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1 Introduction

This paper considers the problem of autocorrelation estimation in the linear trend model,

yt = α + βt+ vt, t = 1, . . . , T (1)

where vt follows a stationary ARFIMA(p, d, q) process with d ∈ (−0.5, 0.5). This model

has been considered widely in the econometrics literature since many economic time series

exhibit clear trends and long memory. For example, Yajima (1988, 1991) studies the

efficiency of the OLS estimator under stationarity of vt. Lee and Phillips (1994) show that

in the nonstationary case, efficiency gains can be obtained by generalized least squares.

Canjels and Watson (1997) compare OLS with a simple first difference (FD) estimator

and generalized least squares for the I(0) and I(1) cases. Tsay (2000) recommends the FD

estimator under stationary or non-stationary long memory as its convergence rate is T−1,

faster than the usual T−1/2. In the presence of additional stochastic regressors and non-

stationarity, the FD estimator has a faster convergence rate than OLS for the coefficients

of the stochastic regressors. This may explain the popularity of the FD estimator in

econometric practice.

The focus of previous research, however, has mainly been on finding efficient estimators

of β. In this paper, we turn our attention to the autocorrelations of vt, defined as: ρ̂v(j) =
∑T

t=j+1
(vt − v)(vt−j − v)/

∑T
t=1

(vt − v)2, for j = 0, 1, 2, . . .. These autocorrelations are

useful in applications because they can be used as visual diagnostics of the characteristics

of the observed time series. These can be used e.g. for model building, e.g. to determine

the order (p, d, q) of the ARFIMA model. They can also be used in constructing feasible

generalized least squares estimators of the trend. Moreover, autocorrelations are the

building blocks of the portmanteau-type tests, such as the Box-Pierce and the Ljung-Box

test.

Empirically, we have observations yt and cannot observe vt directly. If we do not

employ any detrending procedure and just use the original data yt to calculate the sample

autocorrelations, ρ̂y(j) =
∑T

t=j+1
(yt − y)(yt−j − y)/

∑T
t=1

(yt − y)2, then the information

contained in ρ̂y(j) will not be the one we need. In fact, we can prove that ρ̂y(j)
p

−→ 1 for

any j and j = o(T ), because the deterministic trend dominates the asymptotic behavior

of yt.

To eliminate the influence of the deterministic trend on the autocorrelation estima-

tion, two detrending methods are popularly used in the literature. The first method is

the ordinary least squares (OLS) detrending, i.e., estimate (1) by OLS and obtain OLS
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residuals, the second one is the first difference (FD) detrending, where β is estimated by

the sample mean of ∆yt = yt − yt−1. Both detrending methods do not depend on the

magnitude of the differencing parameter d.

The FD estimator was proposed by Grenander and Rosenblatt (1957) in estimating the

deterministic trending coefficient. It can be used as an approximation to the generalized

least squares (GLS) estimator when high positive correlation of the error term is sus-

pected, see e.g. Maeshiro (1976), Chipman (1979), Krämer (1982) and references therein.

Furthermore, Tsay (2000) investigated the asymptotic properties of the FD estimator in

the fractional cointegration model introduced by Granger (1986) and later investigated

by Cheung and Lai (1993). Tsay (2000) showed that the FD estimator of the slope can

result in faster convergence rates when the error term is nonstationary.

From the residuals of both OLS and FD detrending, we can construct two auto-

correlation functions, ρ̂OLS(j) and ρ̂FD(j), respectively. We would like to show that

ρ̂OLS(j) and ρ̂FD(j) are consistent estimators of their population counterpart, ρv(j), i.e.,

the population autocorrelation function of vt at lag j. Our theoretical analysis reveals

that ρ̂OLS(j)
p

−→ ρv(j) as long as vt is stationary. On the other hand, the consistency of

ρ̂FD(j) does not hold, so that its use in empirical applications is not justified. A small

set of Monte Carlo simulation results shows that the root mean squared error (RMSE) of

ρ̂OLS(j) decreases monotonically with the sample size. Furthermore, no matter what lag

number and differencing parameter is used in the experiment, the RMSE of ρ̂FD(j) does

not diminish monotonically. This corroborates our inconsistency result of FD detrend-

ing. Therefore, the FD detrending method should not be employed for autocorrelation

estimation of the detrended series.

