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To match the stylized facts of high frequency financial time series precisely and 
parsimoniously, this paper presents a finite mixture of conditional exponential power 
distributions where each component exhibits asymmetric conditional heteroskedasticity. We 
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new class to Dow Jones index returns. We find that a two-component mixed exponential 
power distribution dominates mixed normal distributions with more components, and more 
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the conditional variance processes become stationary. This happens because the mixed 
exponential power distribution allows for component-specific shape parameters so that it can 
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1 Introduction

Finite mixture models are becoming a standard tool in econometrics. They are attractive

because of the flexibility they provide in model specification, which gives them a semipara-

metric flavour. Finite mixture textbooks are for example McLachlan and Peel (2000) and

Frühwirth-Schnatter (2006). Early applications are Kon (1984) and Kim and Kon (1994)

who investigate the statistical properties of stock returns using mixture models. Boothe and

Glassman (1987), Tucker and Pond (1988) and Pan, Chan, and Fok (1995) use mixtures of

normals to model exchange rates. Recent examples are Geweke and Keane (2005) in micro-

econometrics using panel data and Bauwens and Rombouts (2007a) and Frühwirth-Schnatter

and Kaufmann (2008) for clustering purposes.

In this paper, we model the conditional distribution of time series of financial returns.

Substantial research has been put into the refinement of the dynamic specification of the

conditional variance equation, for which the benchmark is the linear GARCH specification of

Bollerslev (1986). A survey on GARCH type models is given by Bollerslev, Engle, and Nelson

(1994). The conditional distribution of the innovations is in most applicatons either normal,

Student-t, skewed versions of these distributions, and the GED distribution. These extensions

are often based on Azzalini (1985), Nelson (1991), Fernández and Steel (1998) and Jones and

Feddy (2003). A stable GARCH process is considered in Mittnik, Paolella, and Rachev

(2002). The GARCH type models fit the most important stylized facts of financial returns,

which are volatility clustering and fat tails. However, for relatively long high frequency

time series a typical result of the estimation of GARCH type models is that the conditional

variance process is nearly integrated of order one. Diebold (1986) and Mikosch and Starica

(2004) suggest that this is due to structural changes. To cope with this issue, finite mixtures

of conditional distributions or, in our context, mixture GARCH models have been recently

developed using normal distributions for the components. Building on the finite mixtures

with autoregressive means and variances of Wong and Li (2000) and Wong and Li (2001),

Haas, Mittnik, and Paolella (2004a) develop a mixture of normals coupled with the GARCH

specification to capture, for example, conditional kurtosis and skewness as documented in

Harvey and Siddique (1999), Harvey and Siddique (2000) and Brooks, Burke, Heravi, and

Persand (2005). In an application to daily NASDAQ returns, they find that the best model

contains three components, two of which are driven by nonstationary GARCH processes.
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Other applications of mixture GARCH models are Alexander and Lazar (2005) and Haas,

Mittnik, and Paolella (2006).

We propose a flexible mixture family based on exponential power distributions, also known

as GED distributions, that nests the mixture of normals and that allows for leptokurtic as

well as platikurtic components thanks to component specific shape parameters. The model is

termed a mixed exponential power asymmetric conditional heteroskedasticity model (MEP-

AGARCH) because the model is based on Engle and Ng (1993) to include the leverage effect

in the component variances. There is an interesting tradeoff between the flexibility of the

component distribution and the number of components. In our application to Dow Jones

index returns, we find that a two-component MEP-AGARCH model dominates mixed nor-

mal distributions with more components (and more parameters) both in-sample and out-of-

sample. In contrast to mixed normal distributions, all the conditional variance processes in

the MEP-AGARCH model become stationary. While the former distribution needs nonsta-

tionary components to match the characteristics of the data, the latter can handle this also

through its extra component specific shape parameters.

The rest of the paper is organized as follows. In section 2, we define the MEP-AGARCH

model. Section 3 states the stationarity condition, the unconditional moments, and the

autocorrelation function of the squared process. An application of the MEP-AGARCH model

to Dow Jones index returns and a study of the accuracy and the relative performance of the

model both in-sample and out-of-sample are provided in Section 4. Section 5 concludes. The

Appendix contains the proof for proposition 1 of Section 3.

2 The model

We let yt denote a univariate time series of interest and define εt = yt − E(yt|Ft), where

Ft is the information set up to time t − 1, and assume that the conditional mean does not

depend on the components of the mixture. We say that ǫt follows a mixed exponential power

asymmetric conditional heteroskedasticity model (MEP-AGARCH) if its conditional cdf is

given by

F (εt | Ft) =

N
∑

n=1

πnEP

(

εt − µn
√

hn,t

)

, (1)

where
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EP (x) =
λn

2
√

2Γ( 1
λn

)

∫ x

−∞

exp(−
∣

∣

∣

∣

z√
2

∣

∣

∣

∣

λn

)dz. (2)

The component mean µn is a real parameter, λn is a shape parameter defined on the positive

line and πn is the mixture weight for component n such that 0 6 πn 6 1 ∀n = 1, ..., N and
∑N

n=1 πn = 1, Γ(·) is the gamma function and

ht = σ +

P
∑

p=1

ψp(ιεt−p − δp) ⊙ (ιεt−p − δp) +

Q
∑

q=1

βqht−q, (3)

where ht = (h1,t, ..., hN,t)
T , σ = (σ1, ..., σN )T , δp = (δ1,p, ..., δN,p)

T , ψp = diag(αp), αp =

(α1,p, ..., αN,p)
T , ι is a N -vector of ones, βq are N ×N matrices (p = 1, ..., P and q = 1, ..., Q)

and ⊙ is the Hadamard product. The model is based on the Engle and Ng (1993) model

to include the asymmetry effect on the component variances hn,t. The effect of negative

shocks on volatility is captured by δn,p. When δn,p is positive, then negative shocks have a

higher effect on the component volatility hn,t than positive shocks. Other models could be

considered that allow for asymmetric news effects, for example, the GJR-GARCH model of

Glosten, Jagannathan, and Runkle (1993) and the EGARCH model of Nelson (1991). Outside

the mixture framework, the exponential power, or GED, distribution is used, for example,

in financial econometrics by Nelson (1991), Liesenfeld and Jung (2000) and Hardouvelis and

Theodossiou (2002). Komunjer (2007) presents an asymmetric extension of the exponential

power distribution with applications to risk management.

