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March 2010

La serie de Documentos de Investigación del Banco de México divulga resultados preliminares de
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Abstract
The main contribution of this paper is to place smooth infinite economies in the setting of

the equilibrium manifold and the natural projection map à la Balasko. We show that smooth
infinite economies have an equilibrium set that has the structure of a Banach manifold and
that the natural projection map is smooth. We define regular and critical economies, and
regular and critical prices, and we show that the set of regular economies coincides with the
set of economies whose excess demand function has only regular prices. Generic determinacy
of equilibria follows as a by-product.
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Resumen
La principal contribución de este trabajo es ubicar a las economı́as infinitas suaves en el

marco de la variedad de equilibrio y la proyección natural à la Balasko. Demostramos que
las economı́as infinitas suaves tienen un conjunto de equilibrio que tiene la estructura de una
variedad diferencial de Banach y que la proyección natural es suave. Definimos economı́as re-
gulares y cŕıticas, y precios regulares y cŕıticos, y demostramos que el conjunto de economı́as
regulares coincide con el conjunto de economı́as cuya función de exceso de demanda sólo
contiene precios regulares. Determinación genérica de equilibrios se obtiene como corolario.
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1 Introduction

For pure exchange economies with a finite number of agents and a finite

number of commodities, it is well known that all the initial endowments

that define an economy have a competitive equilibrium, and that almost all

initial endowments give rise to a finite number of equilibria. Furthermore,

the structure of the equilibrium set has been studied in great detail and,

together with a systematic study of the natural projection map (Balasko,

1988), it is known that the equilibrium set is connected, simply-connected, a

smooth manifold, it is diffeomorphic to the space of initial endowments, and

so on. There are however many examples in the economic literature where the

consumption space is infinite dimensional; usually these models arise when

consumption is a function of a parameter m ∈M , where M might stand for

an infinite discrete time (M = N), continuous time (M = [0, T ]), states of

nature (M = [0, 1]), spatial location (M = R3), product characteristics (M

a compact set), etc.

In an attempt to study infinite economies the literature has been pre-

sented with challenges which seem to come in at least four varieties:1 (i)

strictly monotonic preferences may not be continuous or they may fail to be

represented in many consumption spaces; (ii) demand functions do not exist

or they are not continuous unless a specific consumption set is chosen; (iii)

the price space is unmanageably large; and (iv) the consumption space or the

1For an older survey of infinite economies we refer the reader to Mas-Colell & Zame
(1991).
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price space (or both) have the property of having an empty interior which

makes impossible the use of tools of differential topology.

For instance, recent work of Hervés-Beloso and Monteiro (2009) has shown

that if we consider representable or continuous strictly monotonic preferences

on a consumption space with a continuum of commodities, the consumption

set should be a subset of the space of continuous functions (or of integrable

functions).

For individual demand functions, Araujo (1988) shows that when the

commodity set is a general Banach space a demand function will exist if and

only the commodity space is reflexive. He also shows that even if the demand

function exists, it will be C1 if and only if the commodity space is actually

a Hilbert space. These results suggest that unless we use `2 or L2 as the

consumption space there is little hope of studying determinacy in a general

setting.

Another possibility, as is done by Kehoe et al (1989), is to study deter-

minacy of equilibria in economies with a double infinity of agents and goods

where the commodity set is chosen to be a Hilbert space. The disadvantage

of this approach, as they put it, is that the price domain (and implicitly the

consumption set) has an empty interior. This means that they are allowing,

to some extent, negative prices and consumption.

A further approach is to assume separable utilities. In a way, allowing

separable utilities is equivalent to decomposing an infinite-dimensional op-

timization problem into an infinite sequence but of finite-dimensional prob-
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lems. The advantage is that with separability only a small subset of the

entire price space can support equilibria and, hence, there is no real loss of

information from discarding those elements of the price space that do not

support equilibria anyway. This approach has been followed, for instance by

Mas-Colell (1991), Chichilnisky and Zhou (1998) and Crès et al (2009).