2 Main results

In this section we consider the impact of OLS detrending and FD detrending on the

autocorrelation estimation of vt in equation (1). The asymptotic properties of ρ̂OLS(j)

and ρ̂FD(j) will be investigated when vt is a stationary I(d) or ARFIMA process. Let us

first introduce some notation and define the relevant statistics. OLS detrending uses the

OLS estimators α̂OLS and β̂OLS to obtain OLS residuals et,OLS = yt − α̂OLS − β̂OLSt. FD

detrending uses the estimator β̂FD = 1

T−1

∑T
t=2

∆yt to obtain residuals et,FD = yt − β̂FDt.
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From these residuals, we construct two autocorrelation functions,

ρ̂OLS(j) =

T∑

t=j+1

et,OLSet−j,OLS

T∑

t=1

e2t,OLS

, ρ̂FD(j) =

T∑

t=j+1

(et,FD − eFD) (et−j,FD − eFD)

T∑

t=1

(et,FD − eFD)2

,

where eFD is the sample mean of et,FD, noting that the sample mean of et,OLS is zero.

Properties of the estimators ρ̂OLS(j) and ρ̂FD(j) will depend on the assumptions on

the process vt in model (1). In this paper, we only require vt to be stationary. This

assumption allows us to assume vt to be a long memory I(d) or ARFIMA(p, d, q) process.

Before presenting our main results, we first review some basic properties of the I(d)

process. A process Yt is said to be autoregressive fractionally integrated moving average

process of order p, d, q, denoted as ARFIMA(p, d, q) or I(d), if it has a representation

φ(L)(1 − L)d(Yt − µ) = θ(L)at,

where µ is the population mean, L is the lag operator, φ(L) is a lag polynomial of degreee

p, d is the differencing parameter which can be a fractional number and θ(L) is a lag

polynomial of degree q. The innovation sequences at is independent white noise with zero

mean and variance σ2
a.

Assumption 2.1 The zeroes of φ(z) and θ(z) lie outside the unit circle and φ(z) and

θ(z) have no common roots. Furthermore, d ∈ (−0.5, 0.5).

The fractional differencing operator (1 − L)d has the following binomial expansion:

(1 − L)d =
∑

∞

j=0
ψjL

j , where ψj = Γ(j − d)/Γ(j + 1)Γ(−d), and Γ(·) is the gamma

function. The fractional white noise process is defined as

(1 − L)dYt = at,

which is the simplest case of the ARFIMA model (p = q = 0). This process was first

introduced by Granger (1980, 1981), Granger and Joyeux (1980), and Hosking (1981).

We also refer to Baillie (1996) for a review on long memory and fractionally integrated

processes.

To derive the asymptotic behaviors of ρ̂OLS(j) and ρ̂FD(j), we make the innovation

sequences at satisfy the following assumption throughout this paper. This assumption

was first used by Davydov (1970).
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Assumption 2.2 The white noise at is independently and identically distributed with

zero mean, and its moments satisfy the following condition: E|at|
p < ∞, with p ≥

max{4, −8d/(1 + 2d)}.

Without loss of generality, we also assume the initial value of the fractionally integrated

processes, v0, is zero. The independent and identical distribution assumption for at is made

to simplify our analysis and could be relaxed. In fact, given the preceding conditions on

the stationary ARFIMA(p, d, q) process, Hosking (1996, Theorem 8) showed that the

exact order of magnitude of Var(
∑T

t=1
ǫt) is equal to O(T 1+2d). This asymptotic result

is crucial to the derivation of the following theorem and it was established by Hosking

(1996) assuming finite second moments of at.

Theorem 1 Under Assumptions 2.1 and 2.2 and E(a4
t ) < ∞, as T → ∞, we have the

following results:

ρ̂OLS(j) =
γv(j) +Op

(
T 2d−1

)

γv(0) +Op

(
T 2d−1

) p
−→ ρv(j) and ρ̂FD(j) =

γv(j) +Op(1)

γv(0) +Op(1)
.

Theorem 1 clearly indicates that ρ̂FD(j) is not a consistent estimator for its popu-

lation counterpart ρv(j). Thus, it is not recommended to use ρ̂FD(j) as a measure of

autocorrelations for stationary detrended time series. Moreover, Theorem 1 shows that

ρ̂OLS(j) is a consistent estimator for ρv(j), which justifies the use of OLS detrending in

empirical applications.