To ensure that the volatility processes in the components are positive, we impose that

σn > 0, αp > 0, and βq > 0. As ǫt has zero mean we also have the restriction

µN = −
N−1
∑

n=1

πn

πN

µn. (4)

Several special cases arise from the MEP-AGARCH model. The first one is the diagonal

MEP-AGARCH model in which β(L) is diagonal, implying that each component has an

univariate AGARCH structure

hn,t = σn +
P
∑

p=1

αn,p(εt−p − δn,p)
2 +

Q
∑

q=1

βnn,qhn,t−q. (5)

We will use this diagonal model in the empirical illustration. The model becomes the mixed

normal GARCH of Haas, Mittnik, and Paolella (2004a) when λ1 = ... = λN = 2 and δn,p = 0
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(n = 1, ..., N and p = 1, ..., P ). One can also consider having some components with constant

variances, or with the same conditional variance apart from a constant as in Vlaar and Palm

(1993).

Conditional moments of the data are combinations of the component moments. It can be

shown that the Kth conditional centered moment of yt is given by

Et−1(ε
K
t ) =

N
∑

n=1

πn

∑K
k=0

(

K
k

)

Γ(k+1
λn

)(1 + (−1)k)(2hn,t)
k

2µK−k
n

2Γ( 1
λn

)
. (6)

For example, the conditional variance of yt is

σ2
t = Et−1(ε

2
t ) =

N
∑

n=1

πnµ
2
n +

N
∑

n=1

2πnΓ( 3
λn

)

Γ( 1
λn

)
hn,t

= πTµ(2) + ∆Tht, (7)

the conditional third moment is

Et−1(ε
3
t ) =

N
∑

n=1

πnµ
3
n +

N
∑

n=1

6πnΓ( 3
λn

)

Γ( 1
λn

)
hn,tµn

= πTµ(3) + (Υ ⊙ µ(1))Tht, (8)

and the conditional fourth moment is

Et−1(ε
4
t ) =

N
∑

n=1

πnµ
4
n +

N
∑

n=1

12πnΓ( 3
λn

)µ2
n

Γ( 1
λn

)
hn,t +

N
∑

n=1

4πnΓ( 5
λn

)

Γ( 1
λn

)
h2

n,t

= πTµ(4) + (Ξ ⊙ µ(2))Tht + trace(D ⊙ hth
T
t ), (9)

where π = (π1, ..., πN ), ∆ =

(

2π1Γ( 3

λ1
)

Γ( 1

λ1
)
, ...,

2πNΓ( 3

λN
)

Γ( 1

λN
)

)T

, Υ =

(

3π1Γ( 3

λ1
)

Γ( 1

λ1
)
, ...,

3πNΓ( 3

λN
)

Γ( 1

λN
)

)T

,

Ξ =

(

12π1Γ( 3

λ1
)

Γ( 1

λ1
)
, ...,

12πNΓ( 3

λN
)

Γ( 1

λN
)

)T

, µ(k) = (µk
1 , ..., µ

k
N ), D = diag

(

4πnΓ( 5

λn
)

Γ( 1

λn
)

)

is an n × n

diagonal matrix and trace(A) is the sum of the diagonal elements of the square matrix A.

3 Stationarity condition and unconditional moments

An interesting property is that the model allows for some variance components to be non sta-

tionary. However, the process remains globally stationary if the weights of the nonstationary

components are sufficiently small, as shown in this section. For the theoretical properties it

is convenient to write (3) as

(IN − β(L))ht = (σ +

P
∑

p=1

ψpδ
(2)
p ) + α(L)ε2t − 2 [ψδ] (L)εt, (10)
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where δ
(2)
p = (δ21,p, ..., δ

2
N,p)

T , α(L) =
∑P

p=1 αpL
p, [ψδ] (L) =

∑P
p=1 (αp ⊙ δp)L

p, β(L) =
∑Q

q=1 βqL
q and L is the lag operator. If E(ht) exists, then by the law of iterated expectations

and using (4) and (10) one can show that

E(ht) =
(

IN − β(1) − α(1)∆T
)−1



σ +

P
∑

p=1

ψpδ
(2)
p + α(1)µ(2)



 , (11)

and by (4) we get

σ2 = E(ε2t ) = πTµ(2) + ∆T
(

IN − β(1) − α(1)∆T
)−1



σ +
P
∑

p=1

ψpδ
(2)
p + α(1)πTµ(2)



 . (12)

Therefore, the process is second-order stationary if and only if

det
(

IN − β(1) − α(1)∆T
)

> 0. (13)

Proving this stationarity condition is similar to the proof in Haas, Mittnik, and Paolella

(2004a). In the diagonal case, (12) reduces to

σ2 =









N
∑

n=1

πn

(

1 −∑Q
q=1 βn,q −

2Γ( 3

λn
)

Γ( 1

λn
)

∑P
p=1 αn,p

)

1 −∑Q
q=1 βn,q









−1

(

N
∑

n=1

πnµ
2
n +

N
∑

n=1

πn

2Γ( 3
λn

)

Γ( 1
λn

)

σn +
∑P

p=1 αn,pδ
2
n,p

1 −
∑Q

q=1 βn,q

)

, (14)

and second order stationarity is satisfied if and only if








N
∑

n=1

πn

(

1 −∑Q
q=1 βn,q −

2Γ( 3

λn
)

Γ( 1

λn
)

∑P
p=1 αn,p

)

1 −∑Q
q=1 βn,q









> 0. (15)

The persistence of the volatility process can be measured by the largest eigenvalue of the

matrix

M11 =

























β1 + α1∆
T β2 + α2∆

T · · · βN−1 + αN−1∆
T βN + αN∆T

IN 0N · · · 0N 0N

0N IN
. . .

