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1 Introduction

Studies on annuity and pensions are usually based on the seminal paper by
Yaari (1965). This standard approach, though analytically convenient, relies
on some strong assumptions on individuals’ preferences. In particular, life-
time utilities are assumed to be additively separable, which implies temporal
risk neutrality. Such an assumption has major consequences. Firstly, it is
found that the optimal annuity pattern is independent of the individual’s
mortality profile (Yaari, 1965, Levhari and Mirman, 1977, Barro and Fried-
man, 1977). Secondly, optimal allocation of resources between individuals
with different mortality takes a very simple form. As shown for example in
Sheshinski (2007), a utilitarian social planner would like to equalize instan-
taneous levels of consumptions between individuals with different mortality
profiles. Consequently, the Social Security should redistribute lifecycle in-
come from individuals with high mortality to those with low mortality.

Accounting for temporal risk aversion is of crucial importance when con-
sidering risks that have long term consequences. The risk of death being
one of them, temporal risk aversion turns out to be a key aspect of individ-
ual preferences when studying intertemporal choice under uncertain lifetime
(Bommier, 2008). In particular, when temporal risk aversion is introduced,
Yaari’s famous results vanish and the optimal consumption profile depends
on the individuals’ mortality. For a social planner this may be of importance
for two reasons. First, the first best objective no longer corresponds to giving
the same annuity profile to all individuals, independently of their mortality.
Second, since people with different mortality look for different annuity pro-
files, the age profile of annuity becomes an interesting policy tool that can
be used to achieve some redistribution.

The present paper emphasizes the role of temporal risk aversion when
designing pensions for individuals having different mortality profiles. The

question of pension design has been addressed by several papers using the



standard additive approach, thus assuming temporal risk neutrality. This
is the case in Sheshinski (2007) and Cremer et al. (2007). Accounting for
temporal risk aversion provides new perspectives and actually led us to de-
viate from the above studies in several respects. Firstly, contrary to what
is found with the standard additive approach, it is not necessary to relate
heterogeneity in mortality and heterogeneity in income or wealth to have
non trivial results. Thus, we decided to focus on the simple case where all
agents have the same financial endowments. The problems that result from
the correlation between mortality and income or wealth, which were central
in these two papers, are left for further contributions. Secondly, given the
specificity of our approach, the policy tools that may be of interest are of dif-
ferent natures. In particular, we will consider the case of non linear annuity
pricing, which has attracted little attention so far.!

We consider a setting with heterogeneous individuals differing in their
mortality profile and on the verge of retirement. The low-type individuals
are characterized by a higher mortality rate at any age. Time is continuous
and we consider that the economy is in a steady state. Individuals’ utility
may exhibit temporal risk neutrality as well as temporal risk aversion. We
study the design of annuity profiles implied by a utilitarian Social Planner.
Our main results are as follows. First, when the government can observe
individuals’ mortality profiles, the optimum leads to a pooling allocation if
individuals’ preferences exhibit temporal risk neutrality. However, with tem-
poral risk aversion, low-type individuals should be offered a higher level of
instantaneous consumption at any age with a lower consumption growth rate.
Second, in a pooling optimum with temporal risk aversion, the consumption

growth rate lies between the two first best ones. Third, when mortality rates

"While Sheshinsky (2007) only considers the case of linear taxes on the return from
annuities, Cremer et al. (2007) allow non-linear pricing of annuities. However, their
non-linear taxes or subsidies are the results of differences in productivities rather than
differences in longevity.



are private information, the trade-off between present and future consump-
tion should be distorted downward for the low-type individuals. We show
that a non-linear tax on annuities purchased by the low-type individuals can
implement this second best optimum. We finally illustrate the model using
mortality rates observed for US females and males. Our results show that
the tax rate on the return from annuity should increase with age; ranging
from 2.5% at age 60 up to 17.5% at age 100.

The rest of the paper is organized as follows. In Section 2, we present the
model and the Laissez Faire problem. In Section 3, we present the first best

and the second best problems of the social planner. Section 4 concludes.

2 The model

We consider a small economy that is assumed to be in steady state. All
individuals are endowed with the same initial wealth W,. The population is
divided into two categories. Individuals of type H are characterized by lower
mortality rates than individuals of type L. Denoting u () and u”(t) agents
H and L hazard rate of death at age ¢, we thus assume that:

Al pH(t) < p*(t) for every t

Agents of type H therefore have higher survival probabilities than agents of

type L. We also assume that mortality rates increase with age:

d .
A2 —ut(t
pn (t)>0

Demographic studies indicate that this assumption is realistic when consider-

ing ages greater than 25 or 30. Since our paper deals with pensions that are



typically received after retirement, such an assumption is rather unrestric-
tive. Assumption Az further states that the hazard rate of death increases

more slowly for individuals of type L:

T tte) pt(tte)
IR

for any t and t 4 ¢, where € > 0. In other words, this assumption states that
the relative difference between mortality rates is decreasing with age. Again
this assumption is supported by studies on differential mortality at adult and
old ages (Brown et al., 2002).