3 Monte Carlo Experiment

We now conduct a Monte Carlo experiment to compare the finite sample performance

of ρ̂OLS(j) with that of ρ̂FD(j) when three lag orders (j = 3, 6, 9) are used. We use a

typical design of the Monte Carlo study. The experiment for each model is based on 1,000

replications with different sample sizes (T ). We restrict the study to fractionally integrated

I(d) processes, or ARFIMA(0,d,0). To construct T values of a stationary I(d) process,

we first generate T independent values from the standard normal distribution and form a

T × 1 column vector a = (a1, . . . , aT )′. We then calculate the T analytic autocovariances

of the I(d) process, from which we construct the T × T variance-covariance matrix Σ

and compute its Cholesky decomposition, Σ = CC ′. Finally, the vector v = (v1, . . . , vT )′

of the T realized values of the I(d) process is defined by v = Ca. This algorithm was

5



T lag I(-0.4) I(-0.3) I(-0.2) I(-0.1) I(0) I(0.1) I(0.2) I(0.3) I(0.4)

100 3 0.1136 0.1111 0.1086 0.1066 0.1067 0.1156 0.1419 0.2261 0.4449

6 0.1143 0.1114 0.1084 0.1057 0.1043 0.1104 0.1331 0.2164 0.4392

9 0.1193 0.1163 0.1033 0.1104 0.1085 0.1131 0.1319 0.2113 0.4341

200 3 0.0775 0.0755 0.0995 0.0716 0.0712 0.0774 0.0955 0.1751 0.3905

6 0.0809 0.0789 0.0978 0.0750 0.0741 0.0789 0.0978 0.1715 0.3882

9 0.0817 0.0798 0.0971 0.0763 0.0755 0.0799 0.0971 0.1690 0.3860

300 3 0.0623 0.0607 0.0591 0.0577 0.0575 0.0627 0.0817 0.1500 0.3592

6 0.0664 0.0647 0.0630 0.0614 0.0606 0.0642 0.0801 0.1466 0.3568

9 0.0621 0.0613 0.0599 0.0587 0.0581 0.0615 0.0762 0.1419 0.3538

400 3 0.0540 0.0526 0.0513 0.0501 0.0500 0.0547 0.0722 0.1363 0.3406

6 0.0577 0.0563 0.0548 0.0535 0.0527 0.0560 0.0706 0.1330 0.3385

9 0.0548 0.0534 0.0520 0.0508 0.0502 0.0535 0.0677 0.1302 0.3369

500 3 0.0493 0.0481 0.0469 0.0459 0.0460 0.0506 0.0669 0.1273 0.3271

6 0.0506 0.0493 0.0480 0.0468 0.0463 0.0494 0.0634 0.1229 0.3244

9 0.0480 0.0468 0.0455 0.0444 0.0439 0.0468 0.0603 0.1201 0.3229

Table 1: RMSE of autocorrelations for OLS detrending using alternative difference pa-

rameters d and lags j.

suggested by McLeod and Hipel (1978) and Hosking (1984). Furthermore, 50 additional

values are generated in order to obtain random starting values. Finally, we choose α = 1

and β = 0.03 to generate the series yt using model (1).

Tables 1 and 2 contain the simulation results for the root mean squared error (RMSE)

of ρ̂FD(j) and ρ̂OLS(j). We can draw some conclusions from them. First, the RMSE of

ρ̂OLS(j) decreases monotonically with the increase of the sample size. This phenomenon

coincides with the result in Theorem 1 that ρ̂OLS(j) is a consistent estimator of γv(j).

Second, no matter which lag number j and differencing parameter d is used in the ex-

periment, the RMSE of ρ̂FD(j) does not diminish monotonically. We should emphasize

that this holds also for the short memory case, I(0). These results confirm the theoretical

result of Theorem 1.

