaches and to assess their relative

accuracy, assuming that the DGP is known and falls in the class of vector ARMA processes.

Clearly, the ranking has to be made on the basis of some metric. In general, the accuracy of a

forecasting model is measured by a forecast error loss function.3 Usually, two competing forecasts

are compared in terms of MSEs. The same criterion is used in the paper: aggregate versus

disaggregate predictors are classified by sorting the corresponding MSEs.

More precisely, this paper aims to reconsider and extend the issue of comparing forecasting

accuracy in ranking aggregate and disaggregate (i.e. based on subcomponents) predictors. First,

we present the necessary and sufficient condition for the equality of MSEs of the aggregate and

disaggregate processes, whenever the data generation process can be expressed as a vector moving

average of order one (VMA(1)). Second, we show that the condition of equality of predictors in

Lütkepohl (1984b, 1987, 2004) is only sufficient but not necessary for the equality4 of MSEs. Third,

we argue that the equality of forecasting accuracy can be achieved by using specific assumptions

on the parameters of the VMA(1) structure. Finally, a Monte Carlo experiment and an empirical

application are used to illustrate the main issues and our findings.

The remainder of the paper is structured as follows. Section 2 briefly defines the econometric

framework, which is broadly based on Lütkepohl (1987). This latter contribution was extremely

2This condition is also reported in Lütkepohl (2004).
3Some popular loss functions are, for instance, the squared error loss function and the absolute error loss function.
4The equality of MSEs between two or more competing methods is the key requirement for equal forecasting

accuracy.
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important in advancing our understanding of issues related to aggregation and forecasting and

inspired much of our work. Section 3 compares in terms of MSE the predictors built on the

aggregate and disaggregate models for a bivariate VMA(1) process. Conditions on the micro

parameters are given for the equality of MSEs. Proofs are gathered in the Appendix. Section 4

presents some simulation results based on a Monte Carlo experiment and gives an assessment of

the forecasting accuracy of the competing predictors. Section 5 contains an empirical application

dealing with the problem of forecasting the Italian monetary aggregate M1 (1948-1998). Section

6 concludes.

2 Two competing predictors to forecast contemporaneously aggregated vector ARMA

processes

In this Section, we introduce the notation that will be used in the rest of the paper and present

the forecasting methods under scrutiny.

Let us assume that the DGP is a k-dimensional stationary stochastic vector xt that can ex-

pressed in Wold MA form as

xt =

∞
∑

i=0

φφφiεεεt−i = ΦΦΦ(L)εεεt, t ∈ Z, (1)

where |φφφ(z)| 6= 0 for z ∈ C, |z| ≤ 1, and εεεt = (ε1t, . . . , εkt)
′ is a vector white noise innovations

sequence with non-singular covariance matrix ΣΣΣε, that is, E(εεεt) = 0, E(εεεtεεε
′

t) = ΣΣΣε and E(εεεtεεε
′

s) = 0

for s 6= t. As usual φφφ0 = IIIk and L is the backward shift operator, such that Lεεεt = εεεt−1.

We focus on contemporaneous linear transformations of xt of the form

yt = Fxt, (2)

where F is an m×k aggregation matrix of full rank m. Notice that if m = 1, the aggregate variable

is a scalar. On the other hand, for m > 1, the aggregate variable is an m× 1 vector. In general,

it has been shown that linear transformations of vector ARMA processes are again vector ARMA

processes (Lütkepohl, 1984a).

Throughout the analysis, we suppose all the processes (including the covariances) are com-

pletely known, whereas in general the orders are unknown and the parameters have to be esti-

mated.

The goal is to forecast the contemporaneously aggregated variable yt in (2). In the previous

section we have explained that this is usually done by forecasting ex-ante the subcomponents

(equation by equation) and summing ex-post the univariate predictions or by predicting directly

the aggregate variable. Formally, the two competing approaches can be built:

1. By making univariate predictions of the individual components of xt in (1) and then by

aggregating them into a single forecast for yt in (2). This is what we call disaggregate

approach, that is to make univariate forecasts first, then aggregate them.
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Denote the univariate Wold representations for the j = 1, . . . , k individual components of xt

in (1) as

xjt =

∞
∑

i=0

θjiwj,t−i = θj(L)wjt, θj0 = 1 (∀j), j = 1, . . . , k. (3)

Also in this case, the parameters of the models for the individual components of xt are a

function of the DGP’s parameters in (1). This will become clearer in the next section. We

can express the whole vector process in matrix form as







x1t
...

xkt






=





















∞
∑

i=0
θ1iL

i 0 · · · 0

0
. . . 0

...
... 0

. . . 0

0 · · · 0
∞
∑

i=0
θkiL

i



























w1t
...

wkt






= ΘΘΘ(L)wt,

where ΘΘΘ(L) := diag[θ1(L), . . . , θk(L)] and wt is a k × 1 vector. Each univariate component

is forecast by using the optimal h-step ahead predictor xukt(h), i.e.

xujt(h) =

∞
∑

i=0

θj,h+iwj,t−i, j = 1, . . . , k, (4)

which is the best linear predictor of xj,t+h with information up to time t (see for instance

Hamilton, 1994, p. 77). Stacking these j = 1, . . . , k forecasts in a vector, we can re-write (4)

as

xut (h) =

∞
∑

i=0

θθθh+iwt−i. (5)

Based on the univariate forecasts in (5), an h-step ahead predictor for yt in (2) may be

obtained as

yut (h) = Fxut (h), (6)

that is taking their sum or another kind of linear transformation induced by the F aggregation

matrix. We define ΣΣΣu
y(h) the forecast MSE matrix of yut (h) in (6),

ΣΣΣuy(h) = E
[

(yt+h − yut (h))(yt+h − yut (h))
′
]

, (7)

that is, the covariance matrix of the forecast error vector. See Lütkepohl (1987), p. 103, or

Pino, Morettin and Mentz (1987), p. 304, for more details.

2. By forecasting the aggregate variable using directly the contemporaneously aggregated pro-

cess in (2). This is the aggregate approach indicated earlier,5 which corresponds to aggregate

5See Man (2004) for a similar approach in the context of temporal aggregation and forecasting.
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first, then forecast on the basis of

yt =

∞
∑

i=0

ψψψivt−i = ΨΨΨ(L)vt, ψψψ0 = Im, (8)

where (8) is a multivariate Wold MA representation and {vt} ∼ WN(0,ΣΣΣv), being ΣΣΣv a

non-singular covariance matrix.

We know that the process in (8) is again a vector MA process of dimension m× 1 after ag-

gregation. The VMA class is in fact closed with respect to linear transformation (Lütkepohl,

2007, Proposition 11.1, p. 435). Moreover, the parameters of the aggregate process yt can

be recovered as a function of the DGP’s parameters in (1).

This prediction approach requires to aggregate ex-ante the k individual components to form

the aggregate process yt. This latter is forecast directly using the optimal h-step ahead

predictor yt(h)

yt(h) =
∞
∑

i=0

ψψψh+ivt−i, (9)

whose MSE is

ΣΣΣy(h) =

h−1
∑

i=0

ψψψiΣΣΣvψψψ
′

i. (10)

See for instance Lütkepohl (2007), p. 434.

Heuristically, it is believed that the prediction built aggregating the forecasts of the individual

components (disaggregate approach) is more efficient than the prediction obtained by forecasting

directly the aggregate process (aggregate approach). For instance, quoting Marcellino, Stock and

Watson (2003), p. 9, “From a theoretical perspective, pooling the country-specific forecasts should

produce lower mean squared forecast errors than directly forecasting the aggregates, provided that

the country-specific models are time invariant, that they are correctly specified, that the model

parameters differ across countries, that there are no data irregularities, and that there are enough

observations, etc. Whether these assumptions are useful approximations in practice, and thus

whether pooled country forecasts or direct forecasts of the aggregates actually work better, is an

empirical question.”

However, as pointed out by Wei and Abraham (1981) and by Lütkepohl (1987), there is no gen-

eral unconditional inequality between the forecasts obtained using the two competing approaches.

According to Lütkepohl (1987, 2004), in fact, the ranking of the predictors in (6) and (9) depends

on the structure of the underlying DGP and on the aggregation matrix. The paper aims to cast

light on this statement.

