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Abstract 
 

A new technology adoption problem can be modelled as a two-stage control problem, in which 
model parameters (“technology”) might be altered at some time. An optimal solution to utility 
maximisation for this class of problems needs to contain information on the time, at which the 
change will take place (0, finite or never), along with the optimal control strategies before and 
after the change. For the change, or switch, to occur the “new technology” value function needs to 
dominate the “old technology” value function, after the switch. We charaterise the value function 
using the fact that its hypograph is a viability kernel of an auxiliary problem and we study when 
the graphs can intersect. If they do not, the switch cannot occur at a positive time. Using this 
characterisation we analyse a technology adoption problem and show how to recognise the 
models, for which the switch will occur at time zero or never. 
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Glossary

D, E, K closed sets in RN ; D will be typically used for
viability domain

f(·, ·), ψ(·, ·) : RN × U → RN system’s dynamics, continuous in either argument
(later assumed affine in first argument and indexed
by technology)

φ(·, ·, ·, ·) : RN+3 → RN+3 auxiliary system’s dynamics
Φ(·), Ψ(·) system’s dynamics; set valued maps

L : [0, T ]× RN × U → R instantaneous utility (utility integrand); bounded
function

NPD(x) set of proximal normals to D at x ∈ D
U ⊆ RM set of control values

u(·) : [0, T ] → U control; measurable function
U[t,T ] set of measurable controls on [t, T ] with values in U

V T (·, ·) : [0, T ]× RN → R value function for T -horizon optimal control
w(·, ·), w(·, ·) sub- and supersolution to the Hamilton-Jacobi-

-Bellman equation
x(·) : [0, T ] → RN state variable

ViabΨ(K, E) viability kernel in K with target E, for dynamics Ψ
Epi(w),Hypo(w) epigraph, hypograph of the function w

1 Introduction

The aim of this paper1 is two-fold. First, we want to demonstrate economic
applicability of recent results in viability theory concerning some equivalence
between the value function and the viability kernel. In particular, we will
examine a collection of continuous-time optimal-control problems with affine
dynamics to decide that their value function graphs cannot intersect. Sec-
ond, we want to use the established result to prove existence, or the lack of
it, of a switching time in a two-stage optimal control problem of technology
adoption.

A two-stage control problem is one, in which model parameters might
be modified at some time. For example, a system’s dynamics, which de-
scribes accumulation of pollution, may be altered through installation of
new filters. More generally, two-stage (or multi-stage) control problems
are concerned with switching between alternative and consecutive regimes,

1This paper draws from and extends [21].
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where the switching times between regimes are endogenously determined.
Such problems have been studied by [35], [1], [36], [23] and [11] and [12] in
the context of maximum principle or multiprocess maximum principle [4].
In particular [11] and [12] applied this technique to investigate technology
adoption. We use a model discussed in the latter and study switching-time
existence using viability theory.

An optimal solution to utility maximisation in a two-stage control prob-
lem needs to contain information on the time, at which the regime switch
will take place (0, finite or never) as well as the optimal control strategies
before and after the change. For the change, or switch, to occur the “new
filter” value function needs to dominate the “old filter” value function, after
the switch. Intuitively, if the stock of an investment capital exceeds certain
threshold, installing a new technology will be justified.

We will index two-stage optimal control problems by a parameter respon-
sible for the system’s dynamics and characterise the corresponding value
functions. If their graphs, each corresponding to a different parameter, do
not intersect then the switch 2 will not occur and the “new” technology will
not be adopted. If the graphs intersect, then it is optimal to replace the old
technology by the new one, should the the state variable take the system
to the cross-over point. We will charaterise the value functions using the
fact that their hypographs are viability kernels of some auxiliary viability
problems and study when the hypographs are contained in each other.

What follows is a brief outline of what this paper contains. In Section 2,
we describe a basic optimal control model, which we use in Section 6 to study
a technology switching problem.3 Basic results concerning viability theory
and viscosity solutions are presented in Section 3. In Section 4, a relationship
between the viability kernel of an auxiliary problem and the basic finite-
horizon optimal control problem are established. A proposition concerning
a relationship between value functions and Hamiltonians is formulated in
Section 5. This result is then used in Section 6 to study existence of a
switching time in a technology adoption problem. The concluding remarks
summarise our findings.

2Presumably, in a two-stage optimal control problem one switch at most can occur.
3According to our knowledge this will be the first application of viability theory to

microeconomics. For macroeconomic applications refer to publications [20], [9] and work-
ing papers [10], [19], [22], [27] [26]. For viability theory applications to environmental
economics see [8], [24], [16] and [25]; for applications to financial analysis see [28] and the
references provided there.
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2 Formulation of an optimal control problem

We consider a control system whose dynamics is given by:

ẋ(s) = f(x(s), u(s)) (1)

where the state variable x belongs to RN , the control u(·) : [0,∞) → U
⊂ RM is a measurable function and f : RN × U → RN .

