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1 Introduction

Although commonly assumed to be fixed, the size of the prize in a contest may in fact be
endogenous and depend on the effort made by the contestants. In particular, a higher level
of effort may lead to higher valuations.1 In other words, the effort expended in a contest may
increase both the probability of winning and the size of the prize. Moreover, contestants may
differ with respect to the magnitude of this effect and the same effort levels may lead to a
different valuation of winning the contest (Kaplan, Luski, Sela, and Wettstein, 2002).

Such an environment is descriptive of several economic issues. In R&D races, for example,
an increase in the amount of resources spent on developing new technologies may result
in a shorter product pipeline and in the firm winning the race. At the same time, the
additional resources may improve the quality of the final product and therefore its market
value. Asymmetric market structures and differences in marketing, existing product variety
or spill-over effects to related research projects are likely to lead to differences in the marginal
value of R&D spending. Organizational differences in research departments or a different
composition of inputs into the research process may likewise lead to different values of winning
the race. In some sense, academic hiring efforts may follow a similar pattern. As long as
universities attempt to attract faculty by offering productivity enhancing inducements, such
as research funds, expanded seminar series or access to data sets, they are likely to increase
the productivity of the potential new hire and at the same time the value of being able to
hire the desired candidate.

In the classical example of a lobbying contest, the value of the legislation enacted or the
project awarded may depend on the magnitude of the contribution to the political institution
involved. Asymmetries may enter the contest through the pre-existing political connection
of the lobbyist, so that an organization with conservative credentials would obtain a more
favourable outcome with a conservative government than a more liberal lobbyist. Lastly, in
professional sports, the effort invested by a team increases its expected score making a win
more likely. In addition, conditional on having won the game, a higher score may raise the
reputation of the team. For teams quoted on the stockmarket, such as several European
soccer teams, this may translate into additional stock price gains. Again, differences between
teams may lead to asymmetries in this effect.

This paper therefore examines the equilibrium of a contest with endogenous rewards and
calculates the aggregate expenditure of the contestants. In contrast to contest where at given
effort levels winning is a probabilistic event (Tullock contests), we examine a contest modelled
as an all-pay auction, that is a situation in which the contestant investing the largest effort

1Higher effort levels can also lead to a lower value of winning a contest. In a war of attrition, for example,

the effort spent to win is likely to make the winner more vulnerable in future conflicts and contestants prefer

to win at lower effort levels.
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will win with certainty. Regardless of whether they won or not, all contestants have to pay
their effort cost. Information is assumed to be complete and valuations are asymmetric and
endogenous. For simplicity, the analysis is limited to two participants. The payoff from
winning the contest, that is the valuation less the cost of effort, is assumed to decline strictly
in effort despite valuations that increase in the invested effort. Similar to traditional all-
pay auctions, the participants in the contest thus prefer to win at lower effort levels. This
assumption contrast with Amegashie (2001) who investigates situations where the returns to
additional expenditures in all-pay auctions exceed the costs and players therefore could aim
to win with higher efforts. Contrary to the case where payoffs strictly decrease he finds that
a Nash equilibrium in pure strategies exists.

A second related paper is Kaplan, Luski, and Wettstein (2003), who investigates a model
of innovation and R&D races with a structure similar to an all-pay auction. Information is
complete, values and innovation cost are time dependent and firms compete in when to bring
the innovation to the market. In consequence, the ususal equivalence of staying out of the
contest and exercising zero effort does not apply. Yet, a closed form solution for expected ag-
gregate expenditure is not given. Siegel (2009a,b) also studies all-pay auctions with complete
information and non-ordered contestants. Although in his papers, the contestants differ in
the cost of competing our framework is closely related to his. The differences are in the levels
of generality. Whereas Siegel’s broad approach covers quite general model specifications – in
particular he focus on contests where all-pay auction is a sub-class of contests – our more
specific set-up allows us to characterize the shape of valuations and thus to determine a closed
form solution for expected equilibrium expenditures.2 To the best of our knowledge these are
the only papers dealing with complete information.