In the next section we explore and compare the forecasting performance of the aggregate

and the disaggregate (based on the individual components) predictors. To keep things as simple

7



as possible we let m = 1 in (2), that is we assume that the aggregate variable is a scalar. We

remark that our paper focuses on the bivariate VMA(1) process since this represents the benchmark

framework extensively employed by the whole of the aggregation literature (see Wei and Abraham,

1981, Lütkepohl, 1984b, 1984c, 1987, 2007). For a bivariate VMA(1), we provide the necessary

and sufficient condition for the equality of one-step ahead MSEs. Furthermore, we show that

assumptions on the parameters of the DGP can be made to guarantee that the condition of equal

forecasting performance is satisfied.

3 Disaggregate and aggregate predictors for a bivariate vector MA process

We focus on the bivariate framework of a VMA(1). Thus, the DGP in (1) is

[

x1t

x2t

]

=

[

1 + φ11L φ12L

φ21L 1 + φ22L

][

ε1t

ε2t

]

, (11)

where εεεt is a vector white noise innovation sequence, that is, E(εεεt) = 0, E(εεεtεεε
′

t) =

[

1 ρ

ρ 1

]

and

E(εεεtεεε
′

s) = 0 for s 6= t.

In what follows, we are going to express the parameters of the competing predictors as a

function of the parameters of the DGP in (11). We remark that there is no loss of generality to

assume that the variance is one across the innovations. This is done for the sake of simplicity.

All the results in the sequel can be extended to the case of different variances (see Section 5 for

further details).

3.1 The parameters of the disaggregate predictor

Let us start to derive the parameters needed to implement the disaggregate approach, that is to

model and forecast each subcomponent of xt separately, then to form the aggregate forecast. If we

are interested in making univariate predictions for each of the two individual components of (11),

we can re-parameterize the process in (11) as

[

x1t

x2t

]

=

[

1 + θ1L 0

0 1 + θ2L

][

w1t

w2t

]

, (12)

where wt is a zero mean vector process with covariance matrix Ω. The θ1 and θ2 parameters in

(12) can be recovered solving the system of equations:

1 + φ2
11 + φ2

12 + 2ρφ11φ12

2(φ11 + ρφ12)
=

1 + θ2
1

2θ1

1 + φ2
22 + φ2

21 + 2ρφ22φ21

2(φ22 + ρφ21)
=

1 + θ2
2

2θ2
. (13)
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Letting c1 =
1+φ2

11+φ2
12+2ρφ11φ12

2(φ11+ρφ12) and c2 =
1+φ2

22+φ2
21+2ρφ22φ21

2(φ22+ρφ21) , we can re-write (13) as two second

degree equations:

θ2
1 − 2c1θ1 + 1 = 0

θ2
2 − 2c2θ2 + 1 = 0

Therefore we obtain θ1 and θ2

θ1 =
(1+φ2

11
+φ2

12
+2ρφ11φ12)−

√
(1+φ4

11
+φ4

12
+4ρ2φ2

11
φ2

12
−2φ2

11
+2φ2

12
+2φ2

11
φ2

12
−4ρφ11φ12+4ρφ3

11
φ12+4ρφ11φ3

12
−4ρ2φ2

12
)

2(φ11+ρφ12)

θ2 =
(1+φ2

22
+φ2

21
+2ρφ22φ21)−

√
(1+φ4

22
+φ4

21
+4ρ2φ2

22
φ2

21
−2φ2

22
+2φ2

21
+2φ2

22
φ2

21
−4ρφ22φ21+4ρφ3

22
φ21+4ρφ22φ3

21
−4ρ2φ2

21
)

2(φ22+ρφ21) ,

(14)

picking the invertible solution with |θ1| < 1 and |θ2| < 1.

Moreover, since E(w2
1t) = φ11+ρφ12

θ1
and E(w2

2t) = φ22+ρφ21

θ2
, the covariance between w1t and w2t

may be easily calculated from

cov(w1t, w2t) = E(w1tw2t)

= ρ+ φ11φ21 + ρφ11φ22 − ρθ2φ11 + ρφ12φ21 + φ12φ22 − θ2φ12 − θ1φ21 − ρθ1φ22 + θ1θ2 E(w1,t−1w2,t−1),

and is equal to

cov(w1t, w2t) =
(φ11 − θ1)φ21 + (φ22 − θ2)φ12 + (1 − θ2φ11 − θ1φ22 + φ12φ21 + φ11φ22)ρ

1 − θ1θ2
. (15)

As a consequence the Ω matrix is:
[

φ11+ρφ12

θ1

(φ11−θ1)φ21+(φ22−θ2)φ12+(1−θ2φ11−θ1φ22+φ12φ21+φ11φ22)ρ
1−θ1θ2

(φ11−θ1)φ21+(φ22−θ2)φ12+(1−θ2φ11−θ1φ22+φ12φ21+φ11φ22)ρ
1−θ1θ2

φ22+ρφ21

θ2

]

Similar results for the case of a multivariate VMA(1) process with diagonal covariance matrix

ΣΣΣε can be found in Sbrana (2008b).

Within this framework, suppose that F is a (1 × 2) vector of ones.6 To forecast a linear

transformation of the xt process in (12), i.e.

yt = Fxt

a one-step ahead predictor of yt based on univariate components of xt has MSE in (7) equal to

Σu
y (1) =

φ11 + ρφ12

θ1
+
φ22 + ρφ21

θ2

+ 2

(

(φ11 − θ1)φ21 + (φ22 − θ2)φ12 + (1 − θ2φ11 − θ1φ22 + φ12φ21 + φ11φ22)ρ

1 − θ1θ2

)

, (16)

where θ1 and θ2 are given in (14).

6This assumption will be relaxed in Section 5, where results relative to the weighted aggregation, rather than the

simple sum, will be provided.
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Finally, for multi-step ahead forecasts the MSE is

Σu
y(∀h > 1) = (1 + θ2

1)E(w2
1t) + (1 + θ2

2)E(w2
2t) + 2(1 + θ1θ2)E(w1tw2t)

+ 2θ1E(w2tw1,t−1) + 2θ2E(w1tw2,t−1). (17)

We already provide the expressions for θ1, θ2, E(w1tw2t) in (14) and (15). Therefore, only

E(w1tw2,t−1) and E(w2tw1,t−1) are needed to calculate (17). These two cross-moments are not

null and are equal to

E(w1tw2,t−1) =
(1 − ρθ1φ21 − θ1φ22)φ12 − (φ11 − θ1)θ1φ21 + (φ11 − θ1 − θ1φ22φ11 + θ2

1φ22)ρ

1 − θ1θ2

E(w2tw1,t−1) =
(1 − ρθ2φ12 − θ2φ11)φ21 − (φ22 − θ2)θ2φ12 + (φ22 − θ2 − θ2φ11φ22 + θ2

2φ11)ρ

1 − θ1θ2
.

As a consequence, as pointed out by Lütkepohl (1987), p. 102, wt is not a two-dimensional vector

white noise process.

3.2 The parameters of the aggregate predictor

Let us now consider the parameters of the aggregate predictor, which are needed for the aggregate

approach, that is to form the contemporaneous aggregation, then to model and forecast the aggre-

gate process. It may be proven that summing up across j = 1, 2, . . . , k moving average processes

of order qj leads to an MA(q∗) model, where q∗ ≤ max(qj). Therefore, the contemporaneous

aggregation of j = 1, 2 moving average processes of order one is again a moving average of order

one7 as

yt =
[

1 1
]

[

x1t

x2t

]

= (1 + ψL)vt, (18)

with moving average parameter ψ and innovations vt ∼WN(0, σ2
v).

It is possible to obtain the parameters of the contemporaneously aggregated model as a direct

function of the parameters of the VMA(1) in (11). More precisely, the ψ in (18) “implied” by the

model in (11) can be recovered solving the system

E(y2
t ) = (1 + ψ2)σ2

v

E(ytyt−1) = ψσ2
v , (19)

which reduces to the second degree equation ψ2 − 2δψ + 1 = 0, with δ :=
E(y2t )

2E(ytyt−1)
. After some

algebra, this yields

ψ =
2+α2

1+α2
2+2(1+α1α2)ρ−

√
((α1−1)2+(α2−1)2+2(α1−1)(α2−1)ρ)((α1+1)2+(α2+1)2+2(α1+1)(α2+1)ρ)

2(α1+α2+ρ(α1+α2)) , (20)

7We refer among others to Hamilton (1994), pp. 106-107, for proof of this result.
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where α1 := (φ11 + φ21) and α2 := (φ12 + φ22).