The optimal control problem is

max
u(·)

∫ T

t
L (s, x(s; t, x, u(·)), u(s)) ds (2)

where x(·; t, x, u(·)) denotes absolutely continuous solutions to (1), with 0 <
T < ∞ and L : [0, T ]×RN ×U → R is a given bounded function. We adopt
the convention that x(·; t, x, u(·)) denotes the solution to (1) starting from
(t, x) ∈ [0, T ]× RN .

If we denote the set of measurable controls on [t, T ] with values in U by
U[t,T ] then the value function corresponding to the optimal control problem
(1) and (2) is given by:

V T (t, x) = sup
u∈U[t,T ]

∫ T

t
L (s, x(s; t, x, u(·)), u(s)) ds (3)

Our goal is to establish conditions allowing us to compare value functions
that correspond to different system’s dynamics f(·, ·), perhaps “indexed” by
technologies. To do this, we will characterise the value function (3) through
a viability kernel and also as a solution to an equation of Hamilton-Jacobi-
Bellman type.

At this stage we hint on a result about viability characterisation obtained
in [14]. The result establishes that the epigraph of the minimal time to reach
a target set is a viability kernel of an auxiliary control process. Later, in
Section 4, we will prove an analogous result for a more general optimisation
problem (2), (1).

We will also use some available and well known results (see e.g., [5], [6],
[17]) regarding a Lipschitzian value function. In particular, under continuity
assumptions on system’s dynamics f(·, ·) and utility integrand L(·, ·, ·) (see
Section 3.1) the value function (3) is the unique Lipschitz viscosity solution4

4A viscosity solution of a partial differential equation is a continuous function that
satisfies the equation and whose derivatives are considered in a generalised sense. See
Section 3.3 for precise definitions.
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of the following equation:




∂V T

∂t
(t, x) + H

(
t, x,

∂V T

∂x
(t, x)

)
= 0

(t, x) ∈ [0, T )× RN ;
with the final condition V T (T, x) = 0, for all x ∈ RN

(4)

where the Hamiltonian 5 H : R+ × RN × RN → R is:

H(t, x, p) = max
u∈U

(〈p, f(x, u)〉+ L(t, x, u)) . (5)

Our main result will enable us to compare value functions associated
with different technologies. However, rather than obtaining V T (t, x) as a
solution to the Hamilton-Jacobi equation (4), we will characterise the value
function through a viability kernel of an auxiliary problem related to the
original optimal control problem.

The approach to value function characterisation by viability kernels was
dealt with in mathematical publications [3], [13], [18], [29], [31], [32], [33].
Our use of this approach to economic problems’ solution is novel. Further-
more, we are unaware of any “applied” problem whose solution would be
based on the links between the viscosity supersolution, the value function’s
hypograph and the viability kernel of an auxiliary problem, all to be defined
below.

3 Preliminaries

3.1 Definitions, assumptions and notation

We will assume that the dynamics f : RN × U → RN in equation (1) is a
continuous function and that it satisfies:

{ ||f(x, u)|| ≤ c1(1 + ‖x‖)
||f(x, u)− f(y, u)|| ≤ c1 ‖x− y‖ ∀x, y ∈ RN , u ∈ U (6)

where c1 > 0 is constant; the control set U is a compact subset of RN . We
can therefore describe the system’s velocities at x as f(x,U) where

f(x,U) = {f(x, u), u ∈ U} is a convex set ∀x ∈ RN . (7)
5Notice that we depart from the traditional definition according to which the Hamil-

tonian will be the contents of brackets (·) in (5) (i.e.,“maximand”) rather than the result
of the maximisation, as we have define it, following the literature on viscosity solutions,
see e.g. [5], [6], [17].
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It is well known that under (6), for every (t, x) ∈ [0,∞)×RN , the Cauchy
Problem (CP):

{
ẋ(s) = f(x(s), u(s)) for almost every s ∈ [t,∞) ;

x(t) = x
(CP)

has a unique absolutely continuous solution, denoted by x(·; t, x, u(·)).
We will also assume that L : [0, T ] × RN × U → RN is continuous and

satisfies :
{ ||L(t, x, u)|| ≤ c2(1 + ‖x‖)
||L(t, x, u)− L(t, y, u)|| ≤ c2 ‖x− y‖ ∀x, y ∈ RN , u ∈ U, t ∈ [0,∈ T ]

(8)
where c2 > 0 is constant and

∀x ∈ RN , t ∈ [0, T ] L(t, x, U) = {L(t, x, u), u ∈ U} is convex. (9)

Later we will study an example where the function f : R × U → R is
linear in either variable and has the following form:

f(x, u) = θu− µx (10)

with θ, µ ∈ R that can be associated with some technology and L : t ∈
[0, T ]× R× U → R+

L(t, x, u) = e−ρtg(u, x) (11)

where g(u, x) is bounded, continuous and concave in each argument, de-
creasing in x; ρ ∈ R.