To illustrate our simulation results graphically, Figure 1 and Figure 2 show the results

in Tables 1 and 2 for the case d = 0.3. Five additional sample sizes are added in the

simulations, i.e., T = 600, 700, 800, 900, 1000. Again, the performance of the estimators
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T lag I(-0.4) I(-0.3) I(-0.2) I(-0.1) I(0) I(0.1) I(0.2) I(0.3) I(0.4)

100 3 0.2922 0.2911 0.2896 0.2870 0.2821 0.2778 0.2536 0.2405 0.3775

6 0.2742 0.2729 0.2714 0.2690 0.2645 0.2606 0.2381 0.2277 0.3728

9 0.2562 0.2551 0.2538 0.2520 0.2484 0.2454 0.2253 0.2187 0.3706

200 3 0.2902 0.2914 0.2695 0.2933 0.2923 0.2925 0.2695 0.2394 0.3285

6 0.2763 0.2782 0.2605 0.2816 0.2814 0.2822 0.2605 0.2318 0.3253

9 0.2666 0.2682 0.2504 0.2709 0.2707 0.2713 0.2504 0.2228 0.3217

300 3 0.2981 0.2968 0.2958 0.2948 0.2930 0.2941 0.2735 0.2421 0.3020

6 0.2910 0.2898 0.2888 0.2880 0.2865 0.2877 0.2680 0.2371 0.2991

9 0.2840 0.2830 0.2823 0.2818 0.2809 0.2825 0.2635 0.2327 0.2959

400 3 0.2874 0.2849 0.2826 0.2802 0.2774 0.2780 0.2590 0.2289 0.2825

6 0.2845 0.2823 0.2801 0.2780 0.2755 0.2762 0.2578 0.2280 0.2813

9 0.2801 0.2778 0.2757 0.2737 0.2714 0.2724 0.2546 0.2252 0.2789

500 3 0.2994 0.3026 0.3061 0.3097 0.3123 0.3179 0.2992 0.2609 0.2749

6 0.2961 0.2992 0.3026 0.3062 0.3088 0.3141 0.2957 0.2573 0.2720

9 0.2928 0.2960 0.2996 0.3033 0.3061 0.3115 0.2936 0.2556 0.2708

Table 2: RMSE of autocorrelations for FD detrending using alternative difference param-

eters d and lags j.

for finite samples corresponds to the asymptotic result.

From Tables 1 and 2, and Figures 1 and 2, it is clear that the FD residuals should not

be used to construct autocorrelation functions. In other words, OLS detrending is the

only consistent estimator to be considered. Therefore, we now analyze more in detail the

finite sample performance of ρ̂OLS(j). Theorem 1 shows that the bias of ρ̂OLS(j) depends

on the magnitude of d. However, we do not know the actual size of the bias. To clarify

the usefulness of OLS residuals in calculating autocorrelation functions, we compare the

RMSE of ρ̂OLS(j) with ρ̂v(j) which is constructed by using the true error term vt. The

experiment is performed with a sample size of T = 200 and the results are shown in

Figures 3 and 4 for lags three and nine, respectively. These figures clearly indicate that

ρ̂v(j) and ρ̂OLS(j) are close to each other independent of the lag order. Therefore, the use

of OLS detrending in empirical analysis is justified both by asymptotic theory and by our

simulation results.
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4 Empirical Example

We analyze daily observations of volume in Dow Jones stocks from January 2, 1973 to

May 13, 2003, a total of 7665 observations. We consider dollar volume, defined by the

stock price multiplied by the number of stocks traded. Prediction of volume is important

for liquidity assessments and optimal trading strategies. Model-based predictions will

mainly use the autocorrelation structure of the data, so that it is important to have

reliable estimates of the ACF of volume. Moreover, volume is closely linked to volatility,

often explained by a common subordinated information arrival process, as suggested e.g.

by Tauchen and Pitts (1983). Thus, understanding the dynamics of volume, which is

observed, may help to better understand the dynamics of unobserved volatility. See e.g.

Gallant, Rossi an Tauchen (1992) for a broad overview of the importance of volume for

the dynamics of stock prices.

To pick two typical examples, the logarithm of volume is plotted in Figures 5 and

7 for McDonald’s and Philip Morris, respectively. Clearly, there is an upward trend in

both series and it may be approximated by a linear trend. These are typical examples

in the sense that the difference of the estimates of β using the two methods, reported in

Table 3, corresponds roughly to the average difference over the series. Figures 6 and 8

depict the ACF of residuals for both OLS and FD detrending. We see a clear difference

between both ACF, where the ACF of OLS residuals decays faster than that of FD

residuals. That is, the persistence is overestimated using the FD method. In general, we

can identify differences of both ACF whenever there are differences in the estimates of

β. For the case of IBM with only small differences in estimated β coefficients, also the

differences of ACF is small. On the other extreme is Homedepot with a huge difference

in β estimates that translates into a very slow decay of the ACF using FD but a fast one

using OLS.