... 0N

...
...

. . . 0N

...

0N 0N · · · IN 0N

























. (16)

We now concentrate on skewness, kurtosis and the autocorrelation function of the squared

data.
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Proposition 1 If E(ht) and E(hth
T
t ) exist then the unconditional third moment is

E(ε3t ) = πTµ(3) + (Υ ⊙ µ(1))TE(ht). (17)

The unconditional fourth moment is

E(ε4t ) = πTµ(4) + (Ξ ⊙ µ(2))TE(ht) + trace(D ⊙ E(hth
T
t ))

= πTµ(4) + (Ξ ⊙ µ(2))TE(ht) + vec(D)TE(vec(hth
T
t )), (18)

with

E(ht) = (I −M11)
−1c1, (19)

E(vec(hth
T
t )) = (I −M22)

−1M21(I −M22)
−1c1 + (I −M22)

−1c2, (20)

and where

c1 = σ + α⊙ δ ⊙ δ + απTµ(2),

c2 = σ∗ ⊗ σ∗ + (α⊗ σ∗ + σ∗ ⊗ α+ Λ ⊗ Λ)πTµ(2)

+ (Λ ⊗ α+ α⊗ Λ) πTµ(3) + (α⊗ α)πTµ(4),

σ∗ = σ + α⊙ δ ⊙ δ,

Λ = −2α⊙ δ,

and

M11 = β + α∆T

M21 = (α∆T ) ⊗ σ∗ + σ∗ ⊗ (α∆T ) + (Λ ⊗ (Λ∆T ))

+(Λ ⊗ α)(Υ ⊙ µ(1))T + (α⊗ Λ)(Υ ⊙ µ(1))T + (β ⊗ α+ α⊗ β)πTµ(2)

+(α⊗ α)(Ξ ⊙ µ(2))T + β ⊗ σ∗ + σ∗ ⊗ β,

M22 = (α⊗ α)vec(D)T + (α∆T ) ⊗ β + β ⊗ (α∆T ) + β ⊗ β.

The autocovariance function for the squared process is

γ(τ) = γ(−τ) = E(ε2t ε
2
t−τ ) − E2(ε2t ) = cov(ε2t , ε

2
t−τ )

= ∆T (α∆T + β)τ−1
{

σ∗E(ε2t ) + αE(ε4t ) − 2 (α⊙ δ)E(ε3t )

+ β
(

πTµ(2)E(ht) + E(hth
T
t )∆

)

− E(ht)E(ε2t )
}

. (21)
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Proof : See the Appendix.

From the Appendix we also learn that the fourth unconditional moment exists when the

largest eigenvalue of the following matrix is less than one:

M =





M11 0N×N2

M21 M22



 .

In the application, we will compare the theoretical moments implied by the parameter esti-

mates with the empirical moments.

4 Empirical results

4.1 Data

From Datastream we have daily Dow Jones index returns based on closing prices from January

3, 1950 to March 22, 2006, implying a sample of 14,231 observations. See Figure 1 for the

sample path and Table 1 for some descriptive statistics.

0 2000 4000 6000 8000 10000 12000 14000
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Figure 1: Dow Jones returns
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Table 1: Descriptive statistics for Dow Jones index returns

Mean 0.000284 Maximum 0.0967

Standard deviation 0.009101 Minimum -0.2563

Skewness -1.67487 Kurtosis 52.63

Sample period: January 3, 1950 to March 22, 2006 (14,231 obser-

vations)

4.2 Model selection and in-sample fit

After fitting an ARMA(1,1) model for the conditional mean, we consider twenty-eight candi-

date models, with one to three components, to fit the Dow Jones returns. Fourteen models

are estimated with a GARCH(1,1) specification for the component specific variance processes

and another fourteen with asymmetric GARCH(1,1) specifications (AGARCH). The models

that are termed MNs(i) and MN(i) are the symmetric and asymmetric mixed normal mod-

els with i components, where a symmetric mixture has µ1 = µ2 = 0. Similarly, MEPs(i;λ)

and MEP(i;λ) are the symmetric and asymmetric mixed exponential power models with the

same, but not fixed, shape parameter. Finally, MEPs(i;λi) and MEP(i;λi) represent those

with different shape parameters. All the models in the application are estimated by maximum

likelihood (ML) estimation. The loglikelihood function is given by

T
∑

t=1

log





N
∑

n=1

πn

λn

2Γ( 1
λn

)
√

2hn,t

exp



−
∣

∣

∣

∣

∣

εt − µn
√

2hn,t

∣

∣

∣

∣

∣

λn







 , (22)

and is maximized under the constraint π1 > π2 > ... > πN to circumvent the label switching

problem. Bayesian inference could also be done as explained in Bauwens and Rombouts

(2007b). But given the large sample size and the fact that we estimate an important amount

of models, we prefer ML estimation.