Moreover, the variance of the innovations in (18) is

σ2
v =

α1 + α2 + ρ(α1 + α2)

ψ
, (21)

where ψ is given in (20). In this specific case8 the ΣΣΣy(1) matrix in (10) reduces to scalar and

coincides with σ2
v . Therefore a one-step ahead predictor of yt based on the aggregate process in

(18) has MSE equal to σ2
v , whereas as well known Σy(∀h > 1) = (1 + ψ2)σ2

v .

It can also be seen that whenever α1 = −α2 the aggregate process collapses to a white noise

with variance equal to σ2
v = 2(1 + ρ) + 2(1 − ρ)α2

2.

Finally, to show that vt innovations sequence in (18) is white noise, it is enough to note that

E(vt, vt−1) = (α1 + α2) + ρ(α1 + α2) − ψE(v2
t−1) = 0,

on the basis of (20) and (21). In addition, E(vt, vt−j) = 0, ∀j > 1.

3.3 A comparison of the predictors via forecast mean squared errors

We can now try to rank the competing predictors. Notice that so far we have expressed the

corresponding MSEs as a function of the parameters of the DGP in (11). The structure and

the parameter values of the latter determine the accuracy of the forecasting procedures built on

individual components and on the contemporaneously aggregated process.

In particular, when φ21 = φ12 = 0, it is known that Σy(1) = σ2
v ≥ Σu

y(1). In this case, the

approach based on individual components is the best forecasting procedure, and the corresponding

predictor is equal to the optimal predictor built employing the whole multivariate DGP, as shown by

Lütkepohl (1987) in Corollary 4.1.1, case iii, p. 107. This, of course, makes sense: intuitively, if the

basic univariate time series are independent, it is preferable to forecast the individual components

separately and then form a forecast for the aggregate variable (Pino, Morettin and Mentz, 1987).

On the contrary, the more dependent the individual components, the worse the ability of the

disaggregate predictor to forecast the aggregate process.

Moreover, as already found by previous literature, when (φ11+φ21) = (φ12+φ22), the aggregate

approach outperforms the disaggregate one, since it becomes the optimal forecasting procedure.

That is, the corresponding predictor is equal to the predictor based on the whole multivariate DGP

(see Corollary 4.1.1, case i, p. 107 in Lütkepohl, 1987), which is the optimal one. As a result, the

more (φ11 + φ21) 6= (φ12 + φ22), the worse the forecasting ability of the aggregate predictor.

This is evident in Figure A1, which displays the contour and three-dimensional plots of σ2
v

in (21) as a function of the parameters of the bivariate VMA(1) in (11): α1 = (φ11 + φ21) and

α2 = (φ12 + φ22). In both panels, the extra-diagonal element of the covariance matrix of the

innovations ρ is set equal to 0.3.

8Note that (20) and (21) hold under the assumption that σ2
ε1

= σ2
ε2

= 1 in (11).
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[FIGURE A1 ABOUT HERE]

The three-dimensional plot of σ2
v is clearly symmetric across the 45 degree line on the (α1,α2)

cartesian plane, and has its minima where α1 = α2, on the same plane. As we move away from

the 45 degree line, σ2
v increases. This is expected and broadly consistent with previous theoretical

results.

Note that the analytical expression of σ2
v in (21), and its graphical representation, represent

an improvement with respect to previous contributions in the aggregation literature. Intuitively,

it was possible to figure out that σ2
v increases as the difference between the α parameters widens.

However, an exact expression had never been formalized (and visualized) before.

To summarize, in the bivariate framework of a VMA(1), the forecasting performance of the

disaggregate process is based on the level of dependence of the individual components, while that

of the aggregate depends on the distance between (φ11 + φ21) and (φ12 + φ22).

So far, we have provided some intuition behind the performance of a forecasting approach

relative to the other. Based on (21) and (16), it is obvious how to rank the MSEs of the competitive

predictors. In what follows, we provide a condition that guarantees equal predictive efficiency.

Proposition 1 Given the vector process in (11) and the MSEs (21) and (16), the necessary and

sufficient condition for the equality of MSEs of the aggregate process (aggregate approach) and of

the individual components (disaggregate approach) is

α1+α2+ρ(α1+α2)

2+α2
1+α2

2+2(1+α1α2)ρ−
√

((α1−1)2+(α2−1)2+2(α1−1)(α2−1)ρ)((α1+1)2+(α2+1)2+2(α1+1)(α2+1)ρ)

2(α1+α2+ρ(α1+α2))

=

φ11+ρφ12

θ1
+ φ22+ρφ21

θ2
+ 2

(

(φ11−θ1)φ21+(φ22−θ2)φ12+(1−θ2φ11−θ1φ22+φ12φ21+φ11φ22)ρ
1−θ1θ2

)

,

(22)

with α1 := (φ11 + φ21), α2 := (φ12 + φ22) and θ1, θ2 as in (14).

We stress the relevance of Proposition 1, which gives the necessary and sufficient condition

for equal forecasting accuracy delivered by the aggregate and disaggregate predictors.9 First, (22)

is not only a theoretical condition but also a computationally easy rule to rank the predictors

under scrutiny, simply on the basis of the structure of the underlying DGP in (11). Second, and

related to this, all the quantities in (22) are expressed as a function of the DGP’s parameters.

This is important to underline since (22) provides a clear link between the DGP, the aggregate

and disaggregate predictors and their precision. To the best of our knowledge nowhere in the

9In the case under study, it is well known that for multi-step ahead predictions (h > 1) the two procedures deliver

the same forecasts.
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literature is there a similarly straightforward way to determine the accuracy of the aggregate

approach relative to the disaggregate one.

Furthermore, we remark that in (22) the forecast MSE is employed as a measure of predictive

efficiency, as done in most forecasting applications. As already explained by Pino, Morettin and

Mentz (1987), the efficiency of the aggregate predictor relative to the disaggregate can be measured

either by comparing the corresponding forecast errors or by comparing their forecast MSEs. Yet,

it is worth pointing out that the evaluation of forecasting accuracy has almost exclusively been

conducted under the assumption of mean squared error loss functions.10

To interpret Proposition 1, which is a highly nonlinear function of five parameters, it can be

useful to fix some of them, moving the others, and drawing the equality condition. This latter can

be viewed as an implicit function of the form: σ2
v − Σu

y(1) = 0.

[FIGURE A2 ABOUT HERE]

Figure A2 displays three-dimensional and contour plots of σ2
v − Σu

y(1), as a function of the

parameters of the bivariate VMA(1) in (11), i.e., φ11, φ21, φ12, φ22 and ρ. In the plots, two of the

parameters (i.e., φ11, φ22) vary while the other three parameters (i.e., ρ, φ12, φ21) are kept fixed

and set equal to the values reported below each panel.

Some interesting conclusions may be easily drawn from Figure A2. First, from panels (a) and

(b), we remark that as φ12 and φ21 move toward the point (0, 0) in absolute value, the function

values increase, i.e., the performance of the disaggregate predictor is improved. This tendency is

visible by looking at the top panels from the right to the left. This is also evident by looking at

panels (c) and (d), where the level curves are depicted. Second, from a careful look at the contours

sketched in panels (c), we note that for the chosen combination ρ = 0.3, φ12 = 0, φ21 = 0, the

disaggregate outperforms the aggregate predictor across all the displayed region. In particular, the

difference between the MSEs is almost zero close to the α1 = α2 line, and increases steadly as we

move away from the 45 degree line. In panel (d), for the chosen combination ρ = 0.3, φ12 = 0.8,

φ21 = 0.8, the aggregate predictor outperforms the disaggregate in a rather wide region, close to

the α1 = α2 line and on the top left of the graph, where the level curves are negative. As we move

away from the 45 degree line toward the bottom right of the graph, the contours become positive,

and the ranking changes, i.e., the disaggregate outperforms the aggregate.

3.4 An insight on the conditions for equal forecasting efficiency

What has already been given in the aggregation literature (Lütkepohl 1984b, 1987, 2004) is a

necessary and sufficient condition for the equality of the two predictors in (6) and (9). This author

states the following necessary and sufficient condition for the equality of h-step ahead predictors

10If this function of the forecast error is employed, the predictor with the smallest MSE has the best forecasting

record and is the one preferred. For more explanations, see Granger and Newbold (1986).
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based on the individual components and on the aggregate process (Corollary 4.1.1, case ii, p. 107

in Lütkepohl, 1987):

yut (h) = yt(h) ⇐⇒ FΘΘΘ(L) = ΨΨΨ(L)F. (23)

The proof of (23) is provided by Lütkepohl (1987), p. 106.

