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THE ROLE OF SKOROKHOD SPACE IN THE DEVELOPMENT
OF THE ECONOMETRIC ANALYSIS OF TIME SERIES

J. RODERICK McCRORIE

ABSTRACT. This paper discusses the fundamental role played by Skorokhod space,
through its underpinning of functional central limit theory, in the development of the
paradigm of unit roots and co-integration. This paradigm has fundamentally affected
the way economists approach economic time series as was recognized by the award of
the Nobel Memorial Prize in Economic Sciences to Robert F. Engle and Clive W.J.
Granger in 2003. Here, we focus on how P.C.B. Phillips and others used the Skorokhod
topology to establish a limiting distribution theory that underpinned and facilitated the
development of methods of estimation and testing of single equations and systems of
equations with possibly integrated regressors. This approach has spawned a large body
of work that can be traced back to Skorokhod’s conception of fifty years ago. Much of
this work is surprisingly confined to the econometrics literature.

1. INTRODUCTION

One important aspect of a time series is that it is but one realization of a multidi-
mensional random variable. From this point of view, an assumption of second-order
stationarity is convenient because it facilitates inference through laws of large numbers
and central limit theorems in a classical way. An early influence on models of economic
time series was the book by Grenander and Rosenblatt [35] which was based on station-
arity about deterministic trend functions, where inference can be conducted under what
today would be called “Grenander conditions” (e.g. [43, p. 215]). These include a re-
quirement that a suitably normalized sample moment matrix of the regressors converge
to a positive definite limit. Another aspect of the second-order stationarity assumption
is that it permits a Wold decomposition whereby a time series can be represented as
the sum of a linearly regular part involving an infinite-order weighted average of white
noise, and a part that is perfectly linearly deterministic [43, p. 137]. This offered some
justification for the then emerging Box-Jenkins methods [9], where autoregressive in-
tegrated moving average (ARIMA) models selected on the basis of the data could be
viewed as approximations to the regular part in the Wold decomposition. These models
produced satisfactory representations of many observed economic time series, at least
for the purpose of prediction, but as the models were selected purely on the basis of
the data, they lacked theoretical justification, as if they emerged from a “black box”.
The essential problem faced by the econometrics profession in the late 1960s and 1970s
was that structural econometric models, embodying restrictions from economic theory,
were often outperformed by the black box models. For example, Cooper [14] compared
one-step-ahead forecasts from seven structural models of the U.S. economy against a
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naive forecast from an AR model and in most cases found forecasts from the latter
were superior. Naylor et al [69] even advocated Box—Jenkins models as an alternative
to econometric models. There was also the problem of the proliferation of data-based
models for a given time series that were incompatible with each other from the point
of view of economic theory. In the background, there was a debate about whether or
not observed aggregate time series, which were manifestly non-stationary, should have
random walk or other trend components removed prior to estimation given the loss of
“long run” information that such transformations imply. The introduction of the con-
cepts of unit roots and co-integration in the context of non-stationary time series [37,
30, 38, 39, 44] helped to resolve some of these issues. The theoretical underpinning of
this work was provided in papers by P.C.B. Phillips [76, 75, 83] who applied functional
central limit theory based on Skorokhod space in a way that has firmly established it
as part of the econometrician’s toolkit. The result has been a distinct literature that
traces back to Skorokhod’s conception of fifty years ago. The purpose of this paper is
to summarize its main contributions for the wider mathematics community.

In Section 2, we briefly discuss the concepts and antecedents of unit roots and
co-integration, and error correction models which Engle and Granger [30] associated
with co-integration. In Section 3, we show how Phillips used the Skorokhod topology
to underpin time series regression with a unit root and how he provided an (asymp-
totic) explanation of influential simulation results on spurious regression by Granger
and Newbold [40]. Regression with co-integrated variables is then briefly contrasted
with spurious regression. In Section 4, we discuss recent work, focussing on functional
central limit theory appropriate for non-linear transformations of non-stationary time
series. To our knowledge, this is the first article to describe this literature as a whole.
For reasons of space, we shall confine ourselves almost exclusively to a discussion of
autoregressive unit roots. This remains the most important application in econometrics
(e.g. [41]) but other work is relevant, especially under fractional integration [17, 19, 6,
52, 61, 62, 97-99, 60, 34].