Yet another approach is to use the “Negishi method”. Loosely speaking,

it consists of substituting the study of price equilibria (which take values in

an infinite-dimensional set) by the welfare weights associated with the equi-

librium allocations (which take values in a finite-dimensional set if there are

finitely many agents). This approach has been used for instance by Balasko

(1997a, 1997b, 1997c) to study the infinite-horizon model. The state-of-the-

art approach consists in using the Negishi method with a weakened version

of differentiability. Shannon (1999) and Shannon and Zame (2002) introduce

the notion of quadratic concavity and demonstrate that Lipschitz continuity

of the excess spending map is sufficient to yield generic determinacy. Because

the nature of regularity for Lipschitz functions is weaker than for smooth

economies, the set of regular economies is not open nor is it the intersection

of a countable family of open sets. Instead they use a measure-theoretic

analogue of full Lebesgue measure for infinite dimensional spaces2.

In this paper we propose to set smooth infinite economies in a setting á

la Balasko. This is, as in finite dimensions, we study the entire equilibrium

2The Negishi method does however have a caveat: it requires the first welfare theorem
to hold, which means that it cannot be applied to economic models that do not lead to
optimality situations such as economies with incomplete financial markets.
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set, showing that it actually is a manifold, and combining it with a study of

the natural projection map. Although Shannon and Zame (2002) consider

more general commodity spaces and preferences, our framework will allow

us to study more than just determinacy by allowing us to study the entire

equilibrium manifold. The technical reason behind this come from discard-

ing a large subset of the price space that cannot support equilibria anyway.

This will allow us to use the analogues in infinite dimensions of results from

multivariable calculus such as the inverse and implicit function theorems,

the regular value theorem, and Sard’s theorem. Hence, we can compare the

price equilibria of economies that vary and our approach allows us to, among

other things, show that the equilibrium set is a manifold, define the con-

cepts of regular and critical economies, and regular and critical prices, and

relate these two concepts with each other and with the finite-dimensional

case. Determinacy follows as a by-product.

This paper is structured as follows. In section 2, we mention a couple

of examples that lead to infinite economies. The first example (with M =

[0, 1]) is an exchange economy with uncertainty, the second (M = [0, T ])

is an economy with continuous time. In section 3 we review some basic

material of Fredholm theory. Fredholmness is a property that functions need

to satisfy in order for results of infinite-dimensional calculus and topology to

hold. In section 4 we define the market and study properties of preferences,

consumption, prices, and individual demand functions. Then in section 5

we study properties of aggregate excess demand functions and show two
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technical results: that the excess demand function is a vector field on the

(infinite-dimensional) normalized price space and that it is a Fredholm map.

Sections 6 and 7 include the main results where we show that there is

an almost perfect parallel between finite and smooth infinite-dimensional

economies. Here we show that the equilibrium set has the structure of a

manifold, we define regular and critical economies, critical and regular prices

and study the relation between these concepts. We finally show as a by-

product determinacy of equilibria.

2 Examples of economies with an infinite di-

mensional consumption space

To fix ideas, we wish to describe in this section two examples that lead

naturally to consumption spaces with infinite dimensions. In section 4 we

will explain how these examples are encapsulated in a more general setting

in which we study regular and critical economies, and regular and critical

prices. Further examples can be seen in Mas-Colell and Zame (1991).

2.1 An example of economies with uncertainty

The following example is a particular case of both Mas-Colell (1991) and

Crès et al (2009) where we consider a two-time period t = 0, 1 economy with

complete financial markets and uncertainty at the second time period. The
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set of states isM = [0, 1] and the C1 map π : M → R+ is the density of the set

of states M . We suppose there is a finite number i = 1, . . . , I of consumers

and a finite number n of goods at each time period and at each state. A

consumption bundle is a pair xi = (x0
i , x

1
i ) where at t = 0 consumption is a

vector x0
i ∈ Rn

++ and at t = 1 it is a C1 map x1
i : M → Rn

++. We suppose

that agents are equipped with a t = 0 endowment ω0
i ∈ Rn

++ and a C1 initial

endowment at t = 1 of the form ω1
i : M → Rn

++. Preferences are represented

by a time- and state-dependent utility of the form

Ui(xi) = ui(x
0
i ) +

∫
M

ui
(
x1
i (s)

)
π(s) ds.