It is worth discussing the meaning of (23), which is implicitly a condition on the equality of

forecast errors of the prediction methods in (6) and (9). In general, the forecast errors are the

same whenever the linear aggregation of the parameters of the individual components is equal to

the parameter(s) of the aggregate process. In our bivariate framework, for instance, the condition

in (23) reads as:

[

1 1
]

[

1 + θ1L 0

0 1 + θ2L

]

=
[

1 + ψL
] [

1 1
]

.
(24)

It is clear that (24) is in general difficult to meet, since in our bivariate framework it is verified if

and only if θ1 = θ2 = ψ.

To get further insight into (24), it is possible to reaffirm this condition as a function of the

DGP’s parameters, that is, φ11, φ12, φ21, φ22 and ρ. This is done in the following proposition.

Proposition 2 For the VMA(1) system in (11), for any φ11, φ22 and assuming ρ 6= 0, the con-

ditions

φ21 = (φ11 − φ22)

(

1

2ρ

)

φ12 = −φ21 (25)

are sufficient for the equality of MSEs of the aggregate process (aggregate approach) and of the

individual components (disaggregate approach).

Proof. If (25) holds, it can be shown that

θ1 = θ2 = ψ =
(φ11−φ22)2+ρ2

(

4(1+φ11φ22)−

√

((φ11−φ22)2+4ρ2(φ11−1)(φ22−1))((φ11−φ22)2+4ρ2(φ11+1)(φ22+1))

ρ4

)

4ρ2(φ11+φ22)
.

Since θ1 = θ2 = ψ, the equality of the MSEs of the methods based on the aggregate and disaggre-

gate process is guaranteed. �
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However, although (23) is necessary11 and sufficient for the equality of the predictors, it is

sufficient but not necessary for the equality of the corresponding MSEs. This can be easily shown

with a counter-example in the bivariate framework of a VMA(1). Consider the following parameter

values in (11): φ11 = .6, φ12 = −.3, φ21 = .2, φ22 = .4, ρ = .3335. As already illustrated, we can

derive θ1 = .4531, θ2 = .4466 and ψ = .4184. Hence θ1 6= θ2 6= ψ and (23) is not satisfied. On

the other hand, Σu
y(1) = Σy(1) = 2.8681, and therefore the two competing methods have the same

forecasting accuracy. The bottom line is that the equality of MSEs can be achieved under several

circumstances, regardless of the values of θ1, θ2 and ψ.

Here below we provide a sufficient condition for the equality of MSEs that holds in the bivariate

framework of the VMA process in (11). However, as it will become clear shortly, this condition

does not satisfy (23). This is a key result of our work and may be considered a novelty.

Proposition 3 Let us focus on the VMA(1) in (11). For any φ11, φ22 and assuming ρ 6= 0, the

following

φ21 = (φ11 − φ22)

(

1

2
+ ρ

)

φ12 =
φ11 − φ22

2
(26)

are sufficient conditions for the equality of MSEs of the aggregate process (aggregate approach) and

of the individual components (disaggregate approach).

We defer the proof of Proposition 3 to the Appendix. The reader can check that when (26)

holds condition (23) is not met, since θ1 6= θ2.

It is interesting to note that all the illustrations and numerical examples proposed by the

aggregation literature focus on ρ equal to zero (e.g., Wei and Abraham, 1981, Lütkepohl, 1984c,

1987, 2007, Hendry and Hubrich, 2007). To our knowledge, nowhere in the literature is the case

ρ 6= 0 discussed and analyzed. Yet, this latter case deserves particular attention due to its great

practical importance in empirical analysis since, very often, the individual components series are

correlated.

Finally, assuming ρ = 0 and hence focusing on a framework in which the covariance matrix

of the innovations is diagonal, we introduce a further condition for equal forecasting efficiency

that does not satisfy (23). This means that, when the errors are uncorrelated, it is possible to

find a sufficient condition for the equality of MSEs which does not respect (23), since also in this

simplified framework θ1 6= θ2 (we refer to the proof in the Appendix for further details).

11In what follows we briefly summarize the steps of the proof in Lütkepohl (1987) to show necessity of (23).

Let us focus on the bivariate framework of the VMA in (11). To show that (24) is a necessary condition for the

equality of one-step ahead predictors, assume that yut (1) = yt(1) holds. Remind that yt+1 − yt(1) = vt+1 and

yt+1 − yut (1) = Fwt+1 by construction. Hence yut (1) = yt(1) ⇒ Fwt+1 = vt+1. Therefore

FΘΘΘ(L)wt := yt := ψ(L)vt = ψ(L)Fwt

and thereby FΘΘΘ(L) = ψ(L)F, which reads as θ1 = θ2 = ψ in our framework.
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Proposition 4 Consider the VMA(1) in (11) and assume that ρ = 0. If we impose φ12 = φ21,

then

φ12 = ±φ22 − φ11

2
(27)

is a sufficient condition for the equality of MSEs of the aggregate process (aggregate approach) and

of the individual components (disaggregate approach).

The linear combination in (27) guarantees the equality of forecasting performance of the com-

petitive predictors in the framework of a bivariate VMA(1) process, despite that θ1 6= θ2. The

proof of Proposition 4 is given in the Appendix.

It is worth focusing on the relevance of these results for the applied research. It is well known

that empirical forecasting accuracy is mainly based on the comparison of mean squared errors of

competitive models and not on the equality of predictors (being a particularly strong condition).

Therefore, our analysis has some direct consequences on the empirical debate on the use of ag-

gregate and disaggregate forecasts. In fact, it is not possible to establish a priori which is the

best forecasting model as claimed by some authors, since both the aggregate and the disaggregate

(individual components) predictors are sub-optimal procedures if compared with the optimal pro-

cedure, i.e. aggregating the forecasts based on the original DGP in (1). In addition, Propositions

3 and 4 provide conditions for the equality of MSEs. They both reinforce the fact that (23) is

sufficient but not necessary for equal forecasting efficiency. Lastly, as we have shown, their re-

spective mean squared errors depend on the structure of the DGP. Therefore, in general, the two

forecasting procedures need to be evaluated in each specific empirical case.

4 A simulation study

This section focuses on the main results from a Monte Carlo simulation. We adopt the framework

already suggested by Lütkepohl (1984c, 1987) and more recently by Hendry and Hubrich (2007),

taking into account the potential problems of model misspecification and estimation uncertainty

linked to small sample size.

More specifically, a bivariate VMA(1) is generated as follows

[

x1t

x2t

]

=

[

1

1

]

+

[

1 + φ11L φ12L

φ21L 1 + φ22L

][

ε1t

ε2t

]

, t = 1, 2, . . . , T (28)

with

εεεt ∼ i.i.d N

(

0,

[

1 ρ

ρ 1

])

.

Note that in (28), we introduce a positive contemporaneous covariance between the innovations,

that is, ρ 6= 0. We remark that this is a novelty with respect to the Monte Carlo simulations

presented in Lütkepohl (1984c, 1987) and Hendry and Hubrich (2007).
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For each exercise, the number of replications is 10,000. Moreover, we assume that the DGP

is unknown. Only autoregressive processes are used to fit and forecast. In this way, we take into

account possible model misspecification. As in Lütkepohl (1987c), we employ AR(p) processes with

p = 1, 2, ..., 6. The standard information criteria are applied for model selection (in particular, the

Akaike Information Criterion, AIC, and the Schwartz Information Criterion, BIC).

The idea underlying the design of the experiment is to compare the out-of sample MSEs of two

different competitive models: the disaggregate process (individual components) and the aggregate

process. The MSE is used as a metric for forecast accuracy. The structure of the parameters is the

only feature that makes our analysis differ from the previously mentioned Monte Carlo simulations.

That is, we assume four different structures of parameters:

• DGP 1 : φ11 = 0.7 ; φ12 = 0 ; φ21 = 0 ; φ22 = −0.4; ρ = 0.3;

• DGP 2 : φ11 = 0.7 ; φ12 = 0.2 ; φ21 = 0.32 ; φ22 = 0.3; ρ = 0.3;

• DGP 3 : φ11 = 0.1 ; φ12 = 0.8 ; φ21 = 0.8 ; φ22 = 0.1; ρ = 0.3;

All the processes are invertible. The DGP 1 represents the theoretical case when the disag-

gregate outperforms the aggregate process. On the other hand, the DGP 3 is the case when the

aggregate process performs better than the disaggregate process. DGP 2 is the object of interest of

this paper, since it satisfies condition (26). In fact, in this case, we have shown that the aggregate

and the disaggregate processes have exactly the same one-step ahead forecasting performance in

terms of MSE. For all the DGPs, the number of observations used to estimate the model in-sample

is T = 30, 50, 100, 200, 500. Five observations are kept for out-of-sample evaluation.