2. UNIT ROOTS AND CO-INTEGRATION

Intuitively, co-integration tries to bring sense to the notion that two or more time series
when looked at individually appear to be wandering erratically and yet are systemat-
ically wandering together. Casual inspection of many raw economic time series would
suggest they exhibit a trend component, explained possibly by the time series being
stationary about a deterministic trend or possibly because they are non-stationary, say
as a result of their containing a random walk component. The following idea is diffi-
cult to make precise ([18, 57, 94, 10, 32-33, 69]) but we could imagine, analogously to
the Box—Jenkins methodology, of “differencing” a time series to induce “stationarity”.
More formally, we could say that if, asymptotically, a time series comprises a sequence
of random variables with first and second moments which tend to fixed stationary values
and whose covariances tend to stationary values depending only on how far apart the
elements are, then the time series is integrated to order zero, or I(0). A time series could
then be said to be integrated to order d, or I(d), if it must be differenced d times before
an I(0) series results. This would mean, then, that the random walk process

(1) Ty =241+, x0=0, & ~ IID0,0?)
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is such that is I(1) because the series of its differences, Vz; = 2y — 41, is 1(0). See
[45-46] for a non-technical discussion and comparison of the properties of I(1) and I1(0)
series. Much of the early literature was concerned with formulating and interpreting
tests to discriminate between stationary processes about a deterministic trend and non-
stationary processes containing an autoregressive unit root such as (1) above [28]. This
was motivated as a means of trying to avoid applying a wrong filter (either one of
detrending or differencing) to the data which, it was argued, would result in invalid
inference. It is, however, becoming more common today to see both types of model as
simply alternative representations of the components of an underlying, trending stochas-
tic process [81, 63].

The idea of co-integration, when applied in the context of I(1) and I(0) series,
seeks to relate raw series that are I(1) through a linear combination of them which is
I(0). We could imagine series that individually exhibit “persistence” but which together
are attracted to each other towards a statistical equilibrium where linear combinations
of the variables are “stationary”. Co-integration does not explain why the variables
are trending in the first place, but what it does do is to provide a basis of examining
relationships between I(1) variables or variables integrated to higher order. Often we
can place an economic interpretation on the co-integrating relation. Engle and Granger
[30, 38] showed that every co-integrated system can be written as a model that has
what is called an error correction representation, comprising a “balanced” equation in
I(0) variables involving the differences of the variables related to their lagged values
but also to a term that reflects the disequilibrium between the I(1) variables which,
under co-integration, is I(0). Co-integration is a property that can apply in principle
to time series with possibly higher orders of integration and various representations of
co-integrated systems are useful [86, 108, 79, 42, 111].

3. REGRESSION WITH NON-STATIONARY TIME SERIES

The essential statistical distributional problem in unit root regression, which Chan and
Wei [11] and Phillips [77] related to convergence in the Skorokhod topology, can be
exposited in the context of the simple AR(1) model

(2) Ty =pri_1+e (t=1,...,n)

where p is an unknown parameter and e, ~ NID(0,1). Consider the joint density

(3) folx) = (\/ﬁ) o exp {—% [(1+ p)°Ty — 2pT + 22] } ,

(4) T = Zxﬂtqa I = fo_l-
t=1 t=1

The maximum-likelihood estiamtor (MLE) p,, of p is given by
(5) pn = T1/Ts.
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If |p| < 1, the process is stationary and [59]

(6) Vilpn — p) =5 N(0,1 - p?),

where —% denotes convergence in distribution. When p = 1, (6) is not useful as a basis
of testing for a unit root against stationarity; however, it can be shown using a standard
argument (e.g. [42]) that

(7) n! th—l&t <, i(X% - 1),
t=1

which with
(8> ngfl = O(HQ),

suggests writing

n n
9) n(pn —1)=n""! th,let/n_Q fo_l,
t=1 t=1

on substituting (2) into (3). The problem that presents itself is that there is no law of
large numbers with this normalization such that the denominator converges to a con-
stant. What (9) does convey is that if the statistic has a well-defined limit distribution,
which Theorem 1A below confirms, the ML estimator in this case converges to this
distribution at a faster rate than it does to a normal distribution in the stationary case.
The asymptotic sampling properties of the MLE in (5) can be described in the following
way, which is more suggestive of a uniform approach.