A related paper with incomplete information is Kaplan, Luski, Sela, and Wettstein (2002)
who investigate an all-pay auction where the rewards are additively or multiplicatively sepa-
rable in the type of the players. This setting seems well-suited to R&D races, political contest
or lobbying activities. Kaplan, Luski, Sela, and Wettstein (2002) solve for the equilibrium bid
function and link the size of the reward as well as the costs of bidding to the expected sum
of equilibrium bids. Cohen, Kaplan, and Sela (2009) study an all-pay auction with additively
and multiplicatively separable rewards under incomplete information where the designer can
set the shape of the reward function. In particular, they determine that the optimal additively
separable reward is not necessarily positive. In our model, we investigate additively separable
rewards with complete information.

The next section introduces the model and establishes the framework for characterizing
the shape of the endogenous valuations. While valuations are not ordered, they are regular
in the sense that over some range of effort one player has higher valuations while above a

2Siegel (2009b) provides an algorithm to solve equilibrium expenditures in the general framework of Siegel

(2009a).
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certain threshold effort level the valuations of the other player are higher. The existence of
a Nash equilibrium in mixed strategies and equilibrium effort levels are derived in Section 3.
Moreover, a closed for solution for the aggregate expected equilibrium expenditure is derived
in Section 4 – this is indeed the main point of this paper.

2 The Model

Consider two players or group of players, i = 1, 2 who choose effort levels xi ∈ R+ simultane-
ously and independently in a contest. The shape of their valuations is given by ei(·) : R+ → R

which specifies the size of the prize as a funtion of their effort. We assume that ei(·) is con-
tinous and differentiable and information about the shape of every player’s ei(·) is common
knowledge at the beginning of the contest. If, for example, ei(xi) = βix

αi
i , αi and βi will be

common knowledge. The valuation of winning the contest Vi for each i = 1, 2 consists of a
common element v and the function ei(·) so that Vi(xi) = v + ei(xi). Both players pay their
effort cost and final payoffs for each player i = 1, 2 are given by

ui(xi) =


Vi(xi)− xi if xi > xj
Vi(xi)

2
− xi if xi = xj

−xi if xi < xj

We make the following two assumptions to characterize our environment.

Assumption 1 (A1). ei(x) is a non-negative and increasing function for all x > 0 and
ei(0) = 0

Assumption 2 (A2). ∀x > 0
∂ui
∂x

(x) < 0, which means that e′i(x) < 1.

Assumption A1 ensures that – independently of the original level of effort – an increase
in effort has a positive effect on the prize. More research, for example, will lead to a better
product in a patent race; more effort in a football match to a higher score and an improved
reputation of the winning team. This notwithstanding, assumption A2 makes the contestant
prefer winning at lower effort levels. In other words, the net payoff from an additional unit
of effort is negative.3

The case where ei(xi) = 0 for all xi corresponds to a pure common value setting. It is
well-known that under these circumstances there is no Nash equilibrium in pure strategies.
As Amegashie (2001) has shown, if utility is not monotonically decreasing in effort, a pure
strategy Nash equilibrium exists. Although his framework is different, the link between
increasing utility and equilibrium existence is likely to apply to our set-up as well. Assumption
A2 effectively rules out this case even if ei(x) ≥ 0. In order to compute explicitly the form
of the aggregate expected equilibrium expenditure for each player a further assumption is
required.

3Weakly decreasing utility funtions are common in all-pay auction even when valuations are constant.
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Assumption 3 (A3). ∀i, ∀λ > 0, ∀x,∃ki ≥ 1 such as ei(λix) = λkei(x)

This assumption means that an increasing of one unit of the contestant’s effort increases
proportionally the variable part of his valuation. Together, assumptions A1 to A3 imply a
specific functional form for the shape of the valuation function ei(·), as the following lemma
shows.

Lemma 1. Suppose assumptions A1-A3 hold. Then, there is a unique form for the valuation
function ei(·) such that ei(xi) = βix

αi
i with αi ≥ 1 and 0 < βi < 1.

Proof. The first part of the proof to determine that the shape of ei(.) is a power function rely
mainly on assumption A3. This kind of proof, even if some other assumptions or axioms are
required as in this paper, is quite known and can be find in some textbook of mathematics.
Moreover, assumption A1 leads to βi > 0, αi > 0. Let us assume that αi < 1. Then
assumption A2 implies that x > (αiβi)

1
1−α . As by definition the agents’ efforts should start

at zero (even with a mass point) there is a contradiction and αi ≥ 1. As ei(x)′− 1 < 0 for all
x it follows that βi < 1

αi
. �

αi could be interpreted as the productivity of the effort and βi as an elasticity. The reward
components of the all-pay auction are depicted in Figure 1.

xi

v

x̃i

V (xi)

xi

Positif payoff

Negatif payoff

Figure 1: Payoff of Winning

As valuations are dependent on the effort of the two contestants, they need not be ordered.
In other words, for two different effort levels, the ranking of the valuations could be reversed.