We also report the estimates of the ARFIMA(p, d, q) models in Table 3, where the

order of p and q was either one or zero and chosen by the AIC criterion. In all cases,

the estimate of d is significantly larger zero, in all cases between 0.34 and 0.49, indicating

a strong degree of long memory but stationarity. The conclusion is that one should be

careful in using the FD detrending method when using it for prediction of volume in

financial markets, because autocorrelation estimates may not be accurate.
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5 Conclusion

This paper considers the impact of detrending methods on autocorrelation estimation.

The ordinary least squares (OLS) detrending and the first difference (FD) detrending

methods are considered. Our analysis reveals that ρ̂OLS(j)
p

−→ ρv(j) as long as vt is sta-

tionary. However, the FD detrending results in inconsistent autocorrelation functions.

Moreover, our simulation results show that the RMSE of ρ̂OLS(j) decreases monotoni-

cally with the increase of sample size. Furthermore, no matter what lag number and

differencing parameter is used in the experiment, the RMSE of ρ̂FD(j) does not diminish

monotonically. Therefore, the predictions made in Theorem 1 that the FD detrending

will result in inconsistent autocorrelation functions is clearly supported in our simula-

tions. This suggests that the FD detrending should be employed more carefully when

there is evidence for trend stationarity.

Appendix

Proof of Theorem 1

Let us first consider the asymptotic properties of ρ̂OLS(j). We note that

β̂OLS − β =

T∑

t=1

(vt − v)(t− t)

T∑

t=1

(
t− t

)2
=

T∑

t=1

tvt −
1

T

(
T∑

t=1

t

)(
T∑

t=1

vt

)

T∑

t=1

(
t− t

)2
= Op

(
T d−1.5

)
,

by using items 4 and 10 of Lemma 1 of Tsay and Chung (2000). We can rewrite ρ̂OLS(j)

as:

ρ̂OLS(j) =

1

T

T∑

t=j+1

(et,OLS) (et−j,OLS)

1

T

T∑

t=1

e2t,OLS

.
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For the denominator of ρ̂OLS(j), we have

1

T

T∑

t=1

e2t,OLS =
1

T

T∑

t=1

(yt − α̂OLS − β̂OLSt)
2

=
1

T

T∑

t=1

(vt − v)2 −
1

T

(
β̂OLS − β

)2
T∑

t=1

(
t− t

)2

=
1

T

T∑

t=1

(vt − v)2 +Op

(
T 2d−1

)

= γv(0) +Op

(
T 2d−1

) p
−→ γv(0)

by Lemma 1, item 6 of Tsay and Chung (2000) and the preceding results.

For the numerator of ρ̂OLS(j), we have

T∑

t=j+1

(et,OLS) (et−j,OLS) =

T∑

t=j+1

(vt − v) (vt−j − v)

−
(
β̂OLS − β

) T∑

t=j+1

(vt − v)
(
t− j − t

)

−
(
β̂OLS − β

) T∑

t=j+1

(vt−j − v)
(
t− t

)

+
(
β̂OLS − β

)2
T∑

t=j+1

(
t− t

) (
t− j − t

)

≡ A +B + C +D.

For the term A, we note that

1

T

T∑

t=j+1

(vt − v) (vt−j − v) = γv(j) +Op

(
T 2d−1

) p
−→ γv(j), (2)

by Theorem 3 of Hosking (1996).

For the term B, first we have

T∑

t=j+1

(vt − v)
(
t− j − t

)
=

T∑

t=j+1

(vt − v)
(
t− t

)
−

T∑

t=j+1

j (vt − v) = Op

(
T d+1.5

)
, (3)

because j/T → 0 as T → ∞. This implies that B = Op

(
T d−1.5

)
Op

(
T d+1.5

)
= Op

(
T 2d
)
.
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For the term C, similarly, we have

T∑

t=j+1

(vt−j − v)
(
t− t

)
=

T∑

t=j+1

tvt−j −
T∑

t=j+1

tv −
T∑

t=j+1

vt−jt+
T∑

t=j+1

tv

=

T∑

t=j+1

tvt−j +Op

(
T d+1.5

)
+Op

(
T d+1.5

)
+Op

(
T d+1.5

)
.