[TABLE A1 ABOUT HERE]

Table A1 reports the Monte Carlo results using the three different DGPs: each cell contains the

ratio of the aggregate MSE relative to the disaggregate one; values greater than one, for instance,

indicate that the aggregate MSE is larger than the disaggregate one. With DGP 1, results are

clearly in favor of the disaggregate process for one-step ahead forecasts. This is true using both

the Akaike and Schwartz information criteria. In general, it can be seen that the forecasts of the

two competitive predictors get closer when T increases, and for five-steps ahead.

Focusing on DGP 3, on the other hand, we face the opposite situation in which the aggregate

predictor outperforms the disaggregate: this is particularly evident for one-step ahead forecasts

and for any T, whereas for five-steps ahead, the differences vanish. We stress that no specific

process outperforms its competitors for five-steps ahead forecasts.

Looking at DGP 2, for which the condition of equality of predictors (26) holds, the disaggregate

tends to perform slightly better than the aggregate in very small samples, when T = 30, but not as

much as observed for DGP 1. On the other hand, when T ≥ 50, the aggregate and the disaggregate

have the same forecasting performance. In general, when the number of observations increases,
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the MSEs of the aggregate and disaggregate predictors become almost identical. This is true for

one-step ahead and for five-steps ahead forecasts. In summary, the differences between MSEs are

very small, especially in large samples, where estimation uncertainty is reduced.

Overall, from this Monte Carlo experiment, we can conclude that the simulation results confirm

our theoretical findings and shed further light on the ρ parameter’s influence on the accuracy of the

competing predictors. In particular, Table DGP 1 and DGP 3 represent two opposite frameworks in

which one forecasting method clearly outperforms its competitor. Moreover, Table A1 shows that

the condition of equal forecasting performance in terms of MSE in (26) is validated by simulations.

5 An empirical application: forecasting M1 in Italy in the pre-EMU period

In this section, we present an empirical application that involves the problem of forecasting the

Italian monetary aggregate M1 on the basis of annual time series ranging from 1948 to 1998, prior

to the creation of the European Economic and Monetary Union (EMU). This is of course an issue

of major interest for researchers and practitioners.

According to the definition given by the Eurosystem, M1 is a narrow monetary aggregate

that comprises two disaggregate components: overnight deposits (OVt) and currency in circulation

(CCt) issued by the monetary financial institutions (MFIs) sector and by entities belonging to

the central government. The same definition is used in this empirical application, that is, M1 is

defined as

M1t = OVt + CCt, t = 1948, . . . , 1998. (29)

The series in (29) was reconstructed by the Bank of Italy following the Eurosystem’s definition

(with minor differences concerning mainly the perimeter of the variables and the money-holding

sector). Notice that the data for M1, overnight deposits and currency in circulation are not

perfectly coincident with the series calculated since the first years of the sixties up to 1974, of

which there is a trace in some historical publications (Bank of Italy’s Annual Report, Economic

Bulletin). Up to 1975, indeed, the M1 aggregate included a part of Treasury bonds (BOTs) and

deposits that credit institutions had to hold to meet the obligatory reserve requirements. Since

1975, with the cash payment of the obligatory reserve by credit institutions, the definition of

M1 used in this empirical application coincides with the definition employed in other studies and

publications.

[FIGURE A3 ABOUT HERE]

The three series M1, overnight deposits and currency in circulation for the pre-EMU period

are shown in levels in Figure A3. Data are expressed in billions of lire.

[TABLE A2 ABOUT HERE]

18



Table A2 presents some descriptive statistics about overnight deposits and currency in circu-

lation (expressed in first differences of the logged series). As is evident, both series have non-zero

means and are positively skewed. Moreover, overnight deposits have a standard deviation which

is roughly two times the standard deviation of currency in circulation.

As an illustrative example, we fit the bivariate VMA(1) in (11) to (demeaned) overnight de-

posits and currency in circulation:

xt =

[

∆ log(OVt)

∆ log(CCt)

]

=

[

1 + φ11L φ12L

φ21L 1 + φ22L

][

ε1t

ε2t

]

. (30)

To fit the data to the model in (30), we generalize the DGP in (11) by assuming that εεεt is

a vector white noise innovation sequence with E(εεεt) = 0, E(εεεtεεε
′

t) =

[

σ2
1 ρ

ρ σ2
2

]

and E(εεεtεεε
′

s) =

0 for s 6= t. That is, innovations are heteroskedastic and cross-correlated. This is the most

general framework we can set up. With these assumptions, the two time series can be adequately

represented by the bivariate VMA(1) in (30). The resulting model fits the data reasonably well.12

Estimation is conducted by maximum-likelihood. Four different samples are employed, recur-

sively: 1948-1995, 1948-1996, 1948-1997 and 1948-1998. The years 1996-1998 are used as fore-

casting period and for forecasting evaluation. We get four sets of estimated parameters for each

sample: φ̂11, φ̂12, φ̂21, φ̂22, together with the variance of the residuals σ̂2
1, σ̂

2
2, and the residuals

covariance, ρ̂. Estimation results are available in Table A3, for each sample used.13

[TABLE A3 ABOUT HERE]

Suppose we are interested in predicting the percentage changes of the aggregate variable M1

from period to period. Expressed differently, the aim is to forecast a linear transformation of the

process in (30), i.e.

yt = Fxt.

To do this, as already detailed, forecasts can be obtained using an aggregate or a disaggregate

predictor, built by forecasting overnight deposits and currency in circulation separately and ag-

gregating the forecasts ex-post.

Note, however, that the model in (30) is estimated on log transformed variables. This is rather

usual in applied econometrics and it is mainly done to stabilize the variance of the time series

before modeling. Yet, all the results so far discussed concerning the ranking of different predictors

for aggregated variables refer to linear contemporaneous aggregation. Whether or not these results

apply to nonlinear aggregation schemes is not easy to say at this stage. This is a relevant caveat

12Additional results are available from the authors upon request.
13Note that, for each sample used, the estimated parameters give invertible bivariate MA(1) models.
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to be kept in mind.14 To our knowledge, the topic of forecasting nonlinearly contemporaneously

aggregated variables is still unexplored and, as recognized by Lütkepohl and Xu (2009), is a very

promising avenue for future research.

As argued by Wesche (1997), Fagan and Henry (1998), Dedola, Gaiotti and Silipo (2001) and

Sbrana (2008a), the following approximate relation holds between the logarithm of the aggregate

series (M1) and the sum of the logarithms of its individual components, properly weighted,

∆ log(M1t) ≈ η1∆ log(OVt) + η2∆ log(CCt), (31)

where η1t = OVt
M1t

, η2t = CCt
M1t

, ∀t. In addition, η1 =
∑1998
t=1948 η1t

50 and η2 =
∑1998
t=1948 η2t

50 are

the constant average shares of overnight deposits and currency in circulation on M1. Figure A4

displays the RHS and the LHS of (31). As it can be clearly seen, the approximation in (31) is not

so rough, since the two lines almost overlap across the sample, with two exceptions in 1948 and

1951 (where the difference is 10−2).15

[FIGURE A4 ABOUT HERE]

Note that, by construction, η1 + η2 = 1. Therefore, the aggregation vector that operates on

the RHS of (31) is F =

[

η1

η2

]

.

First, we focus on the parameters of the disaggregate predictor. Consider the process in (30),

that can be re-parameterized as in (12). Due to the covariance structure of the innovations in (30),

that allows for heteroskedasticity, we get these expressions for the moving average parameters θ1
and θ2, i.e. a generalized version of (14):

θ1 =
(σ2

1+φ2
11σ

2
1+φ2

12σ
2
2+2ρφ11φ12)

2(φ11σ
2
1+ρφ12)

−
√

(σ4
1+φ4

11σ
4
1+φ4

12σ
4
2+4ρ2φ2

11φ
2
12−2φ2

11σ
4
1+2φ2

12σ
2
1σ

2
2+2φ2

11φ
2
12σ

2
1σ

2
2−4ρφ11φ12σ

2
1+4ρφ3

11φ12σ
2
1+4ρφ11φ

3
12σ

2
2−4ρ2φ2

12)

2(φ11σ
2
1+ρφ12)

θ2 =
(σ2

2+φ2
22σ

2
2+φ2

21σ
2
1+2ρφ22φ21)

2(φ22σ
2
2+ρφ21)

−
√

(σ4
2+φ4

22σ
4
2+φ4

21σ
4
1+4ρ2φ2

22φ
2
21−2φ2

22σ
4
2+2φ2

21σ
2
1σ

2
2+2φ2

22φ
2
21σ

2
1σ

2
2−4ρφ22φ21σ

2
2+4ρφ3

22φ21σ
2
2+4ρφ22φ

3
21σ

2
1−4ρ2φ2

21)

2(φ22σ
2
2+ρφ21)

.