If αi > αj , for example, Vj(x) > Vi(x) for all x <
(
βj
βi

) 1
αi−αj and Vj(x) ≤ Vi(x) otherwise.
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Non-ordered valuations seem well-suited for the real-world applications that motivate our
analysis. Indeed, with different marginal returns to effort in R&D races and or lobbying
or sports contests, the ranking of the valuations depends on effort levels and valuations are
unlikely to be ordered.4

3 Equilibrium Characterization

It is a well known result that all-pay auctions with constant heterogeneous valuations, that
is valuations that are independent of the submitted bids, have a unique equilibrium in mixed
strategies (Hillman and Riley (1989), Baye, Kovenock, and de Vries (1996) for linear costs,
Che and Gale (1998), Che and Gale (2006), Kaplan and Wettstein (2006) and Vartiainen
(2007) for non-linear cost functions). In recent papers, Siegel (2009a,b) extends this result to
non-ordered contestants in a general framework.

To simplify the notation we define the “weak” and the “strong” player and denote them
by the subscripts w and s, respectively. The intuition is simple: since payoffs are falling in
effort by assumption A2 there will be a level of effort after which the payoff obtained will
be negative even if the contest is won. The weak player determines the maximum effort any
player is willing to exercise in the contest. At this effort level its utility from winning the
contest is zero; the strong player, in contrast, still obtains a positive payoff at the same effort
level.

Definition 1. A player is called “weak” if he determines the maximum effort x̃ in the constest,
that is v+ βwx̃

αw − x̃ = 0 and v+ βsx̃
αs − x̃ > 0. His opponent is called the “strong” player.

Let us consider αi > αj . Then, if x̃ such as v + βj x̃
αj − x̃ = 0 and x̃ >

(
βj
βi

) 1
αi−αj then

the player i is the “strong player”. Otherwise, the player j is the “strong” player and the
maximum effort is given by x̃ such as v+βix̃

αi − x̃ = 0. Unlike in a standard all-pay auction,
it is not enough for a particular player to have the higher valuation over an interval of x
in order to be the “strong” player. Rather, the relative strength of a player is determined
not only by the difference between the valuations at a particular x but also – implicitly – by

the distance from the threshold
(
βj
βi

) 1
αi−αj which defines the order of the valuations on each

sub-interval.

It follows from the implicit function theorem that the maximum effort is increasing in βw,
decreasing in αw if x̃ < 1 and increasing in αw if x̃ > 1,

dx̃

dβw
=

x̃αw

1− βwαwx̃αw−1
> 0 and

dx̃

dαw
=

βwx̃
αw ln x̃

1− βwαwx̃αw−1


< 0 if x̃ < 1
= 0 if x̃ = 1
> 0 if x̃ > 1

 (1)

4The case of ordered valuations is considered in Appendix B.
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The signs follow from assumption A2.

Define the mixed strategies at the equilibrium by Fi(·) = P(X ≤ ·) for both players
i = s, w. The following proposition determines the unique Nash equilibrium strategies for the
two players and the corresponding equilibrium payoffs.

Proposition 1. Suppose assumptions A1-A3 hold. Then, the unique Nash equilibrium is in
mixed strategies as follows. Players choose their effort randomly according to the cumulative
distributions functions

Fs(x) =
x

v + βwxαw
for all x ∈ [0, x̃]

Fw(x) =
v + βsx̃

αs − x̃+ x

v + βsxαs
for all x ∈ [0, x̃]

And the expected equilibrium payoffs are

u?s = βsx̃
αs − βwx̃αw

u?w = 0

Proof. Let us define ṽi(x) = v + βix
αi − x and c̃i(x) = x. Then, the bidder’s expected utility

could be written as Fi(x)ṽi(x)− (1−Fi(x))c̃i(x). Remark that ṽi and −c̃i are continuous and
non-increasing, ṽi(0) = v and limx→+∞ ṽi(x) < 0 and ṽ−1

s (0) > ṽ−1
w (0) = x̃. Consequently

all assumptions of Siegel (2009b) are satisfied. In addition that he called the threshold T of
the contest is in our case the maximum effort x̃ of the “weak” bidder. Thus, Theoreom 3 of
Siegel (2009b) can be applied and our result follows. �

Remark that the equilibrium expected payoff of the “weak” player is independent of
the parameters of the contestants’ value functions. The expected equilibrium payoff of the
“strong” depends on its own valuation and, via its equilibrium strategy, on the parameters of
its opponent.