The proportion of type ¢ individual is n’. Whenever a type i individual
dies, he is replaced by an individual of the same type. Throughout the paper,
we denote j (), the return on private savings at time ¢, the actuarially fair
return on annuity being j(t) + p(t) for type H individuals and j(¢) + pf(t)
for type L individuals. In the following, we present the utility function and
compare some of its useful properties relative to the individuals types. Finally

we present the Laissez Faire problem.

2.1 Individual preferences

Yaari’s standard approach involves assuming that a life of length 7" with a

consumption profile ¢ = ¢(.) yields a lifetime utility:

Uyt (e, T) = /0 a(t)u(c(t))dt (1)

where a/(t) is an exogenous time discount factor. Bommier (2006) empha-
sized the limits of such an approach which relies on the assumption of tem-
poral risk neutrality, a rather unappealing assumption for dealing with risks

which have long term consequences, such as the risk of death. Temporal
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risk aversion can be introduced, without abandoning the expected utility

framework, by considering utility functions of the form:

ven)=o( [ awutca) o

where ¢ is an increasing function. As is known from Kihlstrom and Mir-
man (1974), playing with the function ¢ involves adjusting individuals risk
aversion. When ¢ is concave the agent with the above utility function is
simply more risk averse than the agent with Yaari’s utility function (which
is obtained when ¢ is linear).

A simple interpretation of the specification in (1) is that agents have a
linear "lifetime felicity". Each moment of life gives them an instantaneous
felicity a(t)u(c(t)) that is additively aggregated in order to get the lifetime
felicity. However, given the uncertainty about life duration (and about con-
sumption), individuals cannot know ex-ante what their lifetime felicity will
be. At most, they know the distribution of lifetime felicity. Introducing a
function ¢ as in (2) enables risk aversion with respect to lifetime felicity to be
considered. For consumption profiles that would provide a constant flow of
felicity, the function ¢ would determine individual risk aversion with respect
to life duration. A linear ¢ would involve assuming risk neutrality, while a
concave function ¢ would indicate a positive risk aversion. While there is no
theoretical obstacle to considering risk prone agents, we limit ourselves to
the case where ¢ is concave (¢” < 0) and where —¢" /¢’ is a non increasing
function (consistent with the idea of non increasing absolute risk aversion
with respect to lifetime felicity).

Undeniably, introducing temporal risk aversion complicates the computa-
tion associated with utility maximization. This is probably one of the main
reasons that led economists to focus on Yaari’s specification for so many

years. A major difficulty seems to appear when writing the expected utility



function. Indeed, when life duration is random, the expected lifetime utility

associated with a given consumption profile c is:

EU (c) = /0 : u(t) exp (- /0 t,u(T)dT) ¢ ( /0 i () u(c (T))dT) dt

By integration by part, this may also be rewritten:
T t
EU (¢) = / st (B)u (e (1) ¢ (/ o (P ule(r) dT) dt
0 0

where s(t) = exp (— f(f ,u(T)dT) is the probability of being alive at age t.
When ¢ is not linear, expected utility is then no longer additive, which
might look like the beginning of a nightmare for economists. Bommier (2006)
explains however that this difficulty can be handled by making a linear ap-
proximation. This allows the pangs of endogenous discounting to be avoided
without losing most of the insights brought by this novel approach.

The idea is to rely on what is called the assumption of a "priceless life
context”. Basically, this assumption involves assuming that the difference in
terms of welfare between life and death is much greater than the difference
between high and low levels of consumption. Under this assumption (and
through an appropriate renormalization of the functions ¢ and/or «), prefer-

ences can be approximated by an additive expected lifetime utility function:?

where

2See appendix A for calculations.



The main departure from Yaari comes from £ (¢) which represents the time
discounting factor. Note that when ¢ is linear, as in Yaari’s case, (5 (t) is
constant and can be omitted. In the other cases, however, [ is not constant
and its shape depends both on the mortality risks (through the survival
function s (¢)) and on the degree of temporal risk, via the function ¢. When
¢ is concave, 3 is decreasing, reflecting the fact that the combination of
temporal risk aversion with mortality risks generates time discounting as
explained in Bommier (2006). We finally assume in the rest of the paper
that the utility function u(.) exhibits a constant intertemporal elasticity
of substitution. That means that the ratio cu” (¢) /u’ (¢) is assumed to be

independent of c.

2.2 Individuals types and preference properties

Before going further, it is useful to compare both types of individuals pref-

erences properties. We prove the following lemma in the appendix.