It is shown in Mas-Colell (1991) and Crès et al (2009) that if (p, x1, . . . xI)

is an equilibrium, then p and xi for each i are all continuous maps from M to

Rn
++. In other words, prices, consumption and endowments are all elements

of the same space C(M,Rn
++).

2.2 A continuous-time economy

Suppose that in an economy the consumption of n goods is done continuously

through time t ∈ [0, T ]. Then, a continuous function xi : [0, T ] → Rn
++

represents the consumption of the n goods by agent i at time t. Alternatively,

x(t) may represent a continuous instantaneous rate of consumption.
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3 Fredholm Index Theory

Since Fredholm theory is not widely used in the economic literature, in this

section we provide some basic definitions, where the classical reference is the

paper of Smale (1965). Before presenting the formal definitions, we will aim

to clarify, rather informally, the motivation.

3.1 Motivation

Suppose that we consider a linear map T between any two vector spaces V

and W . We may ask ourselves, what conditions would T need to satisfy

in order for it to be a bijection, that is, a map that is both injective and

surjective? If T were a bijection, this would also mean that T is invertible.

There are two basic results of linear algebra that would answer this ques-

tion. First, recall that the kernel of T , or kerT , consists of those points of

V that are mapped into zero in W under T . In order for T to be injective,

we would require that kerT = {0}. Similarly, recall that the range of T , or

rangeT , consists of all those points that are in the image under T in W . For

T to be surjective, we would require that rangeT = W .

As it happens, these two conditions are rather restrictive. Fredholm op-

erators were introduced since, loosely speaking, they are “almost invertible”:

they are “almost injective” and “almost surjective”. By this we mean that

kerT is a finite-dimensional subspace of V (not just the point {0} but also

not an infinite-dimensional set) and the range of T “misses” the entire set
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W only by a finite-dimensional subspace.

Expanding further these notions, two linear maps T : V → W and S :

W → V are “pseudo-inverses” to each other if ST = I+G1 and TS = I+G2,

where I is the identity and G1 and G2 are two maps with finite-dimensional

range. In other words, while ST and TS are not the identity, they fail to

be so only by a “compact perturbation” of the identity. It can be shown

that T : V → W will have a pseudo-inverse if and only if T is a Fredholm

operator. Fredholm maps are the nonlinear notion of a Fredholm operator.

3.2 Definitions

If V and W are linear spaces and T : V → W is a linear map, we define

the kernel of T , denoted ker T , to be the set of points in V mapped into

zero and the range is the image of V under T in W . Also, if Y is a linear

subspace of W , we say that two points w1 and w2 of W are equivalent

modulo Y , denoted w1 = w2(modY ) if w1 − w2 ∈ Y . We denote by W/Y

the set of equivalence classes. When equipped with a linear structure we call

it the quotient space and define codimY = dimW/Y .

A linear Fredholm operator is a continuous linear map L : E1 → E2

from one Banach space to another with the properties that:

1. dim ker L <∞;

2. range L is closed;

3. coker L = E2/rangeL has finite dimension.
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The index of a Fredholm operator L is an integer given by dim kerL−

dim cokerL. Fredholm operators of index zero are of particular relevance

since compact perturbations of the identity are Fredholm operators of index

zero, and conversely, any Fredholm operator of index zero differs from a

compact perturbation of the identity only by a linear homeomorphism.

A Fredholm map is a C1 map f : M → V between differentiable man-

ifolds locally like Banach spaces such that for each x ∈ M the derivative

Df(x) : TxM → Tf(x)V is a Fredholm operator. The index of a Fred-

holm map f at the point x ∈ M is defined to be the index of Df(x). It

can be shown that if M is connected, this definition does not depend on

x. Again, Fredholm maps of index zero are of particular interest since any

diffeomorphism between Banach spaces is a Fredholm map of index zero.