Theorem 1A. ([59, 12, 3, 24]) Let o = 0. Then

N, | <1,
W2(1) -1
d
10 In An - p Y p = ]-?
(10) (P)(Pn — p)— 2572 [ W2 (r)dr |l
C, ol > 1,

where N 1is a centred Gaussian random variable with variance 1, C is a standard Cauchy
random variable, W = (W (r),r > 0) is a standard Wiener process and I,(p) is the
(expected) Fisher information contained in x1,...,x, about the parameter p, given by
E,(T). Asn — oo,

n

e | <1,
n2
(1) Em~ T =1,
2n
p
212 lp| > 1.
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If |p| < 1, (10) remains valid under the weaker assumptions that z( is an arbi-
trary constant or a random variable with a finite second moment not depending on the
sequence € = (g4,t > 1) and € a arbitrary sequence of centred and normalized indepen-
dent, identically distributed (i.i.d.) random variables. If |p| > 1, the limit distribution
depends on the initial value, and in general on the particular distribution of each &,
even if ¢ forms a sequence of i.i.d. random variables [56]. Different results hold if e
forms a sequence of i.i.d. random variables with a stable distribution or in the domain
of attraction of a stable law [12, 78, 67].

If we normalize by the observed rather than the expected Fisher information, the
three limit distributions are reduced to two:

Theorem 1B. ([59, 3, 24]) Let xo = 0. Then

N, ol <1,
(12) VTa(pn — p) —5 W1 -

p2\ / fol W2(r)dr,

The essential contribution of Chan and Wei [11] and Phillips [77] in the journal
paper immediately following [30], was to set the convergence results in the case |p| = 1
to the context of functional central limit theory. Phillips’s approach, which was more
obviously designed as an extension of classical asymptotic theory, has led to the now
prevailing two-stage approach towards deriving limit distributions pertaining to unit
root statistics. This involves using, in the first stage, a functional central limit theorem
(FCLT) to derive a limit distribution for the (normalized) integrated process itself and
then, in the second stage, to derive the limit distribution of the sample statistic based
explicitly on its construction as a functional of the integrated process. It is in the first
stage that the ideas of Skorokhod apply because it is here that the classical theory,
pertaining to convergence in distribution of random variables, needs to be extended to a
framework involving the weak convergence of random functions. This is needed because
the persistence in the random shocks requires us to consider the whole trajectory of the
process and not just its endpoint.

Consider a real-valued stochastic process (x4, t € N). We should like to consider
weak convergence in a function space that is complete, to avoid probability mass escaping
from the space as n — 0o, and separable, because then all the Borel sets of the space are
measurable and weak convergence on product spaces is equivalent to weak convergence
on the component spaces. It is possible to use the space of continuous functions on the
unit interval, C[0, 1], endowed with the uniform metric but because most of the functions
of interest are not continuous, this involves an awkward construction that requires extra
terms that are defined to make the relevant partial sum process continuous are shown
to be asymptotically negligible [17, 15]. Phillips [77, 76, 84] based his work, instead, on
the space D[0, 1] of cadlag (continue a droit, limites a gauche) functions, which contains
jumps but not isolated points, but is sufficient for the problem in hand. This space
is not separable under the uniform metric, meaning in practice there are “too many”
sets on which to define a probability space. The problem is therefore precisely the one
Skorokhod [105] resolved fifty years ago: the space can be rendered separable by what

5
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is now popularly called the Skorokhod metric (his J1 metric) defined in such a way that
allows functions to be compared “sideways” as well as vertically: for x,y € D|0, 1],

(13) ds:gg{s>o:gpuuw—ﬂSaypmw»—mwaSs}

where A denotes the set of functions A : [0,1] — [0,1]. This is the crucial element
in terms of what is needed to define the Borel o-algebra; however the metric space
(D[0,1],ds) is not complete and Phillips used a modification of (13) introduced by
Billingsley (1968) that preserves the same topology:

(14) n = juf {051 < supla(t) - yAO) <.
t
where
A(t) — A(s
(15) I = sup tog X=X
t#s -

and A’ denotes the set of all increasing functions such that ||A|| < oco.