To determine the best in-sample fit among the models, we use the Bayesian information

criterion (BIC), some goodness-of-fit tests on the normalized residuals, and compare empirical

with implied theoretical moments according to the results in Section 3. Table 2 reports the

goodness-of-fit results based on the BIC criterion for the models with the GARCH variance

processes. The BIC selects the asymmetric three-component mixed-normal, i.e. MN(3), as

the best model of all normal mixed models, which is a similar result to that obtained in Haas,

8



Mittnik, and Paolella (2004a). Meanwhile, when each component of the mixture has its

own shape parameter, the models of mixed exponential power with flexible shape behaviour

outperform all the mixed normal models. The BIC selects the asymmetric mixed exponential

power model with two components and different shape parameter for each component, i.e.

MEP(2,λi), as the best of all fourteen models. The last two columns of Table 2 give the

Table 2: In sample fit (models without asymmetry effect)

Model n-par Loglik BIC ρmax(M11) ρmax(M22)

MN(1) 6 48722.71 -97388 0.9880 0.9874

MNs(2) 10 54029.11 -107963 0.9594 0.9222

MN(2) 11 54032.79 -107960 0.9600 0.9234

MNs(3) 14 54073.11 -108011 0.9617 0.9273

MN(3) 16 54082.41 -108012 0.9614 0.9269

MEP(1) 7 49038.37 -98010 0.9900 0.9939

MEPs(2;λ) 11 54075.78 -108046 0.9906 0.9972

MEP(2;λ) 12 54079.03 -108043 0.9907 0.9960

MEPs(2;λi) 12 54077.71 -108041 0.9915 1.0061

MEP(2;λi) 13 54086.27 -108048 0.9917 0.9997

MEPs(3;λ) 15 54093.28 -108043 0.9960 0.9968

MEP(3;λ) 17 54101.48 -108040 0.9956 0.9953

MEPs(3;λi) 17 54098.57 -108035 0.9967 1.0003

MEP(3;λi) 19 54107.05 -108032 0.9967 0.9991

In the second column, n-par denotes the number of the parameters in the

model. The last two columns give the maximum eigenvalue of the matrix M11

and M22.

values of ρmax(M11) and ρmax(M22) that are necessary to evaluate for the existence of the

second and fourth moments. All models show that ρmax(M11) is less than one in modulus

suggesting that the return series is second-order stationary. Also, the results show that the

unconditional fourth moment exists except in two out of the fourteen cases: MEPs(2;λi) and

MEPs(3;λi) for which ρmax(M22) is slightly higher than unity. We find the same conclusions

in Table 3, which summarizes the models with AGARCH component variances. The best

model is still the MEP(2,λi). In addition, all the models now indicate the existence of fourth
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moments. Regarding the values of the BIC, the models with asymmetry effect dominate their

counterparts in Table 2.

Table 3: In sample fit (models with asymmetry effect)

Model n-par Loglik BIC ρmax(M11) ρmax(M22)

MN(1) 7 48796.33 -97526 0.9812 0.9723

MNs(2) 12 54118.54 -108122 0.9566 0.9165

MN(2) 13 54121.62 -108119 0.9566 0.9165

MNs(3) 17 54136.56 -108111 0.9599 0.9239

MN(3) 19 54159.89 -108138 0.9591 0.9224

MEP(1) 8 49100.47 -98124 0.9843 0.9812

MEPs(2;λ) 13 54149.57 -108175 0.9853 0.9796

MEP(2;λ) 14 54157.71 -108182 0.9858 0.9808

MEPs(2;λi) 14 54158.46 -108183 0.9854 0.9791

MEP(2;λi) 15 54166.89 -108190 0.9863 0.9821

MEPs(3;λ) 18 54160.93 -108150 0.9857 0.9791

MEP(3;λ) 20 54171.83 -108152 0.9898 0.9943

MEPs(3;λi) 20 54173.03 -108155 0.9874 0.9819

MEP(3;λi) 22 54192.21 -108174 0.9945 0.9897

In the second column, n-par denotes the number of parameters in the model.

The last two columns give the maximum eigenvalue of the matrix M11 and

M22.

To test the distributional assumption, we use (1) to compute the residual ût = F (ǫ̂t | Ft),

which we transform, following Vlaar and Palm (1993), into zt = Φ−1(ût), where Φ−1(.) is

the quantile function of the normal distribution. Testing if zt is normally distributed can

be done using classical tests like the Cramer-von Mises, Anderson-Darling, Watson empirical

distribution and Jarque-Bera tests. The results of these tests indicate that one-component

models systematically reject normality (results not reported here). For the two-component

models the normal mixture rejects and the exponential power mixtures do not reject. How-

ever, we do not reject normality using a three-component normal mixture. The LM test of

heteroskedasticity indicates that there is no evidence of autocorrelation in the squares of the

normalized residuals except in the case of one-component models that do not include the
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asymmetry effect.

We now focus on the implied theoretical moments according to the results in Section 3

for an informal comparison with the sample moments. Table 4 displays the empirical mean,

variance, skewness and kurtosis together with the theoretical moments based on the ML

estimates using the full sample for the most promising models with AGARCH component

variances. We observe that the mean and variance are matched equally well for the models

Table 4: Sample versus implied moments

Sample MN(2) MN(3) MEPL(2;λi)

Mean 2.84E-04 2.92E-04 2.31E-04 2.92E-04

Variance 8.28E-05 1.04E-04 1.05E-04 1.04E-04

Skewness -1.67477 -0.2683 -1.6305 -1.4086

Kurtosis 52.63699 10.483 31.3476 48.7634

under consideration. With respect to skewness, only the two-component MEP-AGARCH

and the three-component normal GARCH model perform well. Only the two-component

MEP-AGARCH is able the match the sample kurtosis.

4.3 Normal versus exponential power components

Using the whole sample period, Tables 5 and 6 report the model parameter estimates for the

GARCH and AGARCH variance specifications, respectively (*** means significant at the 1

percent level, ** and * at 5 and 10 percent respectively). The parameter estimates for the

symmetric mixtures are not reported since they underpeform (see the previous section).