Lemma 1 If individuals mortality patterns satisfy assumptions A1-AS3, then
at any time t andt+¢, B (t) < Y (t) and B (t +¢) /B7 (t) > BE (t +¢) /5% (t).

This lemma tells that the functions § generated by mortality profiles
are such that individuals of type L value more consumption at any date.
Furthermore, the time discount factor decreases at a higher rate for low-
survival individuals.

Note finally that assumptions Al to A3 imply some monotonicity prop-
erties on individuals’ indifference curves. To see this, write the marginal rate

of substitution between consumptions at date ¢ and ¢ + ¢ for any pair of



consumptions (¢ (t),c(t + ¢)). Differentiation of (3) gives:

de (t)
de(t+¢€)| gy
Sttt e)at+e)p
N st(t)a(t) 5 (t

M RS ! t),c(t+e)

Z(t g)u/( (t+¢))

A2 implies s” (t + ) /s* (t) < s (t +¢) /s™ (t) and A3 implies B* (t +¢) /3" (t) <
T (t 4¢) /8™ (t) so that MRSH <MRSL

slope of indifference curves in the {c(t +¢),c(t)} space is less steep for the

In other words, the

t),c(t+e) t),c(t+e)"

type L individuals. It merely says that for a given decrease in future con-
sumption, low-type individuals should be less compensated in term of present

consumption than high-type individuals. This is illustrated in figure 1:

c(®)

EU,

EU,

> C(t+ ¢€)

Figure 1: Indifference curves in the {c(t +¢),c(t)} space.



2.3 The individual’s problem and the Laissez Faire

We assume a perfect annuity market. Individuals can buy annuities and the
after-tax rate of interest of these annuities at time ¢ is 7 (¢). Reintroducing

superscripts to distinguish individuals’ types, individual ¢’s problem is thus:

c(t)
T t

s.to / exp (/ —r (T)dT) c(t)dt < W.
0 0

The first order condition of the individual’s problem is given by:

max EU" (c) = /0 s () a(t) B () u(c(t))dt

s'(t) B (t)at)u (¢ (t) = Aexp <— /Otr (1) dT) (6)

where )\ is the Lagrange multiplier associated with the individual’s budget
constraint. Note that when annuity prices are fair, r (¢) = j (¢) + p (¢) and

(6) can be rewritten as:

B (t)a(t)u (' (1) = Aexp (— /Otj (7) dT) (7)

where j () is the interest rate. It can then be shown that:3

Proposition 1 When the return of the annuity is actuarially fair and under
assumptions A1-A3, the Laissez Faire allocation is such that:

(a) With temporal risk neutrality (i.e. when ¢ is linear): ¢& (t) /" (t) =
¢H (t) [cH (t) for every t.

(b) With temporal risk aversion (i.e. when ¢ is concave): ¢ (t) /cE () <
¢H (t) [cH (t) for every t.

3See appendix C.



When temporal risk aversion is introduced, type H and L agents choose
different consumption paths. Indeed, agent H, whose mortality is low, chooses
a higher rate of consumption growth (or a lower rate of consumption decline)
than agent L. This reflects the relation between mortality and impatience
discussed in Bommier (2008). Since agents’ optimal strategies are different,
we may anticipate that a social planner may be willing to provide different
pension levels and different pension profiles to individuals of different types.
Moreover, in the case where the type is not observable, the planner may
use this heterogeneity of individuals’ optimal strategies to make them reveal
their type by letting them choose a pension plan among several alternatives.
We address these questions below where we discuss the planner’s optimal
strategy, depending on whether individuals’ mortality is private information
or not.

Note finally for further reference in section 3.2 that (6) can be rewritten

in terms of marginal rate of substitution as follows:

t+e
MRSZ Poe(tre) = — €XD <—/t r(T) dT) (8)

where M RSc(t ) e(t+e) 18 given by (5).

3 The optimal policy

3.1 Full information

Assume first that the government is utilitarian and can perfectly observe the
individuals’ types. In this first best problem, the social planner is maxi-

mizing the sum of individuals’ expected utility functions under the resource

10



constraint of the economy. Its problem is thus:

max n"EUY (¢") +n"EU" (c")

cH (t),ch(t)

s.to /OT ns™ (1) exp </Ot —j (1) dr) cH(t)dt

+ /OT nts” (t) exp </Ot —j (1) dT) ch(t)dt < Wy

First order conditions of the first best problem are:

B (a0 (¢ ) = rew (- [ ) ) ©)

for any i = H, L and every t and A is the Lagrange multiplier associated with

the resource constraint. We prove the following proposition in the appendix:

Proposition 2 With assumptions A1-A2, the first best allocation is charac-
terized by:
(a) With temporal risk neutrality, ¢! (t) = ¢ (t) Vt.
(b) With temporal risk aversion on the length of life:
(i) ¢ (t) < cl (t) for every t.
(ii) With assumption A3, ¢& (t) /b (t) < ¢t (t) JcH (t) for every t.