The two-stage approach to establishing limiting distributions of sample statistics
considers, in the first stage, a real-valued stochastic process (z;,t € N) such that
n_l/Qx[m] = oW(r),o > 0 where [rn],r € [0, 1], denotes the integer part of rn, “="
denotes weak convergence in D[0, 1] as described above, and W represents standard
Brownian motion on [0,1]. The approach is set up such that one of a variety of such
FCLT’s could be employed [26, 31, 65-66, 48-50, 113]. With econometric time series in
mind, Phillips chose to use conditions by Herrndorff [49] which allow for certain types
of weakly dependent and heterogeneously distributed disturbances. Later, Phillips and
Solo [91] advocated an approach based on ¢ following a linear process. Today, we might
instead use conditions based on results by Doukhan and Louhichi [21, 4], Beare [5], de
Jong and Davidson [22] or Davidson [16].

In the second stage, an argument based on the continuous mapping theorem [95] is
used to show that for continuous real-valued functions 7" on R,

(16) w13 T 2,) /O T(oW (r))dr.

t—1 2
(n_1/2 265)
1 s=1

[rn]
(17) 3 [y <E < i)
= n - n

=1 =

For the denominator in (8),

WE

n
—2 2 _ -1
n Ext_l—n
t=1

t

3

=

4, / W (r)2dr,
0
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using (16). For the numerator

n

n t—1
n-! E Ti_1Et = E n~1/2 E €s n_1/25t
t=1 t=1 s=1

(18) )
4, 52 /0 W) dw (r).

The integral in (18) is an Ito integral equal to 2 (W?(1) — 1), which agrees with (7). The
joint convergence of (17) and (18) gives (10) up to a normalization.

Expressions involving functionals of Brownian motion such as (10) and (12) can be
derived using the above two stage approach for many relevant time series models, the
most important being the unit root model that includes a constant, and a constant and
a time trend (see [15, 42 (ch. 17)]). With the densities of (10) and (12) we could in
principle use a transformation theorem to generate the densities pertaining to the other
models [1]. Deriving and computing these densities, however, is not a tractable problem
either analytically or numerically and indeed except in the simple model above [2, 64] we
do not have analytic expressions for the asymptotic moments, densities or distributions.
This means, in practice, critical values for hypothesis tests are constructed by simulating
the densities from the Wiener functionals and for general ARMA models additional
methods need to be employed, often using a decomposition by Beveridge and Nelson [7]
under linear process assumptions [91]. This gives what are called Phillips—Perron tests
[90] and augmented Dickey—Fuller tests (see [42, ch. 17)], [107]). More recently, in an
attempt to improve upon the asymptotic nature of expressions such as (10) and (12),
computationally intensive methods based on the bootstrap [73, 72] have been designed.

Perhaps the most celebrated application in econometrics of functional limit theory
based on weak convergence in the Skorokhod topology was the explanation offered by
Phillips [76] of simulation results by Granger and Newbold [40]. Specifically, suppose
we estimate by OLS the parameters a and (3 in the model

(19) Yt = a+ fay + ey (t=1,....n)

where both x; and y; are generated by independent random walks. Granger and Newbold
found in experiments on a sample sizes of 50 and 100 (constrained by the then limits of
computer technology) that the coefficient of determination, R?, was very high (in the
standard setting, indicating that most of the variation in y is explained by the variation
in z), the Durbin—Watson (DW) statistic was extremely low (in the standard setting,
suggesting among other possibilities the residuals were serially correlated) and tests
of the significance of § were seriously biased towards the rejection of no relationship
between y and x. Phillips showed under an FCLT that

5 d oy \ Sxv —1/2 d Sxy
20 — | — ) > n tg — ,
(20) g (Uw) Sx x g VSxxSyy — S%y

2
(21) R? 4, SX4Y, DW - 0,
SxxSyy
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where

1 1 1
(22) &yzéV@W@ﬁ—AL%WAIWWM

(23) Sxx :/01 W2(t)dt — (/OIW(t)dt)2,

2

(24) Syy = /O VRt ( /O IV(t)dt) ,

and 04,0, > 0, and the independent Wiener processes W (t) and V(¢) arise from the
component-wise application of an FCLT. The usual ¢-statistic does not therefore possess
a limit distribution but diverges as the sample size increases; the bias in this test towards
the rejection of no relationship based on a given nominal critical value will increase with
n; the DW d-statistic converges in probability to zero; and R? has a non-degenerated
limit distribution as n — oo.