Furthermore, we also note that

T∑

t=j+1

tvt−j =

T−j∑

t=1

tvt + j

T−j∑

t=1

vt = Op

(
T d+1.5

)
, (4)

and we have
T∑

t=j+1

(vt−j − v)
(
t− t

)
= Op

(
T d+1.5

)
. (5)

Therefore, we prove that C = Op

(
T d−1.5

)
Op

(
T d+1.5

)
= Op

(
T 2d
)
.

For the term D, we note that

T∑

t=j+1

(
t− t

) (
t− j − t

)
=

T∑

t=j+1

(
t− t

) (
t− t

)
− j

T∑

t=j+1

(
t− t

)2
= O

(
T 3
)
, (6)

and we prove that D = O
(
T 2d−3

)
Op (T 3) = Op

(
T 2d
)
. Combining the asymptotic prop-

erties of A, B, C, and D, we prove that

1

T

T∑

t=j+1

(et,OLS) (et−j,OLS) =
1

T

T∑

t=j+1

(vt − v) (vt−j − v) +Op

(
T 2d−1

)

= γv(j) +Op

(
T 2d−1

) p
−→ γv(j).

Given the asymptotic properties of the numerator and the denominator of ρ̂OLS(j),

we have using Slutsky’s theorem that

ρ̂OLS(j) =
γv(j) +Op

(
T 2d−1

)

γv(0) +Op

(
T 2d−1

) p
−→ ρv(j). (7)

We now consider the asymptotic properties of ρ̂FD(j). Note that

△yt = β + △vt.

For the FD estimator, we have

β̂FD − β =
1

T − 1

T∑

t=2

△vt = Op

(
T−1

)
,

11



by Theorem 3 of Tsay (2000). Moreover, rewrite ρ̂FD(j) as

ρ̂FD(j) =

1

T

T∑

t=j+1

(et,FD − eFD) (et−j,FD − eFD)

1

T

T∑

t=1

(et,FD − eFD)2

.

For the denominator of ρ̂FD(j), we have

1

T

T∑

t=1

(et,FD − eFD)2 =
1

T

T∑

t=1

(yt − β̂FDt− y + β̂FDt)
2

=
1

T

T∑

t=1

(vt − v)2

−
2

T

(
β̂FD − β

) T∑

t=1

(vt − v)
(
t− t

)
+

1

T

(
β̂FD − β

)2
T∑

t=1

(
t− t

)2

=
1

T

T∑

t=1

(vt − v)2 +Op(T
d−0.5) +Op(1).

For the numerator of ρ̂FD(j), we have

T∑

t=j+1

(et,FD − eFD) (et−j,FD − eFD) =
T∑

t=j+1

(vt − v) (vt−j − v)

−
(
β̂FD − β

) T∑

t=j+1

(vt − v)
(
t− j − t

)

−
(
β̂FD − β

) T∑

t=j+1

(vt−j − v)
(
t− t

)

+
(
β̂FD − β

)2
T∑

t=j+1

(
t− t

) (
t− j − t

)

≡ A∗ +B∗ + C∗ +D∗.

For the term A∗, we note that A∗ ≡ A, and we prove that

1

T

T∑

t=j+1

(vt − v) (vt−j − v) = γv(j) +Op

(
T 2d−1

) p
−→ γv(j).

For the term B∗, we note that

T∑

t=j+1

(vt − v)
(
t− j − t

)
= Op

(
T d+1.5

)
,

12



by Equation (3). This implies that B∗ = Op (T−1)Op

(
T d+1.5

)
= Op

(
T d+0.5

)
.

For the term C∗, we note that

T∑

t=j+1

(vt−j − v)
(
t− t

)
= Op

(
T d+1.5

)
,

by Equation (5), and C∗ = Op (T−1)Op

(
T 1.5+d

)
= Op

(
T d+0.5

)
.