(32)

The covariance between w1t and w2t is equal to

cov(w1t, w2t) =
(φ11 − θ1)φ21σ

2
1 + (φ22 − θ2)φ12σ

2
2 + (1 − θ2φ11 − θ1φ22 + φ12φ21 + φ11φ22)ρ

1 − θ1θ2
.

14Contributions focusing on nonlinearities issues for aggregated variables are not numerous. Among them, we

refer to: Granger and Lee (1999), for an analysis of the effects of three aggregation schemes (contemporaneous and

temporal aggregation, systematic sampling) on nonlinearity; Proietti (2006), for a derivation of the estimator of the

fixed and random effects of a nonlinearly temporally aggregated mixed model.
15In all the other cases, the difference is around 10−3.
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As a result, since E(w2
1t) =

φ11σ
2
1+ρφ12

θ1
and E(w2

2t) =
φ22σ

2
2+ρφ21

θ2
, the MSE of the disaggregate

predictor of yt, that is the predictor based on univariate components of xt, is

Σu
y(1) = η2

1

(

φ11σ
2
1 + ρφ12

θ1

)

+ η2
2

(

φ22σ
2
2 + ρφ21

θ2

)

+ 2η1η2

(

(φ11 − θ1)φ21σ
2
1 + (φ22 − θ2)φ12σ

2
2 + (1 − θ2φ11 − θ1φ22 + φ12φ21 + φ11φ22)ρ

1 − θ1θ2

)

,

(33)

where θ1 and θ2 are given in (32). Notice that (33) is a more complicated expression than (16),

since it takes into account the heteroskedasticity of the innovations and some generic weights, η1

and η2.

Second, we focus on the parameters of the aggregate predictor: this latter corresponds to the

contemporaneously aggregated model in (18), with weights equal to η1 and η2. The moving average

parameter ψ in (18) can be recovered as in Section 3.2, with

δ :=
E(y2

t )

2E(ytyt−1)
=
η2
1(1 + α2

1)σ
2
1 + η2

2(1 + α2
2)σ

2
2 + 2η1η2(1 + α1α2)ρ

2(η2
1α1σ

2
1 + η2

2α2σ
2
2 + η1η2(α1 + α2)ρ)

.

After some algebra, we get the following expression for ψ:

ψ =
η21(1+α2

1)σ2
1+η22(1+α2

2)σ2
2+2η1η2(1+α1α2)ρ

2(η21α1σ
2
1+η22α2σ

2
2+η1η2(α1+α2)ρ)

−
√

(η21(α1−1)2σ2
1+η22(α2−1)2σ2

2+2η1η2(α1−1)(α2−1)ρ)(η21 (α1+1)2σ2
1+η22(α2+1)2σ2

2+2η1η2(α1+1)(α2+1)ρ)

2(η21α1σ
2
1+η22α2σ

2
2+η1η2(α1+α2)ρ)

.

(34)

Furthermore, the variance of the innovations of the aggregate predictor is

σ2
v =

η2
1α1σ

2
1 + η2

2α2σ
2
2 + η1η2(α1 + α2)ρ

ψ
, (35)

where ψ is given in (34). Notice that, with respect to (21) and (20), (35) and (34) contain the

extra parameters σ2
1, σ

2
2, η1 and η2.

We now turn the attention to the parameters of the disaggregate predictor. Plugging the

estimated VMA’s parameters φ̂11, φ̂12, φ̂21, φ̂22, σ̂
2
1 , σ̂

2
2 and ρ̂ in (32) and (33), we get the “implied”

parameters of the disaggregate predictor, i.e. θ1 and θ2, together with the “implied” root MSEs.

Results for θ1 and θ2 are provided in the first two columns of Table A4, where the “estimated”

counterparts based on the 1948-1995, 1948-1996, 1948-1997, 1948-1998 samples are also reported.

These “estimated” parameters are obtained by fitting univariate MA(1) models separately to

overnight deposits and currency in circulation.16

[TABLE A4 ABOUT HERE]

16Estimation results are available from the authors upon request.
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The implied and estimated values are extremely close, particularly for θ1, and for each estima-

tion sample used. These results are striking, in our view, since the estimated models that are used

to calculate the “implied” and “estimated” parameters are based on less than 50 observations of

annual data.

The first column of Table A5 presents the “implied” and “estimated” root MSEs of the disag-

gregate predictor. The “implied” and “estimated” root MSEs are in general close to each other,

particularly working with the 1948-1996 and 1948-1997 samples.

[TABLE A5 ABOUT HERE]

Back to the parameters of the aggregate predictor. The “implied” parameters are calculated

by plugging the estimated φ̂11, φ̂12, φ̂21, φ̂22, σ̂
2
1, σ̂

2
2 and ρ̂ in (34) and (35), for each estimation

sample. The third column of Table A4 displays the “implied” and “estimated” ψ parameters of

the aggregate variable, i.e. the percentage changes of M1. For ψ, in every estimation sample, the

estimated values are roughly the values implied by (34). The second column of Table A5 shows

the “implied” and “estimated” root MSEs of the aggregate predictor (for each estimation sample),

which are also very close.

The third column of Table A5 ranks the two competing predictors in terms of root MSE.

The aggregate predictor ranks first for every estimation sample and on the basis of the “implied”

and “estimated” root MSEs: therefore, our results are fully coherent and demonstrate that, on the

basis of the available sample, forecasting M1 directly is more efficient (in mean squared error sense)

than aggregating ex-post disaggregate univariate forecasts for overnight deposits and currency in

circulation.

Of course, we stress that our results hold true using the years 1996-1998 as forecasting period

and working with a data set relatively small in size. Moreover, a central assumption is that

the bivariate VMA(1) in (30) is an adequate approximation of the “true” data generating vector

process, which is unknown. To check the robustness of our empirical results, we could present more

formal test of forecast comparison and use alternative metrics for determining which forecasting

method is expected to be most accurate (rather than the forecast MSE). This is out of the scope

of the paper and is left for future research.

6 Conclusions and outlook

In this study, we address the issue of forecasting a contemporaneously aggregated vector process.

To this aim, we focus on predictors based on the aggregate process directly and on the individual

components of the disaggregate vector process. If the DGP is known and no parameters uncertainty

is faced, these two predictors are sub-optimal (in mean squared error sense) with respect to the

optimal predictor that can be built by aggregating forecasts of the original data generating vector

process.
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In a bivariate framework of a vector MA(1), which is the benchmark used by the whole of

the aggregation literature, we provide the necessary and sufficient condition for the equality of

MSEs associated with the two competing predictive procedures. We explain how the MSEs can

be expressed as a function of the parameters of the original DGP. In this sense, the structure

of the disaggregate process determines the relative forecasting accuracy of the two predictors, as

recognized but not fully investigated by the early contributors to the aggregation debate.

Furthermore, we show that the condition given by Lütkepohl (1984b, 1987, 2004), although

necessary and sufficient for the equality of the predictors, is sufficient but not necessary for the

equality of the corresponding forecast MSEs. Finally, we provide sufficient conditions for the

equality of MSEs. With these conditions, we give evidence that specific assumptions on the

parameters of the VMA(1) guarantee equal forecasting accuracy for the prediction approaches

under scrutiny. Monte Carlo simulations seem to confirm our findings. An empirical application

to M1 forecasting illustrates the main issues and how the techniques can be applied in practice.
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Appendix

Proof of Proposition 3

We assume φ21 = (φ11 − φ22)(
1
2

+ ρ), φ12 = φ11−φ22

2
and ρ 6= 0. As stated in Proposition 3, in what follows

we are going to show that this linear combination of the DGP’s parameters guarantees the equality of forecasting

performance of the competitive processes in (6) and (9), no matter the values of φ11, φ22 and ρ.