Corollary 1. Suppose assumptions A1-A3 hold. The expected equilibrium payoff of the
“strong” player is (i) decreasing in βw and (ii) decreasing in αw if x̃ > 1 and increasing
otherwise.

Proof. See Appendix A. �

This asymmetry in the parameter effects is interesting for its implications. As the payoff
of the strong player is given by βsx̃αs − βwx̃αw the impact of the reward parameters βw and
αw comes from two sources. On one hand we can identify a parameter effect from the en-
dogenous valuation of the “weak” player independently of the effort level, in which a higher
βw (respectively a smaller αw if x̃ < 1 and a higher one if x̃ > 1) reduces the payoff of the
“strong” player independent of the effort levels. The maximum effect, on the other hand,
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works through the impact of the relative values of βw and αw on x̃. If the maximum effect
and the parameter effect could have contradictory signs, the latter dominates.

It is possible to compare the standard all-pay auction with exogenous valuations Vi(x) = vi

with our setup where Vi(x) = v + βix
αi .5 Even if rewards lead to either a higher or a lower

valuation than in the standard case of all-pay auction, it is convenient to assume that the
maximum effort is the same in the endogeneous and standard all-pay auctions. Indeed, the
maximum effort could be decided ex ante for example as a limit of the expenditure in an
R&D race. In consequence, in the standard all-pay auction valuations are ordered and the
“weak” contestant is the one with the lowest valuation. She determines her maximum effort
equal to her valuation vw such that vw = x̃ = v + βwx̃

αw . Then, vs, the valuation of the
“strong” contestant is superior to v + βwx̃

αw .

Corollary 2. The expected equilibrium payoff of the “strong” player in the all-pay auction
with endogenous rewards is lower than in a standard all-pay auction if and only if her valuation
vs is superior to v + βsx̃

αs.

This result comes from the comparison of the players’ expected equilibrium payoff given by
Proposition 1 and the contestants’ expected equilibrium payoff given by Hillman and Riley
(1989) and Baye, Kovenock, and de Vries (1996) in the standard all-pay auction which is
vs − vw for the “strong” player.

4 Aggregate Expenditures

Given the assumptions made and with the resulting equilibrium strategies, it is now possible to
find an explicit expression for the expected equilibrium expenditure of both contestants by the
means of the incomplete Beta functions. We present a very short overview of the incomplete
Beta functions which are a useful tool for the computations of the expected revenues. The
incomplete Beta functions belongs to the general class of hypergeometric functions and are
studied in details Spanier and Oldham (1987) Chapter 58 (see also Temme (1996) for a more
recent textbook).

Definition 2. The incomplete Beta function, B(ν, µ, x), with 0 ≤ x < 1, µ ∈ R, ν > 0, is
given by the Euler integral representation:

B(ν, µ, x) =
∫ x

0

tν−1
(1− t)1−µdt

5The analysis does not change if the exogenous part of the valuations vi is not common to both contestants

and Vi(x) = vi + βix
αi .
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Definition 3. The incomplete Beta function, B(ν, µ, x), with 0 ≤ x < 1, µ ∈ R, ν > 0, is
given by the expansion series:

B(ν, µ, x) =
(1− x)µ

ν

∞∑
j=0

(µ+ ν)j
(1 + ν)j

xj+ν

where (y)n denotes the Pochhammer symbol such that

(y)n =
Γ(j + y)

Γ(y)
,

where Γ(.) is the special function Gamma.

Proposition 2. Suppose assumptions A1-A3 hold. Then, the aggregate expected equilibrium
expenditures are given by

ERs =


− v

βw

[
1 +

1
βw

ln(1− βw)
]

if αw = 1

x̃− 1

αwvφ
2
αw

B

(
2
αw

, 1− 2
αw

,
φx̃αw

1 + φx̃αw

)
if αw > 1

ERw =



1− βs
βs

[
ln(1 + ϕx̃)

(
x̃+

v

βs

)
− x̃
]

if αs = 1

x̃− 1

αsvϕ
2
αs

B

(
2
αs
, 1− 2

αs
,

ϕx̃αs

1 + ϕx̃αs

)
− βsx̃

αs − βwx̃αw

αsv2ϕ
1
αs

B

(
1
αs
, 1− 1

αs
,

ϕx̃αs

1 + ϕx̃αs

)
whitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhitewhite if αs > 1

with x̃ = v + βwx̃
αw , ϕ = βs

v and φ = βw
v .