Under the assumption of temporal risk neutrality, point (a) of proposi-
tion 2 states that the optimum involves providing all individuals with the
same consumption profiles. However, as stressed in point (), when individ-
uals’ preferences exhibit temporal risk aversion, the optimum is to offer a
higher instantaneous consumption level for the low survival individuals at
all ages. This is because low-type individuals have on average a lower life-
time felicity and that lifetime utility is concave in lifetime felicity. As in the

Laissez Faire approach however, the consumption level of type H individuals

11



increases (resp. decreases) at a higher (resp. lower) rate. In case (a), it is
clear that there is a positive transfer of (expected) lifetime income from the
low- to the high-type individuals. The level of this transfer is measured by
(J5° nfsf (t)e(t)dt — [T nEs™(t)c(t)dt) where ¢ (t) is the optimal consump-
tion profile for both types of individuals. In case (b) however, the sign of the
transfer is ambiguous.

To decentralize this first best optimum, one only needs lump sum transfers
from one type to the other and fair annuity prices. To see this, observe that

equation (9) is equivalent to its Laissez Faire counterpart (7) where annuity

prices are actuarially fair.

3.2 Asymmetric information

Assume now that the government is unable to tell who is of type L and
who is of type H. Such a government may have different strategies. A first
possibility is to look for a pooling optimum. Another consists in offering a

menu of pensions, so that individuals would voluntarily reveal their type.

3.2.1 Pooling optimum

Let us assume that the government is now constrained to offer the same
instantaneous consumption ¢ (t) to both types of individuals. The govern-

ment’s problem can be expressed:

m(a)x n EUY (c) + n"EU* (c)
c(t

s.to /Ooo (ns™(t) + n"s" (1)) exp (/Ot —j (1) dT) c(t)dt < Wy

12



The first order condition with respect to ¢(t) yields:

Fau o) =rew ([ i) ) (10)

where )\ is the Lagrange multiplier associated with the resource constraint
and B (t) = [nfs" (1) B (t) 4+ nlst (t) g~ )] / [nfsH(t) +nEsE ()] . B (1)
is a weighted sum of the 3’ (¢)’s with the weight given on " (t) by the fraction

of individuals of type i surviving at period t: n's’ (t) / n’s’ (t). In the
J=H,

L
appendix, we prove that BL (t)/p" () < B (t)/B () < ﬁH (t) /8" (t) for every

t. This implies that:
(F0) <)

for every t and where F'B stands for the first best allocation. In other words,

the variation rate of the consumption profile in the pooling optimum lies

between variation rates obtained in the First Best optimum.

3.2.2 Second best

We now look for the case where the planner can offer different annuity pro-
files. When agents are temporal risk neutral, there is no adverse selection
since the optimum is to pool individuals with the same level of instantaneous
consumption (point (7) of Proposition 2). However, with temporal risk aver-
sion, it is clear that individuals of type H would like to mimic individuals
of type L. The government’s problem is the first best problem to which we

add an incentive compatible constraint stating that type H individuals do

13



not get a lower utility if they reveal their true type:

max n EUH(CH —I—nLEUL( )

cH (t),cL(t)

sto / t) exp )CH(t)dt+
0 0

(=
/0 exp( Ot ) ck(tydt < W,

EU" () = EU™ (V).

Denoting v the Lagrange multiplier associated with the incentive compati-
bility constraint and « (t) = [y/nk] [s¥ (t) 87 (t)] / [s* (t) 8" (t)] > 0, the

first order conditions yield:

MRSH wry = T €xD <— /;JﬁS (G (1) + ™ (1)) dr) , (11)
MRSfEt),c(t«ke) = —exp <— /;JﬁS (G (1) + p" (7)) dT)

1—7(t)
MRSzt)»C(HE)
17 (1) g
c(t),c(t+e)

(12)

for any ¢ and t+¢ and where M RS is the marginal rate of substitution

(¢
of a type H individual mimicking a tyge L individual.

Comparing (11) with (8), we obtain the usual result of no distortion
at the top, which means that the first best trade-off between two-period
consumptions is preserved for the high-survival individual. Conversely, the
second best optimum introduces a distortion in the trade-off between two-
period consumptions for the low-type individual. As shown in section 2.2,
MRS, elt+2) < MRS o)
Thus M RS /M RSCL(t),c(t+s) > 1 and the expression in brackets of (12) is

,e(t+e)

for the same pair of consumption {c (¢),c (¢t + ¢)}.

14



greater than one. We summarize these results in the following proposition:*

Proposition 3 With assumptions A1-AS3, the second best allocation is char-
acterized by:

(i) With risk neutrality on the length of life, the first best solution is
implementable.

(ii) With risk aversion on the length of life, the second best solution is

characterized by:

() MRSH == — [s7(t+¢)/s™(t)] exp (— 50 dT) for any t
and € > 0.