Bearing in mind equations (14), it is easy to see that θ1 and θ2 simplify to

θ1 =
4+(5+4ρ)φ2

11
+φ2

22
−2φ11φ22(1+2ρ)

4((2+ρ)φ11−ρφ22)

−
√

(4+8φ11+4ρφ11+5φ2

11
+4ρφ2

11
−4ρφ22−2φ11φ22−4ρφ11φ22+φ2

22
)(4−8φ11−4ρφ11+5φ2

11
+4ρφ2

11
+4ρφ22−2φ11φ22−4ρφ11φ22+φ2

22
)

4((2+ρ)φ11−ρφ22)
,

(A1)

and

θ2 =
4+(φ11+2ρφ11)2+(5−4ρ2)φ2

22
−2φ11φ22(1+2ρ)

(4ρ(1+2ρ)(φ11−φ22)+8φ22)

−
√

(4+4ρφ11+8ρ2φ11+φ2

11
+4ρφ2

11
+4ρ2φ2

11
+8φ22−4ρφ22−8ρ2φ22−2φ11φ22−4ρφ11φ22+5φ2

22
−4ρ2φ2

22
)√

(4ρ(1+2ρ)(φ11−φ22)+8φ22)

×
√

(4−4ρφ11−8ρ2φ11+φ2

11
+4ρφ2

11
+4ρ2φ2

11
−8φ22+4ρφ22+8ρ2φ22−2φ11φ22−4ρφ11φ22+5φ2

22
−4ρ2φ2

22
)√

(4ρ(1+2ρ)(φ11−φ22)+8φ22)
.

(A2)

As a consequence θ1 6= θ2. Some straightforward calculations show that the ψ parameter in (20) is equal to θ1.

Furthermore, the variance of the aggregate process is provided in (21), which for φ12 = φ11−φ22

2
and φ21 =

(φ11 − φ22)(1/2 + ρ) is

Σy(1) = σ2
v =

(1 + ρ)((2 + ρ)φ11 − ρφ22)

θ1
. (A3)

The MSE of the optimal one-step ahead predictor of yt based on the univariate components of xt is given in

(16), which for φ12 = φ11−φ22

2
and φ21 = (φ11 − φ22)(1/2 + ρ) becomes

Σuy (1) =
φ11+ 1

2
ρ(φ11−φ22)

θ1
+

ρ( 1

2
+ρ)(φ11−φ22)+φ22

θ2

+
1

2
(2ρ2(φ11−φ22)2+2(φ11−φ22)(φ11+φ22−θ1−θ2)+ρ(4+5φ2

11
+φ2

22
−2φ11(φ22+2(θ1+θ2))))

1−θ1θ2
(A4)

To have equal forecasting performance, it has to be Σy(1) = σ2
v = Σuy (1). For this condition to be verified, on

the basis of (A3) and (A4), it must hold

1

2
(1+2ρ)((2+ρ)φ11−ρφ22)

θ1
− ρ( 1

2
+ρ)(φ11−φ22)+φ22

θ2

=
1

2
(2ρ2(φ11−φ22)2+ρ(4+5φ2

11
+φ2

22
−2φ11(φ22+2(θ1+θ2)))+2(φ11−φ22)(φ11+φ22−θ1−θ2))

1−θ1θ2
,

which yields

θ1θ2
1−θ1θ2

=
−2ρ2(φ11−φ22)(θ1−θ2)−ρ(φ11θ1−φ22θ1−5φ11θ2+φ22θ2)+2φ11θ2−2φ22θ1

2ρ2(φ11−φ22)2+ρ(4+5φ2
11

+φ2
22
−2φ11(φ22+2(θ1+θ2)))+2(φ11−φ22)(φ11+φ22−θ1−θ2)

.

Let us focus on the first ratio θ1θ2
1−θ1θ2

. Substituting for (A1) and (A2), we get
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θ1θ2
1−θ1θ2

=

− 1
2

+
(ρ(1+2ρ)(φ11−φ22)+2φ22)

√
(4+8φ11+4ρφ11+5φ2

11
+4ρφ2

11
−4ρφ22−2φ11φ22−4ρφ11φ22+φ2

22
)√

(4(ρ−1)(ρ+1)(φ11−φ22)(4+(1+2ρ)φ2
11
−2(3+2ρ)φ11φ22+(1+2ρ)φ2

22
))

×
√

(4−8φ11−4ρφ11+5φ2

11
+4ρφ2

11
+4ρφ22−2φ11φ22−4ρφ11φ22+φ2

22
)√

(4(ρ−1)(ρ+1)(φ11−φ22)(4+(1+2ρ)φ2

11
−2(3+2ρ)φ11φ22+(1+2ρ)φ2

22
))

+
(−(2+ρ)φ11+ρφ22)

√
(4+4ρφ11+8ρ2φ11+φ2

11
+4ρφ2

11
+4ρ2φ2

11
+8φ22−4ρφ22−8ρ2φ22−2φ11φ22−4ρφ11φ22+5φ2

22
−4ρ2φ2

22
)√

(4(ρ−1)(ρ+1)(φ11−φ22)(4+(1+2ρ)φ2
11
−2(3+2ρ)φ11φ22+(1+2ρ)φ2

22
))

×
√

(4−4ρφ11−8ρ2φ11+φ2
11

+4ρφ2
11

+4ρ2φ2
11
−8φ22+4ρφ22+8ρ2φ22−2φ11φ22−4ρφ11φ22+5φ2

22
−4ρ2φ2

22
)√

(4(ρ−1)(ρ+1)(φ11−φ22)(4+(1+2ρ)φ2

11
−2(3+2ρ)φ11φ22+(1+2ρ)φ2

22
))

.

After tedious calculations it is possible to see that we get exactly the same expression as above after plugging

(A1) and (A2) in the second ratio

−2ρ2(φ11−φ22)(θ1−θ2)−ρ(φ11θ1−φ22θ1−5φ11θ2+φ22θ2)+2φ11θ2−2φ22θ1
2ρ2(φ11−φ22)2+ρ(4+5φ2

11
+φ2

22
−2φ11(φ22+2(θ1+θ2)))+2(φ11−φ22)(φ11+φ22−θ1−θ2)

.

This completes the proof.

�

Proof of Proposition 4

Let φ12 = φ21 = φ22−φ11

2
and ρ = 0. Similar results, mutatis mutandis, hold for φ12 = φ21 = φ11−φ22

2
and ρ = 0.

Bearing in mind equations (14), it is easy to see that θ1 and θ2 simplify to

θ1 =
4 + 5φ2

11 − 2φ11φ22 + φ2
22

8φ11
−

√

(4 + 5φ2
11 − 2φ11φ22 + φ2

22)
2

64φ2
11

− 1

and

θ2 =
4 + φ2

11 − 2φ11φ22 + 5φ2
22

8φ22
−

√

(4 + φ2
11 − 2φ11φ22 + 5φ2

22)
2

64φ2
22

− 1,

hence, θ1 6= θ2. The ψ parameter in (20) is equal to

ψ =
1

8φ22

(

(

4 + φ2
11 − 2φ11φ22 + 5φ2

22

)

−
√

(4 + φ2
11 − 2φ11φ22 + 5φ2

22 − 8φ22) (4 + φ2
11 − 2φ11φ22 + 5φ2

22 + 8φ22)

)

.

It differs from θ1. Moreover ψ = θ2.

Furthermore, when ρ = 0, the variance of the aggregate process is σ2
v = 2φ22

ψ
, that is,

Σy(1) = σ2
v =

2φ22

θ2
.

The MSE of the optimal one-step ahead predictor of yt based on the univariate components of xt is given in

(16), which for φ12 = φ21 = φ22−φ11

2
and ρ = 0 becomes

Σuy (1) =
φ11

θ1
+
φ22

θ2
+
φ22 − φ11

1 − θ1θ2
(φ11 + φ22 − θ1 − θ2) .

To have equal forecasting performance, it has to be Σuy (1) = Σy(1) = σ2
v. For this condition to be verified, it

must hold

φ22

θ2
− φ11

θ1
=
φ22 − φ11

1 − θ1θ2
(φ11 + φ22 − θ1 − θ2) .
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Hence, to be Σuy (1) = Σy(1) = σ2
v, we need to show that

φ22θ1
φ11θ2

=
θ21 − φ11θ1 + 1

θ22 − φ22θ2 + 1
. (A5)

Let us focus on the right-hand side (RHS) of (A5). After some tedious calculations, we notice that the numerator

θ21 − φ11θ1 + 1 can be factorized as

1

32φ2
11

(

−2φ22φ11 + φ2
22 + 4 + φ2

11

)

×
(

4 + 5φ2
11 + φ2

22 − 2φ22φ11 −

√

(φ2
22 + 4 − 8φ11 − 2φ22φ11 + 5φ2

11)(φ
2
22 + 4 + 8φ11 − 2φ22φ11 + 5φ2

11)

φ2
11

φ11

)

.