Proof. See Appendix A. �

The Euler integral form of the incomplete Beta functions is used in the proof to identify
it. An explicit form of the expected revenues are given in Appendix A by the means of the
expansion series of the incomplete Beta functions.

Assuming a linear relationship between effort and the valuations, αs = αw = 1, one can
simplify the expression for ERw to

ERw =
1− βs
1− βw

v

βs

[
−1 +

(
1− βw + βs

βs

)
ln
(

βs
1− βw

+ 1
)]

The relationship between the expected equilibrium expenditure for both players and the
values for βw and βs can be shown graphically (Figure 2 and Figure 3 with v = 2).
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Figure 2: ERs for αs = αw = 1
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Figure 3: ERw for αs = αw = 1

The features of the individual expenditures that we observe in graphs 2 and 3 can be
extended to all values of αs and αw. It is thus possible to compare the standard all-pay auction
with exogenous valuations Vi(x) = vi with our setup where Vi(x) = v + βix

αi . Qualitatively,
βi and αi (when x̃ > 1) play the same role as vi in the standard framework and αi (when
x̃ ≤ 1) the inverse one and the results should comparatively similar with respect to individual
expected equilibrium expenditure. The following corollary confirms this intuition.

Corollary 3. Suppose assumptions A1-A3 hold. The individual expected equilibrium expen-
ditures

(i) of the “strong” player are increasing in βw and decreasing in αw if x̃ ≤ 1.

(ii) of the “strong” player are independent in βs and αs.

(iii) of the “weak” player are decreasing in βs, increasing in αs if x̃ ≤ 1.

(iv) of the “weak” player are increasing in βw, decreasing in αw if x̃ ≤ 1 and increasing in
αw if x̃ > 1.

Proof. See Appendix A. �

We are not able to compute the sign of the derivatives of the role of the parameters αs on
the “weak” player and αw on the “strong” player’s expected equilibrium expenditure when
x̃ > 1. Yet, we did not find any example which could contradict the intuition given above.

These results (Corollary 3) may have implications for the designer of a contest. If the
designer is interested in eliciting the largest amount of effort, due perhaps to spillovers or
in cases where the effort accrues directly to him, and if he can manipulate the contest tech-
nology of both players, Corollary 3 indicates the method to achieve this goal. In addition,
the contestants themselves have an incentive to influence the parameters in the valuation
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funtions. A “weak” firm in an R&D race, for example, would prefer a larger value for βw and
a smaller value for αw if x̃ ≤ 1 (respectively a higher value if x̃ > 1) in order to decrease the
expected equilibrium payoff of its competitor (see Corollary 1). If the contestant can chose
the parameters αi and βi at some cost before the beginning of the contest, the game can be
extended to include the pre-contest selection of the contest technology.

As in Section 3 for Corollary 2, we compare our setup where Vi(x) = v + βix
αi with the

standard all-pay auction where the valuation vw of the “weak player” is such that vw = x̃.

Corollary 4. The expected equilibrium expenditures of the “strong” player in the all-pay
auction with endogenous rewards is lower than in the standard all-pay auction.

Proof. As vw > v + βwx
αw for all effort inferior to x̃, the “strong” player’s mixed strategy

in the contest with rewards is stochastically dominated by the one in the standard contest.

Then, the result follows from ERs = x̃−
∫ x̃

0
Fs(x)dx. �

Unfortunately, the effect on the expected equilibrium expenditures of the “weak” contes-
tant is not clear. Indeed, as the payoff of the “strong bidder” decreases if vs > v+ βsx̃

αs , the
effect of the reward on the mixed strategy of the “weak” contestant is ambigue.

Conclusion

In this paper we examine a perfectly discriminating contest (all-pay auction) with two asym-
metric players and endogenous valuations in a complete information environment. Similar
to real-world situations, we postulate that the value of winning depends on the effort levels
invested. In particular, we assume that higher effort levels lead to higher prizes but that this
increase is smaller than the cost of effort. The contestants thus prefer to win at lower effort
levels. We believe that this set-up captures the nature of many contests such as R&D races,
lobbying games or sports events.