(b)) MRS™ < —[s"(t+e)/s"(t)] exp (— () dT) for any t
and € > 0.

(c) (e7 () e (£)°7 < (&P (1) fem (£)" < (e (1) fe (1)) = (e () /e (1)) "
where FB and SB stand respectively for the first and the second best

allocations.

As argued above, the first best solution is incentive compatible when
individuals are risk neutral towards the length of life. When risk averse,
point ii(a) states that the consumption path of individuals of type H is not
distorted. However, for type L individuals, the marginal rate of substitution
between present and future consumption is distorted downward. In words, it
is desirable to encourage early consumption in life as compared to the first
best trade-off. Intuitively, this property can be explained by the fact that
type L individuals have steeper indifference curves in the {c(t+¢),c(¢)}
space. This implies that, starting from the first best trade-off, a variation
de (t+¢) < 0 along with a variation dc (t) = MRS(;L(t),c(t+a)dC (t+¢€) > 0 has
no first order effect on the utility of type L individuals while it decreases the

life cycle utility of type H individuals mimicking type L individuals. This

distortion is thus a way to relax an otherwise binding self-selection constraint.

4See the appendix for details.
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As a result, point (c) stresses that the variation rate of consumption of type
L individuals is lower than the one in the first best. As discussed in the
following, this optimum is compatible with a tax on the return from annuities
for the type L individuals. We now present an implementation procedure

with such a tax.

3.2.3 Implementation of the second best

The second best allocation described in Proposition 3 can be implemented
by letting agents choose among two combinations of lump-sum transfers and
age specific annuity returns. That is by letting agents decide either to receive
the transfer TH and have annuity returns given by r(t) or to receive T
and have annuity returns given by rX(t), where TH,TF r#(.) and rL(.) are
designed to reproduce the allocation given in proposition 3. From equation
(12) we immediately get that r(t) must equal j(t) + u(t), consistent with
the fact that consumption path of individuals of type H does need to be
distorted. The function 71 (t) is obtained by equating the RHS of (8) and
(12) which yields:

exp <— /t R (T)df) _ ! _];_Rgg exp ( /t TG0+t () dT) |

c(®),elt+e)
17 () grpiases
c(t),c(t+e)

(13)

Note that for € small, one has:

MRS 14l |B) )

o(t).c(t+e)

16



We show in the appendix that (13) together with (14) yields for € small:

(1)
()

- H
_gH

The return on annuity offered to agents claiming to be of low type, r% (¢),
is therefore lower than the actuarially fair rate of return, j (t) + uX (t), as a

result of assumption A2 and lemma 1. Defining an implict tax rate pZ(t) by

ri(t) = (L= p"() (j (1) + 1" (1))

one gets

Lo 1 O E OO
0= (gaerm) (rm) LH(t) RN

Given the complexity of the formula, it proves difficult to derive general
properties of this tax function, other than its sign (positive). The following
section presents a numerical illustration of the model in order to gain an

insight into its shape and levels when considering realistic mortality patterns.

3.2.4 Numerical illustration

For this numerical part, we take a population aged above 60. This corre-
sponds to the case in which individuals are endowed with a certain amount
of capital Wy and decide to annuitize it at the age of 60. Our types of in-
dividuals H and L have mortality rates similar to US women and men born
in the 40’s. We did not choose these gender specific mortality to provide

conclusion on gender issues. Actually, gender is generally well observed by
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the social planner and, therefore, not associated with the problem of asym-
metric information that motivated the second best approach. We only used
these male and female mortality rates since they provide mortality rates and
a differential mortality that are of a reasonable order of magnitude. It is
assumed that ng = ny; = 0.5. We calibrate the mortality patterns with a
Gompertz law which is a generally accepted distribution of mortality after

the age of 40. Formally, the Gompertz law is written as:

p' (1) = pgexp(kt),

We took k = 0.08 per year, which corresponds to a rather consensual value in
demographic studies. The parameters 1) are taken to match observed yearly
mortality rates at 60, which are 0.76 % for women and 1.12% for men.”® We
further assume that the subjective discount factor is such that o (z) = 1 and
the gross rate of interest is 3%. We use a function ¢ (z) = [1 — exp(—az)],
assuming therefore constant absolute risk aversion with respect to life dura-
tion. The parameter a is set to get plausible rates of time discounting. It is
such that —BL (60) /3% (60) = 0.03 per year. Finally, the utility function is

given by the isoelastic utility function:

1—0o

u(c):1+§1c_g

where o = 0.8 and £ is assumed to be very small, so that it makes sense to
rely on the first order approximation which gives equation (3).