For the mixed normal models, we observe in Table 5 that when the component mean µn

decreases, the response of the component volatilities hn,t to the unexpected return εt increases

(αn increases strongly) and βn decreases. Also, the variance components with the smallest

µn are explosive (αn +βn > 1) and have small mixing probabilities πn. For the MEP models,

the estimated shape parameters λn are significantly different from 2, hence the normality

hypothesis is rejected for all the components. More precisely, for the two-component mixture

MEP(2,λi), λ̂1 = 1.65 and λ̂2 = 0.78, meaning that both components have fat tails. In

contrast to the normal mixture models, all the component-specific variance processes become

11



now stationary (αn +βn < 1). The component of the mixture with the negative mean and the

lowest mixing probability still exhibits the highest reaction of its variance to shocks, though

this reaction remains moderate (small α’s) compared with the mixed normal models. The

mixed exponential power models with the same shape parameter, MEP(i,λ), are not flexible

enough to prevent this effect. Including the asymmetry effect in the variance components

(δn), the results in Table 6 illustrate, moreover, that the effect of bad shocks relative to good

shocks on the component volatilities is higher in the regime with the high mixing probability.

4.4 Out-of-sample performance

The out of sample performance is evaluated by one step ahead daily value at risk (VaR)

forecasts obtained using parameter estimates estimated by a moving data window of 10,654

observations. Doing so, we obtain 3,576 (January 15, 1992 to March 22, 2006) VaR predictions

at the 1, 2.5 and 5 percent levels. Among the mixture models, we only consider the best, which

are the three-component mixed normal model and the two component mixed exponential

power model with different shape parameters and including the asymmetry effect. The one

component models are also included in the comparison.

We use three tests based on Christoffersen (1998), see also for example Kuester, Mittnik,

and Paolella (2006). Let Iα
t be 1 when yt < V aRt(α) and 0 otherwise, where V aRt(α)

is the α-th quantile of the conditional distribution under study. We compute three tests

using the estimated Iα
t ’s. The unconditional coverage test checks if the failure rate, defined

by Fα =
∑

t Î
α
t /3576, is equal to the pre-specified level α. Independence is tested in a

Markovian framework, by verifying whether the first column in the transition probability

matrix are equal. The conditional coverage test combines the two previous tests. The three

tests are asymptotically Chi-squared distributed under the null hypothesis (one degree of

freedom for the first two tests and two for the combined test). Table 7 presents failure rates

and p-values of the VaR prediction tests for the three VaR levels. The failure rates show that

both mixture models are equally close to the 5% and 2.5% target levels. At the 1% level,

only the mixed exponential power model is accurate. These findings are also confirmed in the

unconditional coverage tests. Also, as expected, both the normal and the exponential power

AGARCH one component models systematically overestimate the failure rates. Except for

the two mixture models at the 5% VaR level, the independence test does not reject. Based on
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MN(1) MEP(1) MN(2) MN(3) MEP(2;λ) MEP(3;λ) MEP(2;λi) MEP(3;λi)

µ1 9.28E−05∗∗

(5.63E−05)
0.0004∗∗∗

(0.0001)
6.48E−05∗

(4.84E−05)
0.0007∗∗∗

(0.0002)
0.0003∗∗∗
(4.52E−05)

0.0007∗∗∗
(0.0002)

σ1 1.08E−06

(6.05E−08)
5.12E−07∗∗∗

(5.70E−08)
2.53E−07∗∗∗

(3.50E−08)
1.52E−07∗∗∗

(5.30E−08)
4.28E−07∗∗∗

(6.35E−08)
8.53E−08

(1.50E−07)
2.85E−07∗∗∗

(6.66E−08)
5.13E−08

(1.22E−07)

α1 0.0751∗∗∗
(0.0013)

0.0410∗∗∗
(5.70E−08)

0.0253∗∗∗
(0.0015)

0.0191∗∗∗
(0.0027)

0.0424∗∗∗
(0.0029)

0.0683∗∗∗
(0.0090)

0.0409
(0.0029)

0.0564∗∗∗
(0.0069)

β1 0.9129∗∗∗
(0.0019)

0.9223∗∗∗
(0.0034)

0.9336∗∗∗
(0.0037)

0.9289∗∗∗
(0.0083)

0.9338∗∗∗
(0.0039)

0.9092∗∗∗
(0.0093)

0.9375∗∗∗
(0.0038)

0.9165∗∗∗
(0.0082)

λ1 2 1.4099∗∗∗
(0.0117)

2 2 1.6263∗∗∗
(0.0329)

1.6805∗∗∗
(0.0426)

1.6469∗∗∗
(0.0374)

1.5899∗∗∗
(0.0633)

π1 1 1 0.9691∗∗∗
(0.0048)

0.5934∗∗∗
(0.1124)

0.9924∗∗∗
(0.0028)

0.6658∗∗∗
(0.1072)

0.9527∗∗∗∗
(0.0151)

0.6845∗∗∗
(0.1653)

α1 + β1 0.9880 0.9633 0.9589 0.9480 0.9762 0.9776 0.9784 0.9729

µ2 −0.0029∗∗∗
(0.0012)

−0.0006∗
(0.0004)

−0.0085∗∗
(0.0045)

−0.0013∗∗∗
(0.0005)

−0.0067
(0.0006)

−0.0010∗∗
(0.0004)

σ2 1.31E−05∗∗

(5.96E−06)
4.67E−07∗∗∗

(1.28E−07)
0.0001

(8.90E−05)
1.86E−07∗∗∗

(7.34E−08)
1.31E−06

(1.49E−06)
1.79E−07∗∗

(7.75E−08)

α2 0.3927∗∗∗
(0.0700)

0.0426∗∗∗
(0.0055)