These properties of the valuation function together with the assumption that prizes in-
crease proportionally with effort lead to a unique functional form mapping efforts into prizes
and allow the explicit calculation of equilibrium strategies and expected equilibrium effort
levels for both contestant. As the valuation functions are not symmetric, we can define
the “strong” contestant as the one having the higher effort limit. The “weak” contestant,
analogously, has the lower effort limit. Within these limits, valuations need not be ordered,
however, as (due to the asymmetry) both players may have the higher valuation at different
levels of effort. This notwithstanding, we show that the equilibrium strategies and expected
payoffs depend on the strength of the player.
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It is a well-known result that in this kind framework an equilibrium in pure strategies
does not exist. We therefore determine the mixed strategy equilibrium effort choices. In
equilibrium, the expected equilibrium payoff of the “strong” player is positive and depends
on the parameters of both players’ valuation function. In particular, it is decreasing in the
steepeness of the “weak” player’s valuations.

Moreover, we are able to characterize the expected expenditure thanks to the incomplete
Beta functions. This result could be useful for applications of contests with endogenous re-
wards as in R&D races.

This paper leaves an open question for future research on pre-contests. How do contestants
select the contest technology which means their parameter αi and βi? That is an important
subject to study R&D races for example.

Appendix A: Proofs

Proof of Corollary 1. (i)

∂u?s
∂βw

=
dx̃

dβw
(βsαsx̃αs−1 − βwαwx̃αw−1)︸ ︷︷ ︸

maximum effect

− x̃αw︸︷︷︸
parameter effect

(2)

=
dx̃

dβw

(
βsαsx̃

αs−1 − 1
)

(3)

< 0 (4)

To arrive at equation (3) from (2) we apply the implicit function theorem to x̃ = v+βwx̃αw

in x̃ and βw such that
dx̃

dβw

(
1− βwαwx̃αw−1

)
= x̃αw . The result then follows from assumption

A2 and (1).

(ii)

∂u?s
∂αw

=
dx̃

dαw

(
βsαsx̃

αs−1 − βwαwx̃αw−1
)

︸ ︷︷ ︸
maximum effect

− βwx̃
αw ln x̃︸ ︷︷ ︸

parameter effect

(5)

=
dx̃

dαw

(
βsαsx̃

αs−1 − 1
)

+ x̃αw
(
dx̃

dαw

dβw
dx̃
− βw ln x̃

)
(6)

= x̃αw
(
dx̃

dαw

dβw
dx̃
− βw ln x̃

)
(7)

=
dx̃

dαw

(
βsαsx̃

αs−1 − 1
)

(8)

Using equations (2) and (3), βsαsx̃αs−1−βwαwx̃αw−1 = (βsαsx̃αs−1−1)+ x̃αw
dβw
dx̃

. Then
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(6) follows. We get (7) as
dx̃

dαw

dβw
dx̃
− βw ln x̃ = 0 from (1). In (8), the term between brackets

is negative from assumption A2 and the sign of
dx̃

dαw
is given by (1).

�

Proof of the Proposition 2. The expected equilibrium expenditure of effort is given by ERi =

x̃−
∫ x̃

0
Fi(x)dx for i = w, s.

1. Computation of ERw.

Let us denote ϕ = βs
v . If αs = 1, it follows that

∫ x̃

0
Fw(x)dx = (v + (βs − 1)x̃)

∫ x̃

0

dx

v + βsx
+
∫ x̃

0

x

v + βsx
dx

=
v + (βs − 1)x̃

v

∫ x̃

0

dx

1 + ϕx
+

1
βs

∫ x̃

0
1− 1

1 + ϕx
dx

= −1− βs
βs

(
v

βs
+ x̃

)
ln(1 + ϕx̃) +

x̃

βs

Therefore,

ERw =
1− βs
βs

[
ln(1 + ϕx̃)

(
x̃+

v

βs

)
− x̃
]

The derivative in x̃ and the boundedness condition guarantee that ERw is positive.
If αs > 1