3.2 Viability theory

Here we will present the notion of viability-domain-with-a-target introduced
in [31] (for existence and characterisation of feedback controls assuring vi-
ability see [37]). We will characterise this set (i.e., viability domain) using
the Viability Theorem provided in [13] (Theorem 2.3):

Proposition 1 We assume that D and E are closed sets. Let us sup-
pose that ψ : RN × U → RN is a continuous function, Lipschitz in the
first variable; furthermore, for every x we define set valued map ψ(x,U) =
{ψ(x, u);u ∈ U} which is supposed to be Lipschitz continuous with convex,
compact, nonempty values.

Then the two following assertions are equivalent 6:
6Here NPD(x) denotes the set of proximal normals to D at x i.e., the set of p ∈ RN

such that the distance of x + p to D is equal to ||p||.
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i.
∀x ∈ D\E, ∀p ∈ NPD(x), min

u
〈ψ(x, u), p〉 ≤ 0 (12)

(respectively, max
u
〈ψ(x, u), p〉 ≤ 0) ;

ii. there exists u ∈ U[t,T ] such that

(respectively, for all u ∈ U[t,T ])

the solution of
{

ẋ(s) = ψ(x(s), u(s)) for almost every s
x(t) = x

(13)

remains in D as long as it does not reach E.

Notice that the inequality minu〈ψ(x, u), p〉 ≤ 0 in (12) means that there
exists a control for which the system’s velocity ẋ “points inside” the set
D\E. Respectively, maxu〈ψ(x, u), p〉 ≤ 0 means that the system’s velocity
ẋ “points inside” the set D\E for all controls from U .

When i) (or ii)) holds we say that D is a viability domain with target E
(or, respectively, D is an invariance domain with target E) for the dynamics
ψ. When E = ∅, then the proposition concerns the classical notion of
viability (respectively, invariance) domain [3].

Definition 2 Let K be a closed set. We call viability kernel in K with target
E, for a dynamics Ψ denoted:

ViabΨ(K, E)

the largest closed subset of K, which is a viability domain with target E for
Ψ.

It was proved (see for instance [2] and [31]) that ViabΨ(K, ∅) is also the set
of x such that there exists x(·), a solution of

ẋ(s) ∈ Ψ(x(s)) (14)

starting from x, which is defined on [0,∞) and x(s) ∈ K for all s ≥ 0.
Respectively, ViabΨ(K,E) (i.e., when E 6= ∅) is also the set of x such that
there exists x(·), a solution of

ẋ(s) ∈ Ψ(x(s))

starting from x, which is defined on [0, τ) and x(s) ∈ K for all s ∈ [0, τ) and
if τ is finite then we have x(τ) ∈ E.
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Our conclusions regarding value functions will be based on the fact that
the definition of a solution to a PDE of the type (4) gives some invariance
properties of sets related to the value function (see Propositions 1 and 4).
More precisely, the hypograph7 of a supersolution to (4) is a viability domain
in [0, T ]× RN+2 with some target for the auxiliary system’s dynamics φ:

(t, x, z, r) → φ(t, x, z, r) = (1, f(x,U);L(t, x, U), 0) (15)

and the epigraph of a subsolution is an invariance domain in [0, T ]× RN+2

with some target for the auxiliary system’s dynamics −φ:

(t, x, z, r) → −φ(t, x, z, r) = −(1, f(x, U);L(t, x, U), 0). (16)

In particular, we will exploit the fact that the largest closed viability domain
(kernel) in [0, T ]×RN+2 for dynamics φ (with a target) is the hypograph of
the biggest subsolution8 (value function) to the Hamilton-Jacobi-Belleman
equation (4).

We will use Epi for the epigraph and Hypo for the hypograph.

3.3 Viscosity Solutions

Let us define a viscosity solution to the first order Hamilton-Jacobi-Bellman
equation (cf. [5] for instance):

Definition 3 A viscosity supersolution of (4) is a lower semicontinuous
(l.s.c.) function w : [0, T )× RN → R if and only if

for any ϕ ∈ C1 and when (t, x) is a local minimum of (w − ϕ) ,
∂ϕ

∂t
(t, x)+ H

(
t, x,

∂ϕ

∂x
(t, x)

) ≤ 0 .

A viscosity subsolution of (4) is an upper semicontinuous (u.s.c.) function
w : (0, T ]× RN → R if and only if

for any ϕ ∈ C1 and when (t, x) is a local maximum of (w − ϕ) ,
∂ϕ

∂t
(t, x)+ H

(
t, x,

∂ϕ

∂x
(t, x)

) ≥ 0.

A viscosity solution of (4) is a function which is both subsolution and super-
solution (so, in particular, it is continuous).

7For w : [0, T ]× RN × R→ R we have:
Epi(w) := {(t, x, r) ∈ [0, T ]× RN × R | w(t, x) ≤ r};
Hypo(w) := {(t, x, r) ∈ [0, T ]× RN × R | w(t, x) ≥ r}.
8 Biggest with respect to canonical order in the class of functions.