2.0229∗∗
(1.1171)

0.0073∗∗∗
(0.0024)

0.0492
(0.0425)

0.0080∗∗∗
0.0026

β2 0.7861∗∗∗
(0.0645)

0.9344∗∗∗
(0.0069)

0.5120∗
(0.3347)

0.9862∗∗∗
(0.0038)

0.6840∗∗∗
(0.1416)

0.9900∗∗∗
(0.0026)

λ2 2 2 1.6263∗∗∗
(0.0329)

1.6805∗∗∗
(0.0426)

0.7774∗∗∗
(0.1010)

2.4149∗∗∗
(0.3806)

π2 0.0309∗∗∗
(0.0050)

0.4035∗∗∗
(0.0700)

0.0076∗∗∗
(0.0028)

0.3285∗∗∗
(0.0644)

0.0473∗∗∗
(0.0158)

0.2542∗∗∗
(0.0729)

α2 + β2 1.1778 0.9770 2.5350 0.9934 0.7331 0.9980

µ3 −0.0103∗
(0.0073)

−0.0080
(0.0528)

−0.0033
(0.0034)

σ3 0.0002
(0.0002)

0.0002
(0.0002)

4.37E−07

(6.30E−07)

α3 2.6709
(2.2954)

2.8945∗
(1.9256)

0.0150
(0.0149)

β3 0.3391
(0.7061)

0.4007
(0.4843)

0.7568∗∗∗
(0.1445)

λ3 1.6805∗∗∗
(0.0426)

0.6729∗∗∗
(0.0905)

π3 0.0032∗∗∗
(0.0010)

0.0056∗∗∗
(0.0023)

0.0613∗∗∗
(0.0189)

α3 + β3 3.0101 3.2952 0.7718
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MN(1) MEP(1) MN(2) MN(3) MEP(2;λ) MEP(3;λ) MEP(2;λi) MEP(3;λi)

µ1 7.16E−05

(7.68E−05)
0.0004∗∗∗

(0.0001)
7.81E−05

(9.69E−05)
0.0004∗∗
(0.0002)

0.0002∗∗∗
(7.36E−05)

3.86E−05

(0.0003)

σ1 6.49E−07∗∗∗

(7.38E−08)
1.88E−07∗∗

(9.14E−08)
1.68E−13

(3.41E−09)
1.17E−11

(9.64E−08)
7.25E−12

(9.81E−08)
5.21E−12

(1.77E−08)
1.17E−11

(9.91E−08)
9.93E−12

(6.23E−08)

α1 0.0691∗∗∗
(0.0016)

0.0400∗∗∗
(0.0023)

0.0247∗∗∗
(0.0015)

0.0190∗∗∗
(0.0029)

0.0433∗∗∗
(0.0030)

0.0503∗∗∗
(0.0074)

0.0410∗∗∗
(0.0030)

0.0574∗∗∗
(0.0075)

β1 0.9121∗∗∗
(0.0004)

0.9195∗∗∗
(0.0007)

0.9314∗∗∗
(0.0037)

0.9227∗∗∗
(0.0093)

0.9309∗∗∗
(0.0040)

0.9001∗∗∗
(0.0169)

0.9358∗∗∗
(0.0040)

0.8989∗∗∗
(0.0094)

δ1 0.0035∗∗∗
(0.0002)

0.0037∗∗∗
(0.0004)

0.0040∗∗∗
(0.0004)

0.0043∗∗∗
(0.0008)

0.0039∗∗∗
(0.0004)

0.0047
(0.0010)

∗∗∗ 0.0035∗∗∗
(0.0004)

0.0043∗∗∗
(0.000573)

λ1 2 1.4255∗∗∗
(0.0117)

2 2 1.6841∗∗∗
(0.0363)

1.7845∗∗∗
(0.0704)

1.6932∗∗∗
(0.0392)

1.6304∗∗∗
(0.069308)

π1 1 1 0.9767∗∗∗
(0.0038)

0.6065∗∗∗
(0.1568)

0.9902∗∗∗
(0.0039)

0.6152∗∗∗
(0.2113)

0.9469∗∗∗
(0.0156)

0.7331∗∗∗
(0.0576)

α1 + β1 0.9812 0.9595 0.9561 0.9417 0.9742 0.9504 0.9768 0.9563

µ2 −0.0030∗∗
(0.0016)

−0.0004∗∗
(0.0002)

−0.0079∗∗∗
(0.0045)

−0.0004
(0.0004)

−0.0043∗∗∗
(0.0007)

0.0003
(0.0005)

σ2 2.13E−05

(1.79E−05)
1.21E−08

(1.61E−07)
6.02E−06

(7.66E−05)
2.25E−08

(2.10E−07)
8.42E−09

(1.79E−06)
2.54E−09

(8.34E−08)

α2 0.4487∗∗∗
(0.1416)

0.0414∗∗∗
(0.0059)

0.5246
(0.3250)

0.0454∗∗∗
(0.0105)

0.0355
(0.0293)

0.0111∗∗∗
(0.0032)

β2 0.7069∗∗∗
(0.0912)

0.9349∗∗∗
(0.0068)

0.8187∗∗∗
(0.1310)

0.9554∗∗∗
(0.0090)

0.6339∗∗∗
(0.1060)

0.9883∗∗∗
(0.0023)

δ2 0.0054
(0.0036)

0.0035∗∗∗
(0.0007)

0.0085
(0.0113)

0.0026∗∗
(0.0012)

0.0089∗∗
(0.0039)

0.0004
(0.0027)

λ2 2 2 1.6841∗∗∗
(0.0363)

1.7845∗∗∗
(0.0704)

0.7773
(0.1046)

2.2696∗∗∗
(0.3511)

π2 0.0233∗∗∗
(0.0039)