In the first best optimum, the results suggest that type L individuals
are net recipients of the transfer scheme. Their expected income is equal

to 54.9% of the total income. In the second best optimum however, their

SThese data come from the Berkeley Mortality Database.
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expected income falls to 47.3% of the total income thus making them net
contributors to the transfer scheme. The figure 2 represents the tax rate
on the return of annuities obtained for type L individuals as a result of the
second best allocation presented in the preceding section. It can be seen that
this tax rate is monotonically increasing with age. It goes from 2.5% at the

age 60 to more than 17.5% at age 100.

tex rate

0.15
0.10

0.05

7 S —

L L L L | e
60 70 80 90 100{jg

Figure 2: The annuity tax rate on type L individuals

4 Conclusion

This paper has studied the problem of redistribution between individuals dif-
fering in their survival probabilities. We have successively compared utilitar-
ian allocations when individuals are either temporal risk neutral or temporal
risk averse. In a first best setting, we find that if individuals are temporal risk

averse, long-lived individuals should have a lower instantaneous consumption
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than short-lived individuals. Conversely, with temporal risk neutrality, the
pooling allocation is socially optimal.

When the government cannot observe individuals’ risk of death and agents
are temporal risk averse, the first best allocation is not implementable. The
second best can be implemented by offering an appropriate menu of transfers
and age specific annuity returns. In fact, in order to reach the second best,
high type individuals are provided with actuarially fair annuities, while low
individuals are incited to consume more during the early periods of life,
through a tax on their annuity returns. A numerical illustration based on
gender mortality differences shows a tax rate on low type annuity returns

which increases with age, ranging from 2.5% at age 60 to 17.5% at age 100.
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A Construction of the expected lifetime util-

ity
In order to be able to get back to a simple additive specification, we make
the assumption of a "priceless life context". As defined in Bommier (2006),
this corresponds to a situation where u (¢ (t)) = 1 4 {w (¢ (t)) where £ is a

(small) scalar and w (.) is bounded. The lifetime expected utility function

can then be rewritten as:

50 = [ st ([0 +eatcwn) a
ve [ sttawutemd ([ awareem i)

We assume that & — 0 which means that the individual would agree to give
up most of his consumption to live longer. Taking the Taylor expansion of
the function ¢’ and keeping only the terms of order zero and one in &, this

yields:

EU (c) = /OTs(t)a (t) ¢ (/Ota (x)d:n) dt

€ /OTs(t)a B w(c(t)d </Ota (z) dx) dt
¢ /OTS(t)Oé(t) (/Otoz(:c)w (c (:c))d:c) p (/Ota(x) d:c) it

Denoting the constant ¥ = fOT s(Ha(t) ¢’ (fot a(z) dx) dt and switching the

order of integration of the third term, the expected utility function can be
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approximated by:

EU (c) '

%

S
+
™

s(Ha (t)w(c(t)) ¢ (/Otoz (7) dx) dt

0

+€ OTa(t)w(c(t)) /t+oos(:z:)oz(x) ¢ (/:a(f) dT) d:c) dt

i a(t)w(c(t)) x

[s(t)qﬁ’ (/Ota(x) dx) +/th(:c)a(x) e (/Oza(T) dT) d:c} dt.

Integrating by parts the term in brackets yields:

%

S
+
™M

EU(c)~ ¥ +§/0 s(t)a(t)w (c(t)) B (t)dt

where 3 (t) = ftT —(3(1) /s (t) &' (fy a(z)dz)dr. Usingw (c(t)) = u(c(t))—
1/¢ and forgetting the constant, the expected lifetime utility can thus be ap-

proximated by the following additive utility function:
T
EU (c) = / s(t)a(t)B(t)u(c(t))dt.
0

Finally, denoting respectively 3 (¢) and 5 (¢) the derivatives of 3 (t) and s (¢)
with respect to t yields:

Bt = jg)é/fsﬁw’(/OTa(:c)dx)dT%—%cb'</0t04(55)d93)

_ _%[%w (/OTa(x)dx> dr (16)

where we made use of integration by part.
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B Proof of Lemma 1

Let us denote A (t) = —BL (t) /8% (t) — (—BH (t) /5" (t)) . We seek to show
that this term is positive for any ¢. Using the definition of 1 (¢), one has:

lLTziz (-7 (0 to) o) dr ¢ ijiiﬂ (-6 ( () o)) dr
f; SL(T ¢ (fy @ dx) dr ft SH(T ¢ (fy @ dx) dr

A(t) =

Using assumption A3 and ¢” < 0, we thus have the following inequality:

J 3 SL@ (=07 (fy a(@)de))dr— f) 4 sH@ (=07 (Jg o (@) dr)) dr

ft ZL(t (fo dx) dr f; ilfff((z (fo d:c) dr
(17)

A(t) > ph (1)

Using the following notations:

= LTSL<T)’ Toz:zx
o) = 053 ([Cawa).
e ema)
k() - qb/(OTO{(l')d[lf) ,U/L(T)7
/s )
T YaCk

the inequality (17) can be rewritten as:

Iy ft ()dT ft ()dT
N ft ft T)dT

At) 2
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where the functions ¢ (.),%(.) and h(.) are non negative. Rearranging the

terms in brackets yields:

Jy 9@ k@dr [ g(r)h(r)dr — [ g(r)k
)

T)h (1) dr ftTg(T) dT]
S g@ydr [ g(r)h(r

INCENA0 [ C(i

where the denominator is positive. Define the function

fa= [ as@r@dr [ @i [ g@r@neir [ o

By assumption A2, h is non-decreasing, k is non-increasing since —¢” /¢’
is non-increasing and p (7) is increasing. This implies that f (x) is non-
decreasing with z and therefore non negative for any = > ¢t. Then A (¢) is

positive for any ¢ which proves the result.

C Proof of proposition 1

The proof is similar to the one provided for Proposition 7 in Bommier (2008).

Differentiating (7) with respect to ¢ yields:

1

a(t) B () (¢ (1) + a(t) [c’i Bu" (¢ (1) 8 )+ (' (1) B
= exp (— /0 j () d7> 10

which after some manipulation gives:

(t)
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where ' (¢ (t)) /u” (¢' (t)) ¢ (t) is a constant by assumption.

(a) With temporal risk neutrality, 3 () is equal to a constant so that —¢ (¢) /¢’ (t) =
Jj(t)+al(t)/a(t) fori=H, L.

(b) With temporal risk aversion, the use of the individual’s budget constraint
fOT c(t) s (t)dt = Wy and assumption Al yields & (t) > ¢ (t). Finally
lemma 1 implies ¢& (t) /e (1) < ¢ (t) /e (t).

D Proof of proposition 2

Differentiation of (9) with respect to t yields:

& (1) [of (¢ (1) B (0] +a @) & (" (¢ (1) B (1) + ' (¢ (1) B ()]
= —Aexp (—/0 j (1) dT) Jj )
which after some manipulation gives:
G () a(t) B
0 wemen !V an e (t)] 1)

where v’ (¢! u’ (¢! (t)) ¢ (t) is a constant by assumption.
here u' (' (t)) /u" (" (t)) ¢ (t) by

(a) With temporal risk neutrality, 5° (¢) is equal to a constant so that (9)
implies ¢’ (t) = c(t) for every t and i = H, L.

(b) With temporal risk aversion, (9) implies ¢ (t) < cF (t). Equation (18)
and lemma 1 imply ¢& (¢) /b () < ¢H (t) /e (t).
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E The pooling optimum

Differentiating (10) with respect to ¢ yields

c(t)  u(c(t) , @ a(t)
o0 " W e)e) [] AN T w)} (19
where
{ (" e @+ 05" 1)
nk (s'L (t) 8- () + s* (t) " (’f)ﬂ (S (8) 4 st (1)
By — OB () +ntst () 55 ()] [n78T(E) + nt5E ()]}
B s @)+ nbst (0] [ (1) 57 (6) + st (1) B (1)

Developing the numerator in the above expression and rearranging terms

yield:

{ (anH () B (t) + ntsE () B" (t)) (s (t) + nkst (1))

Sy (870 = B 0) (5 (1) H (1) 3 )7 (1))
B () sk (0] [ () B (8) + nsE (1) B (1)

We wish to compare 3 () /3 (1) with 3 (£) /8 (t) and 3* (£) /5" (1).
Let us first denote A, the difference between 3 (¢) /3 (t) and BH (t) /5™ (t).
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It has the following expression

{anL (t) (nfs™(t) + ntst (1)) (5 (t) - p* (1) ZHE?)
+nfint (B (1) — B (1)) (57 (1) s™ (1) — s* (£) s™ (1)) }

A=
[nHsH (t) +ntst ()] [nH st (t) 87 (t) + st (t) B* (t)]

x:vhich is always negative by Assumption Al and Lemma 1. This implies
B /B < B (1) /6" ).

Let us now denote Y the difference between é (t) /B (t) and BL (t) /B ().
It yields:

nst (1) { (s (6) + st (1) (5" (8) - 6 (1) 2 2)

Fnbst (8) (87 (1) - B (1) (5% - 54
[(nHsH () + nlsl (t)] [nH st (t) pH (t) + nltsl(t) pE (t)]

T:

where the first part in the numerator is positive while the second one is

negative. Equivalently,

with y = nfls? (t) / [(nf " (t) + nlst (1)) (nfsf (t) B7 () +nlst () & (1))] >

0. First note that, using equation (16), ﬁ (t) can be rewritten as
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where (" (t ( fo :c) < 0. Using this expression and rearranging

terms, this ylelds

T

-

E Eg (5™ (1) +n*s" (1)) +n"s™ (2) [B* (1) - B (1)) =

"o (50 - o (| o) o)) et ) (50— (| () w))

which is always negative. Using A1 and Lemma 1, one also has

=

3

6H (t)ﬁ (t) anH anL anL L H
5 ) ML(t)( () + (1) + () [8" () = 8" (1)]
BH (t) H_H L_L L_L L H