∫ x̃

0
Fw(x)dx = (βsx̃αs − βwx̃αw)

∫ x̃

0

dx

v + βsxαs
+
∫ x̃

0

x

v + βsxαs
dx

12



Moreover, ∫ x̃

0

dx

v + βsxαs
=

1
v

∫ x̃

0

dx

1 + ϕxαs

=
1

αsvϕ
1
αs

∫ ϕx̃αs

0

y
1
αs
−1

1 + y
dy (9)

=
1

αsvϕ
1
αs

∫ ϕx̃αs

1+ϕx̃αs

0

t
1
αs
−1

(1− t)
1
αs

dt (10)

=
1

αsvϕ
1
αs

B

(
1
αs
, 1− 1

αs
,

ϕx̃αs

1 + ϕx̃αs

)
(11)

=
x̃

v
Γ
(

1
αs

)(
1

1 + ϕx̃αs

)1− 1
αs
∞∑
j=0

(ϕx̃αs)j

(1 + αsj)Γ( 1
αs

+ j)
(12)

To obtain equations (9) and (10), we define y = ϕxαs and t = y
1+y . As ϕx̃αs

1+ϕx̃αs ∈ (0, 1) and
1
αs
> 0, equation (10) is the Euler integral representation of an incomplete Beta function and

equation (12) comes from his expansion series given by Definition 3.
Moreover, ∫ x̃

0

x

v + βsxαs
dx =

1

αsvϕ
2
αs

∫ ϕx̃αs

1+ϕx̃αs

0

t
2
αs
−1

(1− t)
2
αs

dt (13)

=
1

αsvϕ
2
αs

B

(
2
αs
, 1− 2

αs
,

ϕx̃αs

1 + ϕx̃αs

)
(14)

As before, we find (13) after change in variables as for equation (9) and (10).
Therefore,

ERw = x̃− x̃

v
Γ
(

2
αs

)(
1

1 + ϕx̃αs

)1− 2
αs
∞∑
j=0

(ϕx̃αs)j

(2 + αsj)Γ( 2
αs

+ j)

− x̃βsx̃
αs − βwx̃αw

v
Γ
(

1
αs

)(
1

1 + ϕx̃αs

)1− 1
αs
∞∑
j=0

(ϕx̃αs)j

(1 + αsj)Γ( 1
αs

+ j)

2. Computation of ERs.

Let us denote φ = βw
v . If αw = 1

ERs = − 1
βw

[(1− βw)x̃+
1
φβw

ln(1 + φx̃)]

= − v

βw

(
1 +

1
βw

ln(1− βw)
)

which is positive as βw < 1.
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If αw > 1 the calculation is the same as for ERw, thus

ERs = x̃

1− 1
v

Γ
(

2
αw

)(
1

1 + φx̃αw

)1− 2
αw

∞∑
j=0

(φx̃αw)j

(2 + αwj)Γ( 2
αw

+ j)


�

Proof of the Corollary 3. Let us remind that the expected equilibrium expenditure is given

by ERi = x̃−
∫ x̃

0
Fi(x)dx for i = w, s.

(i)

∂ERs
∂βw

=
dx̃

dβw
(1− Fs(x̃))︸ ︷︷ ︸

=0

+
∫ x̃

0

xαw+1

(v + βwxαw)2
dx

> 0

∂ERs
∂αw

=
dx̃

dαw
(1− Fs(x̃))︸ ︷︷ ︸

=0

+
∫ x̃

0

xαw+1βw lnx
(v + βwxαw)2

dx

which is negative if x̃ ≤ 1.

(ii) The mixed strategies and the maximum effort are independent in βs and αs. Hence the
result.

(iii)
∂ERw
∂βs

= −
∫ x̃

0

v(x̃αs − xαs) + xαs(x̃− x)
(v + βsxαs)2

dx < 0. Moreover, if x̃ ≤ 1,

∂ERw
∂αs

= −βs
∫ x̃

0

vx̃αs ln x̃− xαs lnx(v − x̃+ x)
(v + βsxαs)2

dx

≥ βs
∫ x̃

0

xαs(x̃− x) lnx
(v + βsxαs)2

dx

≥ 0

(iv) Using assumption A2 and equation (1), it follows that
∂ERw
∂βw

=
dx̃

dβw
(1− Fs(x̃))︸ ︷︷ ︸

=0

−
∫ x̃

0

dx̃

dβw

αsβsx̃
αs−1 − 1

v + βsxαs
dx > 0 and

∂ERw
∂αw

=
dx̃

dαw
(1− Fs(x̃))︸ ︷︷ ︸

=0

−
∫ x̃

0

dx̃

dαw

αsβsx̃
αs−1 − 1

v + βsxαs
dx which is negative if x̃ ≤ 1 and

non-negative if x̃ > 1.