0.3903∗∗∗
(0.0866)

0.0098∗∗∗
(0.0039)

0.3805∗∗∗
(0.1552)

0.0531∗∗∗
(0.0164)

0.2535∗∗∗
(0.0722)

α2 + β2 1.1556 0.9763 1.3432 1.0008 0.6694 0.9995

µ3 −0.0182
(0.0471)

−0.0153
(0.0624)

−0.0087
(0.0042)

∗∗

σ3 0.0001
(0.0002)

0.0002
(0.0002)

8.63E−06

(4.29E−05)

α3 2.8615
(2.6248)

4.3983∗
(3.4017)

0.1983
(0.4714)

β3 0.3656
(0.7738)

0.3690
(0.5341)

0.3920
(0.3840)

δ3 −0.0023
(0.0034)

−0.0021
(0.0026)

0.0110
(0.0108)

λ3 2 1.7845∗∗∗
(0.0704)

0.9415∗∗
(0.4481)

π3 0.0032∗∗
(0.0016)

0.0043∗∗
(0.0018)

0.0134∗∗
(0.0079)

α3 + β3 3.2272 4.7673 0.5903
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these results, we conclude that the two componenent exponential power AGARCH mixture

performs best in this out of sample performance exercise.

Table 7: Failure rates and p-values for VaR tests

MN(1) MEP(1) MEP(2;λi) MN(3)

α = 1%

Failure rate 0.0453 0.0224 0.0108 0.0185

Unconditional Coverage 0.0000 0.0000 0.6384 0.0000

Independence 0.7762 0.8683 0.4330 0.5078

Conditional Coverage 0.0000 0.0000 0.6585 0.0000

α = 2.5%

Failure rate 0.0763 0.0475 0.0277 0.0280

Unconditional Coverage 0.0000 0.0000 0.3054 0.2559

Independence 0.5372 0.5690 0.0423 0.1327

Conditional Coverage 0.0000 0.0000 0.0753 0.1694

α = 5%

Failure rate 0.1202 0.0886 0.0459 0.0445

Unconditional Coverage 0.0000 0.0000 0.2498 0.1218

Independence 0.5665 0.3972 0.0002 0.0001

Conditional Coverage 0.0000 0.0000 0.0006 0.0001

4.5 NASDAQ returns

To compare with Haas, Mittnik, and Paolella (2004a), we repeat the same exercise as above,

results not reported here, to daily NASDAQ returns from February 1971 to June 2001 (7,681

observations). From the estimates of the three-components mixed normal and the two com-

ponent mixed exponential power models we find the same conclusions as in our application to

Dow Jones returns: The three-component mixed-normal has two explosive component vari-

ances, while all the variance components of the preferred two-component mixed exponential

power model are stationary.
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5 Conclusion

In this paper, we develop a finite mixture of conditional exponential power distributions

where each component exhibits asymmetric conditional heteroskedasticity. We provide weak

stationarity conditions and unconditional moments to the fourth order for this mixture. The

mixture is more flexible than a normal mixture because the components have shape-specific

parameters. Thanks to the extra shape parameters, an exponential power mixture with two

components is found to be flexible enough to accommodate financial time series characteris-

tics as in our application to Dow Jones and NASDAQ daily return series. Another attractive

feature of the mixed exponential power mixture that we find in the application is that, in con-

trast to mixed normal distributions, all the conditional variance processes become stationary.

One extension of this paper is to allow for dependent states in the mixture distribution as

Haas, Mittnik, and Paolella (2004b). Another extension is the generalization to the multivari-

ate case, as Bauwens, Hafner, and Rombouts (2007) did for the univariate normal GARCH

mixture.

Appendix: Proof of Proposition 1

The proof follows the same idea as in Haas, Mittnik, and Paolella (2004a). From (3) we

obtain the diagonal MEP-AGARCH(1,1)

ht = σ∗ + αε2t−1 + Λεt−1 + βht−1, (23)

where σ∗ = σ + α⊙ δ ⊙ δ, Λ = −2α⊙ δ, P = Q = 1 and β (β1 = β) is a diagonal matrix. It

follows that

hth
T
t = σ∗σ∗T + σ∗αT ε2t−1 + σ∗ΛT εt−1 + σ∗hT

t−1β + ασ∗T ε2t−1 + ααT ε4t−1

+αΛT ε3t−1 + αhT
t−1ε

2
t−1β + Λσ∗T εt−1 + ΛαT ε3t−1 + ΛΛT ε2t−1

+ΛhT
t−1εt−1β + βht−1σ

∗T + βht−1ε
2
t−1α

T + βht−1εt−1Λ
T

+βht−1h
T
t−1β. (24)
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We note that Wt = vec(ht, hth
T
t ) =

(

hT
t , vec(hth

T
t )T

)T
, and using (7) to (9) we get 1,

vec(σ∗σ∗T ) = σ∗ ⊗ σ∗,

Et−2(vec(σ
∗αT ε2t−1)) = (α⊗ σ∗) πTµ(2) +

(

(α∆T ) ⊗ σ∗
)

ht−1,

Et−2

(

vec(σ∗ΛT εt−1)
)

= (Λ ⊗ σ∗)Et−2(εt−1) = 0,

Et−2

(

vec(σ∗hT
t−1β)

)

= (β ⊗ σ∗)ht−1,

Et−2(vec(αε
2
t−1σ

∗T )) = (σ∗ ⊗ α) πTµ(2) +
(

σ∗ ⊗ (α∆T )
)

ht−1,

Et−2(vec(αα
T ε4t−1)) = (α⊗ α) πTµ(4) + (α⊗ α) (Ξ ⊙ µ(2))Tht−1

+ (α⊗ α) vec(D)T vec(ht−1h
T
t−1),

Et−2(vec(αΛT ε3t−1)) = (Λ ⊗ α) πTµ(3) +
(

Λ ⊗ (α(Υ ⊙ µ(1))T )
)

ht−1,

Et−2(vec(αh
T
t−1ε

2
t−1β)) = (β ⊗ α) πTµ(2)ht−1 +

(

β ⊗ α∆T
)

vec(ht−1h
T
t−1),

Et−2

(

vec(Λσ∗T εt−1)
)