8



There are several different definitions of discontinuous viscosity solu-
tions. In particular, Ishii’s solutions (cf. [5]) are based on semicontinuous
envelopes of functions; there are also Barron-Jensen-Frankowska’s semicon-
tinuous solutions ([5], [7]) for convex Hamiltonians) and Subbotin’s minimax
solution [34] (called bilateral solutions in [6]) see also [30]. We think that the
definition that we use in this paper is perhaps the most appropriate for the
study of our problem. In particular, we find that it enables us to adequately
compare solutions to the Hamilton-Jacobi-Bellman equations.

To establish a link between the viscosity solutions and viability we will
provide an equivalent definition of super- and subsolutions to (4) in terms of
proximal normals 9. The proof of the equivalence between the two definitions
and a result formulated as the following proposition can be found in [29].

Proposition 4 A viscosity supersolution to (4) is a l.s.c. function w :
[0, T )× RN → R such that:

for any (pt, px, pr) ∈ NPEpi(w)

(
t, x, w(t, x)

)
,

pt+ H(t, x, px) ≤ 0

A viscosity subsolution to (4) is an u.s.c. function w : [0, T )×RN → R such
that:

for any (pt, px, pr) ∈ NPHypo(w)

(
t, x, w(t, x)

)
,

pt + H(t, x, px) ≥ 0.

4 The Optimal Control Problem with Finite Hori-
zon

This section is dedicated to the characterisation of the value function of a
finite-horizon optimal control problem through the Hamilton-Jacobi-Bellman
equation (4).

4.1 The associated Mayer problem

Consider the Bolza optimal control problem with the following value func-
tion:

V T (t, x) = sup
u∈U[t,T ]

{
g (x(T ; t, x, u(·))) +

∫ T

t
L (s, x(s; t, x, u(·)), u(s)) ds

}
.

(17)
9Refer to footnote 6 and Proposition 1.
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Function g(·) is a “scrap value” function at the final time T , which satisfies
{ |g(x)| ≤ c2 for all x ∈ RN ,

g is upper-semicontinuous in RN ; (18)

L : R × RN × U → R satisfies (8), (9). If g is discontinuous then so is, in
general, the value function V T (t, x).

We will consider the modified system’s dynamics:

ẏ(t) = (f(x(t), u(t));L(t, x(t), u(t)). (19)

Here
y(·; t, y, u(·)) := (x(·; t, x, u(·)); z(·; t, z, u(·)))

is the solution of (19) starting at (t, x, z) := (t, y) ∈ [0, T ] × RN+1. The
set of solutions starting at (t, y) will be denoted S(t, y) := {y(·; t, y, u(·));
u ∈ U[t,T ]}.

Let h : RN+1 → R, given by

h(y) := g(x) + z with y := (x, z) .

We define an associated Mayer problem as follows:

maximise h (y(T ; t, y, u(·))) (20)

over all absolutely continuous solutions of (19).
With the above notations, we define the following value function corre-

sponding to problem (20) subject to (19):

W T (t, y) = sup
u∈U[t,T ]

h
(
y
(
T ; t, y, u(·))). (21)

Note that the following relation is true10:

W T (t, y) = V T (t, x) + z .

We will study the properties of W T ; as a consequence, a characterisation
for V T will be obtained.

Before giving the main result of this section, we cite some classical results
and recall the well known results when the function h is Lipschitz (for details,
see [5], [6], [17]).

10Notice that z(s) = z +
∫ s

t
Ldt where z is some initial condition and

V T (t, x) = sup
u

[g(x(T )) +

∫ T

t

Ldt] = sup
u

[g(x(T )) + z(T )− z] (22)

= sup
u

[h((x(T )), z(T ))− z] = sup
u

[h(y(T ))− z] = −z + sup
u

[h(y(T ))]
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4.2 Regularity and the Principle of Optimality

We first recall some results concerning the regularity of W T .

Lemma 5 Suppose that (6), (7), (8), (9), hold true. Assume that h is
upper semicontinuous. Then we have:

i. (Existence of optimal control) There exists an optimal trajectory start-
ing from each point (t, y) ∈ [0, T ]×RN+1 i.e., there exists ȳ(·) ∈ S(t, y)
such that

W T (t, y) = h(ȳ(T ; t, y, ū(·))) for all (t, y) ∈ [0, T ]× RN+1

ii. W T is upper semicontinuous.

Next we recall the Bellman Principle of Optimality, from which the Hamilton-
Jacobi-Bellman PDE is derived, satisfied by the value function.