For the term D∗, we note that

T∑

t=j+1

(
t− t

) (
t− j − t

)
= O

(
T 3
)
,

by Equation (6). Therefore, D∗ = Op (T−2)O (T 3) = Op (T ). Combining the asymptotic

properties of A∗, B∗, C∗, and D∗, we have

1

T

T∑

t=j+1

(et,FD − e) (et−j,FD − e) = γv(j) +Op(1).

Finally, given the asymptotic properties of the numerator and the denominator of

ρ̂FD(j), we have shown that

ρ̂FD(j) =
γv(j) +Op(1)

γv(0) +Op(1)
. (8)

Therefore, the FD detrending will result in inconsistent estimates of the autocorrelation

functions, as stated.
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Company d AR MA βOLS βFD

HP 0.4236(0.012) 0.0141(0.018) 0.0013 0.0014

AMEX 0.4130(0.0128) -0.0618(0.0192) 0.0009 0.0006

MCDONALDS 0.3936(0.011) 0.0013 0.0010

PHMORRIS 0.4272(0.0122) 0.0016 0.0013

UTECH 0.4347(0.012) -0.1094(0.018) 0.0012 0.0013

JOHNSON 0.3902(0.0079) 0.0014 0.0012

ALCOA 0.3789(0.0125) -0.04(0.017) 0.0011 0.0012

SBC 0.3712(0.0116) 0.0015 0.0014

CATERPILLAR 0.3858(0.008) 0.0008 0.0009

MICROSOFT 0.4858(0.0099) 0.0028 0.0019

MERCK 0.4181(0.0116) 0.0015 0.0012

DUPONT 0.3927(0.0120) 0.0012 0.0011

HOMEDEPOT 0.3927(0.0120) 0.0023 0.0001

IBM 0.4747(0.0099) 0.0009 0.0009

HONEYWELL 0.4147(0.0112) -0.037(0.01573) 0.0011 0.0010

PROCTERGAMBLE 0.3836(0.0115) -0.0507(0.0156) 0.0012 0.0011

WALMART 0.4715(0.0135) -0.247(0.1074) 0.0024 0.0021

INTEL 0.4612(0.0127) -0.1375(0.0193) 0.0022 0.0018

GENELECTRIC 0.3836(0.1115) -0.0512(0.0156) 0.0014 0.0012

CITI 0.4636(0.012) -0.1355(0.0193) 0.0018 0.0015

EXXON 0.412(0.0133) -0.03(0.015) 0.0010 0.0010

MMM 0.3447(0.008) 0.0010 0.0010

JPMORGAN 0.3811(0.010) 0.0016 0.0015

BOEING 0.4551(0.01093) -0.04(0.017) 0.0014 0.0010

DISNEY 0.4643(0.0123) -0.0390(0.0172) 0.0014 0.0010

EKODAK 0.3715(0.1179) 0.0948(0.0167) 0.0007 0.0006

AT&T 0.4563(0.0113) 0.0006 0.0002

COCACOLA 0.4109(0.0125) -0.0327(0.0147) 0.0015 0.0013

INTLPAPER 0.3710(0.0127) 0.0010 0.0009

Table 3: Parameter estimates of ARFIMA models for the Dow Jones volume data. d is

the fractional difference parameter, AR and MA the autoregressive and moving average

component, respectively, and βOLS and βFD are the estimates of the trend coefficient using

OLS and FD detrending. Standard errors are in parentheses.
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Figure 1: Root mean squared error of ACF estimates using OLS detrending.
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Figure 2: Root mean squared error of ACF estimates using FD detrending.
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Figure 3: RMSE of autocorrelations estimated using OLS detrending (solid

line) and the true simulated values of vt (dashed line) for a sample size of

T = 200 and lag 3.
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Figure 4: RMSE of autocorrelations estimated using OLS detrending (solid

line) and the true simulated values of vt (dashed line) for a sample size of

T = 200 and lag 9.
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Figure 5: Time series of McDonalds daily log turnover, 1973 to 2003.
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Figure 6: ACF of log turnover of McDonalds using OLS (solid) and FD

(dashed) detrending.
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Figure 7: Time series of Philip Morris daily log turnover, 1973 to 2003.
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Figure 8: ACF of log turnover of Philip Morris using OLS (solid) and FD

(dashed) detrending.
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