�
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Appendix B: Ordered Valuations

An alternative way to analyze the problem would be to consider ordered valuations such
that Vi(x) > Vj(x) over the relevant range of x. Due to the form of the valuation func-

tions, two separate cases have to be examined: αi > αj for x >
(
βj
βi

) 1
αi−αj and αi < αj for

x ≤
(
βj
βi

) 1
αi−αj . In the following, let us denote the threshold

(
βj
βi

) 1
αi−αj by x?.

Case (i): αi > αj, Positive Minima

If the maximum effort x̃ is superior to the effort level x? the mixed equilibrium strategies
for both players can be computed. Otherwise, there is not positive density in equilibrium.
The main difference to the standard all-pay auction, in a sense, is that the non-participation
level of effort and the minimum effort level have to be distinguished. In particular, the players
do not participate below the threshold level x?. In the following, only the results that do not
follow straightforwardly from Hillman and Riley (1989) and Baye, Kovenock, and de Vries
(1996) will be given.

Lemma 2. Under assumptions A1-A3, if the minimum effort x? is strictly positive and
inferior to x̃ then the two players’ strategies have an atom such that

Fi(x?) =
x?

Vj(x?)
and Fj(x?) =

Vj(x?)
Vi(x?)

Fi(x?) +
Vi(x̃)− Vj(x̃)

Vi(x?)

Proof. Since the strategy spaces are the same, and expected utilities are constant at the
equilibrium we obtain Vi(x̃) − x̃ = Fj(x)Vi(x) − x and Vj(x̃) − x̃ = Fi(x)Vj(x) − x for all
x ∈ [x?, x̃]. As Vj(x̃)− x̃ = 0, the two last equations lead to the result. �

In this case, player i is “strong” and player j “weak” in the sense defined above with
probablitiy one for all x. Thus, with the exception of the common mass point at the lower
end of the distribution and the length of the strategy space, the mixed equilibrium strategies
should be the same as in the case with non-ordered valuations and i as the strong player. In
others words, for all x ∈ [x?, x̃]

Fi(x) =
x

v + βjxαj
and Fj(x) =

v + βix̃
αi − x̃+ x

v + βixαi
.

Even if the distributions are the same, the expected revenue will differ as the strategy
spaces are different. We do not provide the closed form solution here, but the computation
is straightforward and similar to the one for non-ordered valuations.

Case (ii): αi < αj, Caps
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Here, two cases have to be distinguished. In both, player i is “strong” and player j is
“weak” for all x. If the maximum effort x̃ is inferior to x? the situation is as same as that of
ordered-valuations with endogenous rewards and the results of Proposition 1 apply. Alterna-
tively, the agents face a cap in their bids that they could not exceed such as x̃ > x?. This last
case was studied by Che and Gale (1998) with exogenous valuations. As in their paper, we
consider two cases. When x? ≤ x̃

2 , there is a pure strategy Nash equilibrium where the effort
of the players is x?. Otherwise, mixed strategies have to be computed. It can be shown that
the players have a nonzero density on (0, x′] and a zero density on (x′, x?) with a mass point
at x?.6 Then, with similar technical arguments than Che and Gale (1998) we find that for all
x ∈ [0, x′] Fi(x) = x

Vj(x) and Fj(x) = x
Vi(x) + Vi(x

′)−Vj(x′)
Vi(x) and for all x ∈ [x′, x?[ Fi(x) = x′

Vj(x′)

and Fj(x) = x′

Vi(x′)
+ Vi(x

′)−Vj(x′)
Vi(x′)

. To sum up, if x? ∈
(
x̃
2 , x̃
)

Fi(x) =



x

v + βjxαj
for all x ∈ [0, x′]

x′

v + βjx
′αj

for all x ∈ [x′, x?[

1 for x = x?

and

Fj(x) =



x

v + βixαi
+
βix

′αi − βjx
′αj

v + βixαi
for all x ∈ [0, x′]

x′

v + βix
′αi

+
βix

′αi − βjx
′αj

v + βix
′αi

for all x ∈ [x′, x?[

1 for x = x?
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