Proposition 6 (Principle of Optimality) Let g : RN → R be a bounded
function and suppose that (6), (7), (8), (9) hold true. Then for all (t, y) ∈
[0, T ]× RN+1 and α > 0 such that t + α ≤ T :

W T (t, y) = sup
u∈U[t,T ]

W T (t + α, y(t + α)). (23)

4.3 The Hamilton-Jacobi Partial Differential Equation for
the Mayer problem

Using the Principle of Optimality for the optimal control problem with a
finite horizon (20), (19) we can prove that when the value function W T is
regular enough (e.g., u.s.c.) then this function is the viscosity solution in
the sense of Definition 3 of the following PDE:





∂W

∂t
(t, y) + H̄

(
t, y,

∂W

∂y
(t, y)

)
= 0

(t, y) ∈ [0, T )× RN+1; W (T, ·) = h(·)
(24)

where the Hamiltonian H̄ : [0, T )× RN+1 × RN+1 → R̄ is:

H̄(t, y, q) = max
u∈U

〈q, (f(x, u), L(t, x, u))〉 . (25)

Proposition 7 If h is a Lipschitz function then W T is the unique Lipschitz
viscosity solution to (24) with the final condition W T (T, ·) = h(·).
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This result, based on the Principle of Optimality, is classical (see [5], [6],
[17]). Also, it is easy to check that the value function is Lipschitzian when
h is Lipschitzian.

Remark 8 Using (22), we can verify that ∂W T

∂z = 1 for almost all (t, y) ∈
[0, T ] × RN+1 and as a consequence V T is the unique Lipschitz viscosity
solution to (4) with the final condition V T (T, ·) = g(·).

4.4 The upper semicontinuous case for the Mayer problem

In this section we assume that the function h is upper semicontinuous
(u.s.c.). If so, the value function W T is also upper semicontinuous, as we
have already said it in Lemma 5.

Using results from e.g., [29], [32] or [33] we obtain the following theorem,
which says that the value function is the biggest11 u.s.c. subsolution of (24).

Theorem 9 If (6), (7) (8), (9) hold true then Hypo(W T ) is viability kernel
in [0, T ] × RN+2 with target {T} × Hypo(h) for the dynamics (t, x, z, r) →
φ(t, x, z, r) = (1, f(x,U), L(x,U), 0) :

Hypo(W T ) = Viabφ

(
[0, T ]× RN+2, {T} ×Hypo(h)

)

As a consequence, the value function is the biggest upper semicontinuous
subsolution so, it is solution to (24); furthermore, it verifies the final condi-
tion W T (T, ·) = h(·).

Also notice that Hypo(W T ) is a closed set because of the assumption
on function h’s upper semicontinuity. This helps us to characterize the
hypographs as viability domains.

4.5 An example of a viability kernel

We use a simple numerical example to illustrate the relationship between
value function of an optimal control problem and viability kernel of the cor-
responding auxiliary control system. Consider the following control system:

{
(i) ẋ(s) = f(x(s), u(s)), s ≥ t
(ii) x(t) = x .

(26)

Here we choose f to be a map from R× [−1, 0] into R given by

f(x, u) := u

11See footnote 8.
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and the controls u(·) : [0, T ] → [−1, 0] are measurable functions.
With any solution x(·; t, x, u(·)) to (26) starting from (t, x) ∈ [0, T ]×R,

we associate the following value function:

V T (t, x) = sup
u(·)

h (x(T ; t, x, u(·)) . (27)

Recall that we have
V T (T, x) = h (x) . (28)

Consequently, a possible target for trajectory x(·; t, x, u(·)) that solves (26)
will be {T}×Hypo(h) because we ignore the system’s behaviour beyond T .

In this example, we choose h : R→ R as

h(x) = x

and T > 0 is fixed (say, T = 1). We notice that looking for V T (t, x) in (27)
is equivalent to maximise x(T ).

So, we have that

V T (t, x) = sup
u(·)

h (x(T ; t, x, u(·)) = sup
u(·)

{
x +

∫ T

t
u(s)ds

}
= x (29)

and, clearly, the optimal control is zero.
Then, we want to compute the hypograph of the value function. It is

Hypo(V T ) =
{
(t, x, r) ∈ [0, T ]× R2;V T (t, x) ≥ r

}

=
{
(t, x, r) ∈ [0, T ]× R2;x ≥ r

}
.

We can see Hypo(V T ) in Figure 1. This is the set which is the intersec-
tion of the three halfspaces: r ≥ x, t ≥ 0 and t ≤ T .

We will now show that this set (i.e., hypograph of value function V T )
is the viability kernel of the auxiliary viability problem with target {T} ×
Hypo(h) (i.e., the back “wall”), defined as follows:





ṫ = 1
ẋ = u
ṙ = 0

. (30)

As before, the controls u(·) : [0, T ] → [−1, 0] are measurable functions. We
can represent the viability kernel for this three-dimensional system with
target {T} × Hypo(h) in the same Figure 1.
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Figure 1: Viability kernel.

The trajectories of this system run from the front “wall” (t = 0) in
the direction of increasing t > 0. They remain at the starting level x(0) if
u(t) = 0 ∀ t ∈ [0, 1] or “decrease” in value x(τ) < x(t) if u(τ) < 0 for some
τ ∈ [0, T ]. Notice that r = x on the upper “wall” of the hypograph. This
coincides with the graph of the value function (29).

In the following claim we will prove that the above hypograph of V T (t, x)
is the viability kernel for (30) with target {T}×Hypo(h). I.e., we will show
that a trajectory of the dynamic system (30) that starts anywhere inside
the hypograph, remains in the hypograph and reaches the “terminal” wall
at t = 1. Here, we formulate the claim.