A regression model like (19) that appears to find relations that do not really exist
is called a spurious regression. The problem here has two elements which co-integration
seeks to resolve. Firstly, under the null hypothesis, the model says that y; is equal to a
constant plus a disturbance term and so the null is false because y; is truly generated as
a random walk. It is not unusual for tests to reject false null hypotheses even when the
alternative is false [20]. Secondly, standard asymptotic results do not hold when at least
one of the regressors is I(1) [76, 28]. Our focus is principally on the development of the
FCLT for integrated processes and so we will mention just two other papers here. Sims,
Stock and Watson [106] showed in vector autoregression containing some unit roots and
possibly time trends that it is not the case the t-statistic on every parameter involving
an I(1) variable follows a non-standard distribution asymptotically: parameters that can
be written as coefficients on mean-zero, non-integrated regressors are root n consistent
and asymptotically normal. Elliot, Rothenberg and Stock [29] proposed a family of
point-optimal tests that dominates the basic unit root tests when a time series has an
unknown mean or a linear trend, although Robinson [98] showed if the unit root is nested
in a model against a different class of alternatives that include fractionally differenced
processes, a standard efficiency theory based on the chi-square distribution is possible
(see [107] for a fuller discussion of hypothesis testing.)

We would expect that residuals from a spurious regression such as (19) would be
I(1) but if y and x were instead co-integrated variables, we would expect the residuals
from (19) to be I(0). This means that the residuals can be used as the basis of testing
for co-integration: we subject the residuals to a unit root test under the null hypothesis
that the variables are not co-integrated. Limiting distribution theory based on Wiener
functionals can be constructed using the FCLT’s above for time series regression with
mixtures of integrated processes with an unknown degree of co-integration (see [54],
[80], [13], [42]). One problem with the asymptotic theory of non-linear ML estimation
in integrated and co-integrated systems is that classical proofs of consistency based on
the uniform convergence of the objective function over the parameter space generally do
not apply owing to the objective function diverging at different rates in the parameter
space. Even if consistency can be established, it can be difficult to deduce the limit dis-
tribution of the ML estimator from a conventional Taylor series expansion of the score

8
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vector. Saikkonen [101] resolved these difficulties by constructing a statistical theory
where, in addition to consistency, a result on the order of consistency of the estimator
of the long-run parameter of the model (pertaining to the co-integrating relation) is
available and the standardized sample information matrix satisfies a suitable stochas-
tic equicontinuity condition. This programme of work was completed with two recent
papers [102-103] allowing the consistency of the reduced form parameters to be estab-
lished without assuming the identifiability of the structural parameters and establishing
a limit distribution theory without assuming the identifiability of the parameters in the
short-run dynamics (i.e. differenced terms and lags of differenced terms not involving
the co-integrating relation). These conditions are especially suitable from the point of
view of econometric time series.

4. OTHER RECENT

The application of the FCLT in (16) applies to the context of linear regression involving
integrated time series. Recently, the focus has switched to non-linear transformations of
integrated time series and an asymptotic theory of inference that applies to non-linear
regression has been developed by Park and Phillips [74-75], de Jong [22], de Jong and
Wang [23], Pétscher [95], and Berkes and Horvath [6] Alongside this, related analytic
tools on the local time density and hazard functions of the limiting Brownian motion
of a standardized integrated process have been developed by Phillips [82-83]. Park and
Phillips [74] showed that (16) holds for a class of functions they called “regular” that
is wider than the class of continuous functions, although their class does not contain
every bounded and measurable function and does not include locally bounded functions
such as T'(z) = log|z| or T(x) = |z|*(—1 < a < 0). de Jong [22] establishes (16) under
local integrability for a different class, covering the two functions above and allowing T
to have poles but not encompassing all the regular functions in [74]. The problem was
elegantly resolved by Pé&tscher [95] who established that (16) holds under the condition
that the process satisfies a FCLT (as in the “first stage” described above) and then
only under the additional condition that 7T is locally integrable. Since the integral in
(16) exists almost surely (a.s) and is finite a.s. if and only if 7" is locally integrable [55,
pp. 216-217], the latter condition is minimal. The integral in (16) can be equivalently
expressed in terms of local time:

(25) /o T(cW(r))dr = /00 T(os)L(1,s)ds, a.s.,

— 00

where L(t, s) is Brownian local time [96, ch. 6] which, intuitively, is a spatial density
that records the relative sojourn time of the process W (t) at the spatial point s over the
time interval [0, t]. Equation (25) is known as the occupation times formula [96, p. 224]
and it opens up the possibility of using sojourn times and spatial densities as the basis
of a theory of non-parametric co-integrating regression [110].