< ) (t) +n"s™ (t)) + nts" (t) [B" (t) — 8" (t)] <0

so that T > 0 and " (¢) /8" (¢ ()<B()/ﬁ()
(1) /85 (1) < BB (1) < B (#) /7 (1) yields:

Using expressions (18) and ﬁ

which proves the result.
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F Second best optimum

F.1 Proof of point (ii) of proposition 3

First order conditions of the second best problem are:

gCEH(g (1+ niH) —s™ (1) exp <— /0 ) dT) =0, (20)
gCEL(é; — As™ (t) exp <— /Otj (1) dr) — %% =0. (21)

(a) Straightforward rearrangement of (20) taken at time ¢ and ¢ + € gives the
marginal rate of substitution between two-period consumptions (11)

for the high-type individual which proves point (a).

(b) Denoting EU Z(t) the expected marginal utility of consumption at date ¢

and evaluating (21) at time t and ¢ + €, we get:

——H
EUCL(/t—H’;‘) _lEUC(t-‘r&) EUCL(/t)
EUL, nt EUL, EUL,

——H
sh(t+e) ! v EU
cvTe) | i(nd 1— L

sh(t) P ( /o i) T) 8 nk EUcL(t)

where E_Uf({t) is the expected marginal utility of a type H individual

mimicking a type L individual. Multiplying the second term inside
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brackets of the LHS by E_Uit) /E_Uit) yields:

L el L
E Uc(t+a) 0 E Uc(t+a) E Uc(t) E Uc(t) _
L L L L  ——H
EU n" EUfy BV EU,,

——H
st(t+e) ¢ v EU
_— — (T)dr ) x [1——

sty O ( / 7 (7) ) nk EUL,

This can be rewritten as:
——H

MRSt 1L MRSc(t),c(Hs) s" () 8" (1) _

ettt n* MRScL(t),c(t+a) st (t) B* (1)
sh(t +¢) ( ' ) [ v s7 (@) BY (1)
—————=exp | — (T)dr | X |1 = ——"———=

Lty P /0 i) nt st (1) g5 (1)

which yields (12).

(¢) The first order conditions (20) and (21) can be rewritten as:

o (t)u (e (1)) BH (t) (1 + niH) = Aexp (- /Otj (r) df) (22)
@ () [8 0 - 5 05" 0] < v (- [ 71 0r)

(23)

Differentiating (22) with respect to time yields ¢¥ (t) /cH (t) to be the
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same as in (18) whereas differentiation of (23) yields:

L sH(@) pH sH (1) st sH(t) H
(t) 1 « (t) n 5 (t) -7 (sL(t)ﬁ (t) + <8L(t) - sL(?) SL(t)) 5 (t))
J oH
a(t) BE (1) — 387 (1)
u’ (cL (t))
= - X
cl (t)u” (c (1))
. OV O OB O O WA
(t) + & (t) n ﬁL (t) 1-— Y (sL(t) BL(t) + (SL(t) - sT(t) SL@)) ,BL(t)>/
/ a(t)  ph(t) 1 — 2@ 8 \

st(t) B (1)

Note that by assumption A2 and lemma 1, one has:

OO RO,
@) 5T B s ()
so that
SO ) (3 s 0 0w
<sL<t> BL(tﬁ(sL(w 0! sL<t>) BL@)) 7S B ()

which implies

s2() g7 (1) sH)  sh) s )
1 - 2 <5L(t) BL + (SL(t) T sL(t) sL(t)) 3L )
sH (1) BE ()
ST(D) AL (1)

Thus, comparing (24) with (18) yields (¢ (¢) /¢~ (£))*" < (¢& (1) /c& (1)) 7"
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F.2 Implementation

For e small enough, (13) can be rewritten as:

MRS,
(1—er(®) (1—7T(t)MR‘L(W) =(L—e(®)+pu" 1)) A-m(1).

c(t),c(t+e)

Rearranging the terms yields:

L L H
(1—er” (1)) [MRSCW(HE) —m(t) M RSC@,CW]
= (L=e(®+n" 1) (1-7 ) MRS, . (25)
Using (14), one has:
MRS', =14’

c(t),c(t+e)

where Q' = [é%(t) 4oy glgg + Z,l((f((:))))c'(t)} so that (25) can be rewritten

as:

(1= el (1) [(1 =7 (8) + € (2 — 7 () Q)]
_ (1 . (j (t) —I-,UL (t))) (1 —m (1)) (1 —l—eQL) )

After some simplification, this yields, for ¢ small enough

which gives (15).
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