Claim 10

Hypo(V T ) = Viab(1,f,0)

[
[0, T ]× R2; {T} ×Hypo(h)

]

=
{
(t, x, r) ∈ [0, T ]× R2; x ≥ r

}
.

14



Proof 11 If we consider (t, x, r) ∈ Hypo(V T ) then the solution
(t + s, x + (t + s) · 0, r) of (30) starting from (t, x, r) stays in Hypo(V T ), so
Hypo(V T ) is a viability domain with target {T} × Hypo(h). So, we have
that

Hypo(V T ) ⊂ Viab(1,f,0)

[
[0, T ]× R2; {T} ×Hypo(h)

]
, (31)

because of the definition of the viability kernel and of the equality V T (T, x) =
h (x)

Conversely, suppose that D is a viability domain in [0, T ]× R2 for (30)
with target {T} ×Hypo(h) and let (t, x, r) ∈ D. If so, then there exists u(·)
such that

(
t + s, x +

∫ t+s

t
u(τ)dτ, r

)
∈ D. Hence, for s = T − t we have

(
T, x +

∫ T

t
u(τ)dτ, r

)
∈ {T} × Hypo(h), which means that the trajectory

meets the target hence x +
∫ T

t
u(τ)dτ = x(T ) ≥ r. Consequently,

r ≤ x +
∫ T

t
u(τ)dτ ≤ x = V T (t, x) (32)

because u(·) has negative values. We observe that (t, x, r) ∈ Hypo(V T ) and
conclude

D ⊂ Hypo(V T ). (33)

This finishes the proof because we have (31) and (33).

The above claim demonstrates analytically the fact that we have ob-
served in Figure 1: the hypograph of V T (t, x) is identical with the viability
kernel for (30) with target {T} ×Hypo(h).

In the rest of this paper, similar equivalences will help us inferring about
dominance (or non-dominance) of graphs of value functions.

5 Comparisons of value functions

Now, we will formulate the main result of this paper on a relationship be-
tween value functions’ implied by the relationship between the corresponding
Hamiltonians. The result will be proved for two optimal control problems
indexed by i ∈ {1, 2}, satisfying the same hypotheses as in the previous
sections.

Proposition 12 If H̄1 ≤ H̄2 then W T
2 ≤ W T

1 . Similarly if H̄1 ≥ H̄2 then
W T

2 ≥ W T
1 .

15



Proof 13 We will give the proof for the first part of the proposition; the
second part can be proved in a similar manner. Also, our proof will finish
when we have shown that H̄1 ≤ H̄2 implies Hypo(W T

2 ) ⊂ Hypo(W T
1 ) because

the inclusion is trivially equivalent to W T
2 ≤ W T

1 .
We know from Proposition 7 and Remark 8 that the value functions W T

i

are viscosity solution of the following PDE:




∂W T

∂t
(t, y) + H̄

(
t, y,

∂W T

∂y
(t, y))

)
= 0

(t, y) ∈ [0, T )× RN+1, W T
i (T, ·) = hi(·).

(34)

where the Hamiltonians H̄i : RN+3 × RN+3 → R̄ are given by:

H̄i(t, y, r, q) = max
ui∈Ui

〈q, (fi(x, u), Li(t, x, u)
)〉 .

Denoting

(t, x, z, r) → φi(t, x, z, r) = (1, fi(x,Ui);Li(x,Ui), 0) .

we have from Theorem 9 that

Hypo(W T
i ) = Viabφi

(
[0, T ]× RN+2, {T} ×Hypo(hi)

)
. (35)

Because hi(·) is u.s.c., value function W T is also u.s.c. This means that
the value function is the biggest upper semicontinuous subsolution so, it is
solution to the Bellman equation (34). Consequently, using results of [18]
and Proposition 4, the property (35) is equivalent to:





pt + H̄i(t, y, py) = 0
for all (t, y) ∈ (0, T ) × RN+2

and (pt, py, pr) ∈ NPHypo(W T
i )

(
t, y, W T

i (t, y)
) (36)

with the limit conditions at 0 and T (see [18] for details).
Consequently, for the case of i = 1, 2, if H̄1 ≤ H̄2 and (36) is satisfied

for i = 2 then we have that
{

pt + H̄1(t, y, py)) ≤ pt + H̄2(t, y, py)) = 0
for all (pt, py, pr) ∈ NPHypo(W T

2 )

(
t, y, W T

2 (t, y)
) (37)

hence Hypo(W T
2 ) is a viability domain for φ1. So, we have that

Viabφ2

(
[0, T ]×RN+2, {T}×Hypo(h2)

)
⊂ Viabφ1

(
[0, T ]×RN+2, {T}×Hypo(h1)

)

because Hypo(W T
1 ) is viability kernel for φ1. Consequently, Hypo(W T

2 ) ⊂
Hypo(W T

1 ) and W T
2 ≤ W T

1 , which finishes the proof.
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6 Technology switching problem

6.1 Related optimal control problems

We consider control systems indexed by i ∈ {1, 2, . . . , n}, n is finite, whose
dynamics are given by:

ẋi(s) = fi(xi(s), ui(s)) (38)

where the state variable xi belongs to RN , the control ui(·) : [0,∞) → U is
a measurable function and fi : RN × U → RN .