= (σ∗ ⊗ Λ)Et−2(εt−1) = 0,

Et−2

(

vec(ΛαT ε3t−1)
)

= (α⊗ Λ) πTµ(3) +
(

(α(Υ ⊙ µ(1))T ) ⊗ Λ
)

ht−1,

Et−2

(

vec(ΛΛT ε2t−1)
)

= (Λ ⊗ Λ)πTµ(2) +
(

Λ ⊗ (Λ∆T )
)

ht−1,

Et−2

(

vec(ΛhT
t−1εt−1β)

)

= (β ⊗ Λ)ht−1Et−2(εt−1) = 0,

Et−2(vec(βht−1σ
∗T )) = (σ∗ ⊗ β)ht−1,

Et−2(vec(βht−1ε
2
t−1α

T )) = (α⊗ β) πTµ(2)ht−1 +
(

(α∆T ) ⊗ β
)

vec(ht−1h
T
t−1),

Et−2

(

vec(βht−1εt−1Λ
T )
)

= (Λ ⊗ β)ht−1Et−2(εt−1) = 0

1We use the properties of vec operator: vec(xyT ) = y ⊗ x and vec(ABC) = (CT
⊗ A)vec(B), where x and

y are vectors with the same order and A, B and C are matrices with appropriate dimensions. vec(A) is the

operator that stacks the columns of the matrix A.
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and

Et−2(vec(βht−1h
T
t−1β)) = (β ⊗ β) vec(ht−1h

T
t−1).

Then it follows that

Et−2(Wt) = c+MWt−1, (25)

where

c =





c1

c2



 ,

c1 = σ∗ + απTµ(2),

c2 = σ∗ ⊗ σ∗ + (α⊗ σ∗ + σ∗ ⊗ α+ Λ ⊗ Λ)πTµ(2)

+ (Λ ⊗ α+ α⊗ Λ) πTµ(3) + (α⊗ α)πTµ(4),

and

M =





M11 0N×N2

M21 M22



 ,

where

M11 = β + α∆T ,

M21 = (α∆T ) ⊗ σ∗ + σ∗ ⊗ (α∆T ) + (Λ ⊗ (Λ∆T ))

+(Λ ⊗ α)(Υ ⊙ µ(1))T + (α⊗ Λ)(Υ ⊙ µ(1))T + (β ⊗ α+ α⊗ β)πTµ(2)

+(α⊗ α)(Ξ ⊙ µ(2))T + β ⊗ σ∗ + σ∗ ⊗ β,

M22 = (α⊗ α)vec(D)T + (α∆T ) ⊗ β + β ⊗ (α∆T ) + β ⊗ β.

By the law of iterated expectations we have

Et−h−1(Wt) =

h−1
∑

i=1

M ic+MhWt−h. (26)

As h goes to infinity, the limit exists and does not depend on t if and only if all the eigenvalues

of M lie inside the unit circle, i.e., all the eigenvalues of M11 and M22 lie inside the unit circle:

lim
h−→+∞

Et−h−1(Wt) = E(Wt) = (I −M)−1c. (27)

We deduce that the process is covariance stationary if all the eigenvalues of M11 lie inside the

unit circle, and the fourth moment exists if all the eigenvalues of M11 and M22 lie inside the

unit circle.
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We focus next on the autocorrelations for the squared process. Consider the diagonal

MEP-AGARCH(1,1) process, then from (27)

E(ht) = (I − β − α∆T )−1(σ∗ + απTµ(2)), (28)

and the two-step ahead forecast of the variance vector is

Et−1(ht+1) = σ∗ + αEt−1(ε
2
t ) − 2α⊙ δEt−1(εt) + βht

= (σ∗ + απTµ(2)) + (α∆T + β)ht

= E(ht) + (α∆T + β)(ht − E(ht)). (29)

By recursive substitution we get the τ -step ahead forecast of ht

Et−1(ht+τ ) = E(ht) + (α∆T + β)τ (ht − E(ht)). (30)

If the process has a finite fourth moment, then

E(ε2t ε
2
t−τ ) = E(ε2t−τEt−τ (ε2t ))

= E(ε2t−τEt−τ (πTµ(2) + ∆Tht))

= πTµ(2)E(ε2t ) + ∆TE(ε2t−τEt−τ (ht)). (31)

Using (30) and (23) we get

E(ε2t ε
2
t−τ ) = πTµ(2)E(ε2t ) + ∆TE(ht)E(ε2t )

+∆T (α∆T + β)τ−1
[

σ∗E(ε2t ) + αE(ε4t ) + ΛE(ε3t )

+ β
(

πTµ(2)E(ht) +E(hth
T
t )∆

)

− E(ht)E(ε2t )
]

= E2(ε2t ) + ∆T (α∆T + β)τ−1
[

σE(ε2t ) + αE(ε4t )

+ β
(

πTµ(2)E(ht) +E(hth
T
t )∆

)

− E(ht)E(ε2t )
]

. (32)

Therefore by (28) and (4) we get

cov(ε2t , ε
2
t−τ ) = ∆T (α∆T + β)τ−1

{

σ∗E(ε2t ) + αE(ε4t ) + ΛE(ε3t )

+ β
(

πTµ(2)E(ht) + E(hth
T
t )∆

)

−E(ht)E(ε2t )
}

. (33)

End of proof �
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