Suppose (16) holds for a function H and the function T satisfies T'(Ax) = v(\)H(x)
for all A > 0 and all x € R. Then (16) applied to H can be rewritten as

(26) (o (™ 2) 703" T(ay) - /O H(oW (r))dr.

9
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Expression (26) can still be established if the function T satisfies the equation approxi-

mately, in the sense that v(\) 1T (\x) EER H(x) as A\ — oo, thereby providing a basis for
convergence results for non-linear functions of the unnormalized integrated processes.
This approach is described by Park and Phillips [74] for their “regular” functions and
by de Jong and Whang [23] under the conditions in [22], but the result holds more
generally under just Potscher’s basic condition that H is locally integrable. This can
then be applied to the context of non-linear regression with integrated time series [75].

Another topic of recent interest, in the light of the recent observed behaviour in
commodity prices and “financial exuberance” in stock markets, has been work on mildly
explosive processes [87-89, 58, 36]. This has involved the “moderate deviations from
unity” model which is specified as

(27) Ty = Pnli_1 + &t (t=1,...,n)
c
(28) pn:1+n—a, ae€(0,1), ceR
initialized at some zg = 0,(n*/?) independent of o(e1,...,e,), where ¢; is a either

a sequence of i.i.d. (0,0?) random variables with finite vth moment (v > 2a~1!) [87]
or a sequence of weakly dependent random variables [88]. Strictly speaking, since the
autoregressive parameter p, is a sequence of the sample size n, (28) is a triangular
array (zp,1 <t <n,n € N), and we adopt the notation z; , and the notation x¢, for
convenience. The idea of the model (27) and (28) is “to smooth the passage through
unity” relative to (2) such that the roots belong to larger (more moderate) deviations
from unity compared with conventional local-to-unity roots [77, 11]. The boundary
value as a — 1 includes the conventional local-to-unity case, and the boundary value
as a — 0 includes the stationary or explosive AR(1) process depending on the value of
c. Phillips and Magdalinos [87-88] combined a functional law to a diffusion on D]0, c0)
with a central limit law to a Gaussian random variable to establish the limit distribution
of the centred and normalized serial correlation coefficient

n 2 n
(29) o= (z) S
t=1 t=1

For ¢ < 0, they established a n(*t®/2 rate of convergence to asymptotic normality,
bridging the y/n and n convergence rates for the stationary and conventional local-to-
unity cases. For ¢ > 0, the limit distribution is Cauchy and is invariant to both the
distribution and the dependence structure of the innovations. The rate of convergence
is n®pl, bridging the n and (1 4 ¢)™ convergence rates for the conventional local-to-
unity and explosive cases. The paper [88] contains possibly the first general invariance
principle in statistics that applies to explosive processes.

This current programme of work seems to offer the immediate challenge of either
designing a model offering a uniform limit theory for autoregression, or at least con-
structing an optimality theory that applies uniformly across parameter values. Shiryaev
and Spokoiny [104] have already shown that the two distributions in (12) can be reduced
to one—a centred Gaussian variable with variance one—by considering a sequential max-
imum likelihood estimator. Phillips and Han [85], in an approach based on taking first

10
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differences, offer estimates that have virtually no finite sample bias, are not sensitive to
initial conditions, and the Gaussian central limit theory applies as the autoregressive
coefficient passes through unity with uniform root n convergence (see also [36]). There
are still, of course, difficulties that need to be overcome [51, 94, 92-93]. It should also
be borne in mind that while we have focussed on econometric literature that has been
spawned by the application of FCLT’s based on the Skorokhod topology, this involves
an asymptotic approach and the true objective remains characterizing the finite sample
properties of appropriate statistics.
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