The control problem consists of

Maximise
∫ T

t
L (xi(s; t, x, u(·)), u(s)) ds (39)

over all absolutely continuous solutions of (38), where xi(·; t, x, u(·)) denotes
the solution of (38) starting from (t, x) ∈ [0,∞)× RN .

Here L : RN ×U → R is a given bounded function. If we denote by U[t,T ]

the set of measurable controls on [t, T ] with values in U, then the value
function corresponding to the optimal control problem (38) and (39), which
is similar to problem (1)-(2), is given by:

V T
i (t, x) = sup

u∈Ui(t)

∫ T

t
L (xi(s; t, x, u(·)), u(s)) ds (40)

W T
i (t, y) = sup

u∈Ui(t)
(hi(yi(T ; t, x, u(·)))) (41)

= sup
u∈Ui(t)

(
z +

∫ T

t
L (xi(s; t, x, u(·)), u(s)) ds

)
.

We note that by (22)

W T
i (t, y) = V T

i (t, x) + z for all (t, y) = (t, x, z) ∈ [0, T ]× RN+1

and that here hi(x, z) = z because there is no scrap value function. We
conclude that comparing W T

i (for different i) is equivalent to comparing
V T

i .
Below we provide an example where the result obtained in Proposition

12 enables us to compare the value functions of two related optimal control
problems without solving them explicitly.
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6.2 A motivating example

Example 14 Consider an optimal control problem with linear dynamics
indexed by “technology” i = 1, 2

ẋ = fi(x, u), fi(x, u) := θiu− µix, θi > 0, µi ≥ 0 (42)

where u is control and x is state, and with the following concave utility
function

L(t, x, u) = e−ρt(lnu− βx) ρ > 0, β > 0 . (43)

Assess if a positive switching time between the technologies usage exists.

The above model is a version of the macroeconomic model considered in
[12], which we give a microeconomic interpretation in this paper. Here is a
situation that may lead to the above model.

An industry’s output Y (t) is produced proportionally to input I(t) (e.g.,
I(t) could be fuel or water). If so, Y (t) = AiI(t) where Ai > 1 is the
marginal productivity12 under technology i.

The flow of output Y (t) produced in technology i causes emissions Ei(t) =
αiY (t), αi > 0 that accumulate and contribute to pollution stock x(t) as in
the following state equation

ẋ(t) = αiY (t)− µjx(t) . (44)

Here, µj ≥ 0 is the self-cleaning coefficient, which may be decomposed to
a natural decay coefficient µ0 ≥ 0 and a term that depends on cleaning
technology j; the latter might be related to the production technology i but
not necessarily. If those two are unrelated and technology adoption concerns
the production technology only, then the self-cleaning dynamics is −µ0x(t).
In this case, for simplicity, one can omit the subindex 0 and write −µx(t).
If technology adoption concerned both production and cleaning technologies
jointly, then we would write the right hand side of (44) as αiY (t)− µix(t);
if the adoption was just about the cleaning technology, we could write it as
αY (t)− µix(t). In the remainder of this paper we will deal with the first of
the above cases and write the systems dynamics as αiY (t)− µix(t).

Output Y (t) is used for input I(t) and consumption (or wages) u(t), so

Y (t) = AiI(t) = I(t) + u(t)
12The authors of [12] call their model an AK-type and refer to Ai as to the marginal

productivity of capital.
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from where
I(t) =

u(t)
Ai − 1

. (45)

Combing (45) with (44) yields systems dynamics (42) where

θi :=
αiAi

Ai − 1
(46)

is the technology indicator that aggregates the information on the technology
productivity and emission propensity.

The utility function (11) captures the industry manager’s combined pref-
erences for consumption u and aversion to pollution stock x. The latter
might be the case if the industry is using a resource (like water) that be-
comes polluted by the production process (e.g., consider a paper pulp mill
whose water inlet is below its outlet); or because the government is measur-
ing x(t) and taxing the industry βx(t).

We will suppose that the optimisation horizon is here finite and suf-
ficiently long for us to assume that the scrap value impact on control is
negligible.