Similarly, the denominator θ22 − φ22θ2 + 1 may be factorized as

1

32φ2
22

(

−2φ22φ11 + φ2
22 + 4 + φ2

11

)

×
(

4 + 5φ2
22 + φ2

11 − 2φ22φ11 −

√

(φ2
11 + 4 − 8φ22 − 2φ22φ11 + 5φ2

22)(φ
2
11 + 4 + 8φ22 − 2φ22φ11 + 5φ2

22)

φ2
22

φ22

)

.

Consequently we can express the ratio
θ2
1
−φ11θ1+1

θ2
2
−φ22θ2+1

as

φ2
22

(

4 + 5φ2
11 + φ2

22 − 2φ22φ11 −
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(φ2

22
+4−8φ11−2φ22φ11+5φ2

11
)(φ2

22
+4+8φ11−2φ22φ11+5φ2

11
)

φ2
11

φ11

)

φ2
11

(

4 + 5φ2
22 + φ2

11 − 2φ22φ11 −
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(φ2

11
+4−8φ22−2φ22φ11+5φ2

22
)(φ2

11
+4+8φ22−2φ22φ11+5φ2

22
)

φ2
22

φ22

) .

In addition, focus on the left-hand side (LHS) of (A5). We can express θ2 as

θ2 =
1

8φ22

(

(

4 + φ2
11 − 2φ11φ22 + 5φ2

22

)

−
√

(4 + φ2
11 − 2φ11φ22 + 5φ2

22 − 8φ22) (4 + φ2
11 − 2φ11φ22 + 5φ2

22 + 8φ22)

)

.

(A6)

Similarly to θ2, we can express θ1 as

θ1 =
1

8φ11

(

(

4 + 5φ2
11 − 2φ11φ22 + φ2

22

)

−
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(4 + 5φ2
11 − 2φ11φ22 + φ2

22 − 8φ11) (4 + 5φ2
11 − 2φ11φ22 + φ2

22 + 8φ11)

)

.

(A7)

From (A7) and (A6), it is immediately evident that the LHS and the RHS of (A5) are equal, and Σuy (1) = Σy(1).

Therefore, the result follows.

�
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Table A1: MSEs of competitive models using DGPs 1, 2, 3

MSE of competitive models using DGPs 1, 2, 3

Model Selection DGP 1 DGP 2 DGP 3

Sample Steps AIC BIC AIC BIC AIC BIC

h=1 1.17 1.13 1.05 1.03 0.87 0.90

T=30 h=5 1.00 1.00 1.04 1.03 0.99 0.98

h=1 1.13 1.12 1.01 1.00 0.88 0.90

T=50 h=5 1.00 1.00 1.01 1.01 1.00 1.00

h=1 1.09 1.08 1.00 0.99 0.90 0.92

T=100 h=5 1.02 1.00 1.01 1.01 1.00 0.99

h=1 1.08 1.08 1.00 0.99 0.89 0.91

T=200 h=5 1.00 1.00 1.01 1.01 1.00 1.00

h=1 1.10 1.10 1.00 1.00 0.88 0.89

T=500 h=5 1.01 1.00 1.01 1.00 1.01 1.00

Table A2: Descriptive statistics

Variables Mean St. dev. Max Min Skewness Kurtosis

∆log(OVt) 0.1276 0.0639 0.2743 -0.0032 0.1696 2.6243

∆ log(CCt) 0.0957 0.0389 0.1835 0.0196 0.2584 2.5626

The top part of the table is for overnight deposits (delta logs), the

bottom part for currency in circulation (delta logs). For both series the

sample goes from 1948 until 1998.
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Table A3: Estimated VMA(1) models

Parameters Estimates Standard error

Sample: 1948-1995

φ̂11 0.4788 0.1435

φ̂12 0.1073 0.1075

φ̂21 0.0311 0.2500

φ̂22 0.1271 0.1459

σ̂2
1 0.0030 0.0006

ρ̂ 0.0008 0.0003

σ̂2
2 0.0013 0.0003

Sample: 1948-1996

φ̂11 0.4629 0.1377

φ̂12 0.1080 0.1096

φ̂21 0.0767 0.2432

φ̂22 0.1668 0.1480

σ̂2
1 0.0030 0.0006

ρ̂ 0.0008 0.0003

σ̂2
2 0.0014 0.0003

Sample: 1948-1997

φ̂11 0.4683 0.1401

φ̂12 0.1085 0.1079

φ̂21 0.0882 0.2433

φ̂22 0.1670 0.1437

σ̂2
1 0.0030 0.0006

ρ̂ 0.0008 0.0003

σ̂2
2 0.0013 0.0003

Sample: 1948-1998

φ̂11 0.4723 0.1367

φ̂12 0.1131 0.1075

φ̂21 0.0798 0.2417

φ̂22 0.1633 0.1433

σ̂2
1 0.0029 0.0006

ρ̂ 0.0008 0.0003

σ̂2
2 0.0013 0.0002

The estimated model is the VMA(1) in (30). Estimation

is conducted by maximum-likelihood. The covariance of

the parameters is computed by the following method: in-

verse of computed Hessian. The GAUSS program ve-

carma.e, written by Ron Schoenberg, is used for estima-

tion. Four different samples are employed: 1948-1995,

1948-1996, 1948-1997 and 1948-1998.
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Table A4: Estimated and implied parameters

Sample θ1 θ2 ψ

estimated estimated estimated

1948-1995 0.4918 0.2187 0.4889

1948-1996 0.4915 0.2689 0.4914

1948-1997 0.5014 0.2729 0.4996

1948-1998 0.5025 0.2725 0.5004

implied implied implied

1948-1995 0.5046 0.1460 0.4771

1948-1996 0.4887 0.2103 0.5072

1948-1997 0.4944 0.2178 0.5228

1948-1998 0.5003 0.2098 0.5182

Model ARMA(0,1) ARMA(0,1) ARMA(0,1)

Constant no no no

Estimated and implied parameters for the univariate dis-

aggregate models in (12), where x1t = ∆ log(OVt) and

x2t = ∆ log(CCt), and for the contemporaneously aggre-

gated model in (18), where yt = ∆ log(M1t). All the

variables are demeaned.
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Table A5: Estimated and implied forecast root MSEs

Estimation Disaggregate Aggregate Best

sample predictor predictor predictor

estimated estimated estimated

1948-1995 0.09184 0.05262 Aggregate

1948-1996 0.04264 0.03106 Aggregate

1948-1997 0.04479 0.02830 Aggregate

implied implied implied

1948-1995 0.04545 0.04542 Aggregate

1948-1996 0.04553 0.04549 Aggregate

1948-1997 0.04545 0.04542 Aggregate

Forecast root MSEs (estimated and implied) for the aggregate

and disaggregate predictors. For each estimation sample, the

“best” predictor is the one with the lowest root MSE.
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Figure A1: Aggregate predictor: contour and three-dimensional plots of σ2
v
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From top to down: three-dimensional and contour plots of σ2
v , i.e., the variance of the aggregate predictor, as a

function of the parameters of the bivariate VMA(1) in (11): α1 = (φ11 +φ21) and α2 = (φ12 +φ22). In both figures,

the extra-diagonal element of the covariance matrix of the innovations ρ is set equal to 0.3.
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Figure A2: Proposition 1. Three-dimensional and contour plots of σ2
v − Σu
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Three-dimensional and contour plots of σ2
v − Σuy (1), i.e., the variance of the aggregate predictor minus the variance

of the disaggregate predictor, as a function of the parameters of the bivariate VMA(1) in (11): α1 = (φ11 +φ21) and

α2 = (φ12 + φ22). In the figures, two of the parameters (i.e., φ11, φ22) vary while the other three parameters (i.e.,

ρ, φ12, φ21) are set equal to the values below each panel.
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Figure A3: Main components of M1
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Figure A4: Relation (31)

1950 1960 1970 1980 1990
0

0.02

0.04

0.06

0.08

0.1

0.12
∆ log(M1

t
)

η
1
∆ log(OV

t
)+η

2
∆ log(CC

t
)

Illustration of the approximate relation in (31), where logarithms of M1, overnight deposits and currency in circu-

lation are involved. End-of-year data ranging from 1948 until 1998. Source: Bank of Italy.
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