In continuous time and given a technology (i = 1, say), the manager is
using an optimal strategy u(x(t)) (which is elementary13 for this model).
However, given the availability of a new technology i = 2 with lower emis-
sions α2 < α1, the manager will consider the new technology adoption. The
adoption would happen, in discrete time, if the new technology value func-
tion dominated the old one. Given that the new technology productivity
might be lower (i.e., A2 < A1) and that the “current” pollution level can
(still) be relatively low, the decision about the switching time is not obvious.
Our study will show if such a time exists.14

6.3 Hamiltonian dominance

Here the auxiliary process dynamics is φi(t, x, z, r) = (1, θiU−µix, e−ρt(lnU−
βx), 0). We aim to examine the viability kernels for the auxiliary dynamics
associated with each technology (compare (15)). In other words, we want
to see if a hypograph of the value function of one technology is included
in the hypograph of the value function of the other technology. If so, we

13It is also elementary to prove that value function is linear in this case.
14We assume zero implementation cost of the new technology. However, if our study of

the Hamiltonians (see Proposition 12) indicated that the viability kernels inclusion were
not proper we would say that the switch between the technologies would not occur because
of a lack of incentive for a change.
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will conclude that there is no positive switching time between the use of the
technologies.

Because of Result 12 we can rely on the relationship between the Hamil-
tonians. Let us write the Hamiltonian (25) for technology i:

H̄i(t, y, r, q) = max
u∈U

〈q, (θiu− µix, e−ρt(lnu− βx))〉
= 〈q, (θiui − µix, e−ρt(lnui − βx))〉 .

Here ui is the maximiser, y, r, q are fixed, of dimensions 2, 1, 2 respectively.
We will assume that technology adoption concerns here the production

and cleaning technologies jointly and that the new technology is “better”
i.e., µ2 ≥ µ1.15

To be attractive, the new technology will certainly have lower emissions
α2 < α1. It turns out (below) that if A2 > A1 then the technology indica-
tor θ2, which relates the emission accumulation to consumption, decreases
(improves) for α2 ≤ α1 (i.e., θ2 improves even if α2 = α1). Hence the “in-
teresting” case is when α2 ≤ α1 and the new technology is less productive
than the old one, A2 < A1.

We will assume that the coefficients αi, Ai, i = 1, 2 are such that θ2 > θ1

and prove that H̄1 ≤ H̄2. Hence we will obtain a sufficient condition for the
case where there is no switch at t > 0.

Indeed we have that

H̄1(t, y, r, q) = max
u∈U

〈q, (θ1u− µ1x, e−ρt(lnu− βx))〉
= 〈q, (θ1u1 − µ1x, e−ρt(lnu1 − βx))〉

It is sufficient to find a u such that

H̄1(t, y, r, q) = max
u∈U

〈q, (θ1u− µ1x, e−ρt(lnu− βx))〉
= 〈q, (θ1u1 − µ1x, e−ρt(lnu1 − βx))〉
≤ 〈q, (θ2u− µ2x, e−ρt(lnu− βx))〉
≤ max

u∈U
〈q, (θ2u− µ2x, e−ρt(lnu− βx))〉

= H̄2(t, y, r, q) .

If we denote q := (qx, qz) and

Γ(u) := 〈q, (θ2u− µ2x, e−ρt(lnu− βx))〉 − 〈q, (θ1u1− µ1x, e−ρt(lnu1− βx))〉
15Obviously, the proof below remains correct if technology adoption concerns the pro-

duction process only and the self-cleaning dynamics is −µx(t).
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then

Γ(u) := 〈q, (θ2u− µ2x, e−ρt(lnu− βx))〉 − 〈q, (θ1u1 − µ1x, e−ρt(lnu1 − βx))〉
:= qx(θ2u− θ1u1 + (µ1 − µ2)x) + qze

−ρt(lnu− ln u1)

from where we see that

lim
u→∞Γ(u) := ∞ if qx > 0 .

Alternatively, if qx ≤ 0

Γ(u1) ≥ 0, because θ1 < θ2 and µ2 ≥ µ1

as θi, µi, β, ρ, u, x are positive real numbers.
It is easy to prove that if θ2 < θ1 then the H̄1 > H̄2 and the new

technology should be adopted immediately (t = 0).
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We can generalise the result obtained for the technology adoption exam-
ple in the following remark.

Remark 15 For optimal control problems with linear dynamics indexed
through θi as in (42) and utility functions

L(t, x, u) = e−ρt (l1(u)− l2(x)) , ρ > 0 (47)

where l1(·) is strictly increasing, lim
u→∞

u

l1(u)
= ∞ and l2(·) is a positive

function, if θ2 > θ1 then Hamiltonian H2 dominates Hamiltonian H1 i.e.,
H2 ≥ H1. Consequently, the hypograph of value function W2 is included in
the hypograph of value function W1 i.e., Hypo(W T

2 ) ⊂ Hypo(W T
1 ) .

With respect to the technology adoption problem we can say that for
the class of utility functions specified in Remark 15, which characterise a
trade-off between satisfaction from consumption l1(·) and disutility due to
pollution l2(·), the adoption cannot occur at t > 0 (compare results of [12]).

7 Concluding remarks

We have presented an approach suitable for the determination whether a
“new” technology will replace the “old” technology. All the regulator needs
to do is to compare the Hamiltonians of the optimal control problems for-
mulated for each technology. We have seen that a linear dynamics and a
“trade-off” type utility function exclude such a possibility.

More generally, the approach presented in this paper helps solve a two-
stage optimal control problem by indicating when the problem will have no
second stage.
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