A left Fredholm map3 is a map of Banach manifolds of class at least

C1 whose derivative at each point has closed image and finite dimensional

kernel.

A map is σ−proper if its domain is the countable union of sets, restricted

to each of which the function is proper.

3Some authors call it a semi-Fredholm map.
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4 The Market

4.1 Preferences and consumption

Following on the examples of section 2, we assume that the commodity

space is C(M,Rn) where M , the parameter space, is a compact subset of

some Rm. The consumption set X = C++(M,Rn) is then the positive cone

of C(M,Rn). It consists of the functions in C(M,Rn) that have an image in

Rn
++. Notice that X has a nonempty interior.

We suppose that there are i = 1, . . . , I agents and that their preferences

are fixed and represented by a separable utility function

Ui(x) =

∫
M

ui(x(t), t)dt

where ui(x(t), t) : Rn
++×M → R is a strictly monotonic, concave, C2 function

where {y ∈ Rn
++ : ui(y, t) ≥ ui(x, t)} is closed. This implies that Ui(x) is

strictly monotonic, concave and twice Fréchet differentiable.

Two comments are in order. The first, is that Mas-Colell (1991) has a

similar framework to the one that we propose and he pointed out then, and

so do we here, that non-separability was one of the main stumbling blocks

for a general theory of regular economies with infinitely many commodities.

While Shannon and Zame (2002) overcame this difficulty for the question

of determinacy, it still remains problematic for the study of the equilibrium

manifold. Indeed, the main contributions in our understanding of the infi-
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nite equilibrium manifold (e.g., Balasko 1997a, 1997c) assumes separability.

The second comment is that a double infinity of commodities and agents is

the cause of strong indeterminacy results. While purely speculative at this

stage, it might be possible to extend this paper into considering a continuum

of agents, analogous to Kehoe et al (1989). The approach might include un-

derstanding which conditions we would need in order to guarantee that the

“mean excess demand function” is Fredholm.

4.2 Prices

Strictly speaking, a price p : C(M,Rn) → R is a bounded and linear real-

valued function on C(M,Rn) which gives non-negative values to any element

of C++(M,Rn). In other words, a price is an element of the positive cone of

the dual space of the commodity set. However, it can be shown that with

separable utilities, if a price p supports equilibria then p ∈ C++(M,Rn), i.e.,

equilibrium prices, consumption and initial endowments are all elements of

the same space X. See for instance Mas-Colell (1991), Chichilnisky and Zhou

(1988) or Crés et al (2009).

If f and g are two elements of C(M,Rn), the inner product on C(M,Rn)

is given by 〈f, g〉 =
∫
M
〈f(t), g(t)〉 dt, so that if p and x denote price and

consumption respectively, the value of x is given by

〈p, x〉 =

∫
M

〈p(t), x(t)〉 dt.
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Finally, as in finite dimensions, we normalize prices and so define the

price space to be

S =
{
p ∈ C++(M,Rn) : ‖p‖2 = 〈p, p〉 = 1

}
.

4.3 Individual Demand Functions

The individual demand function of agent i is a map fi : S × (0,∞) → X

where fi(p, y) is the unique solution to the optimization problem

max
〈p,x〉=y

Ui(x)

Denote by ux the partial derivative of u with respect to x. It is shown

in Chichilnisky and Zhou (1998) that given the assumptions about utility

functions made in 4.1, the individual demand functions of all agents satisfy

the following properties:

1. 〈p, fi(p, y)〉 = y for any p ∈ S and for any y ∈ (0,∞);

2. uix(fi(p, y), t) = λp for some λ > 0;

3. fi : S×(0,∞)→ X is a diffeomorphism (i.e., both fi and its inverse are

continuously differentiable); as such, fi : S×(0,∞)→ X is a Fredholm

map of index zero.
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5 Two Properties of Aggregate Excess De-

mand Functions

Recall that we have fixed preferences so the only parameters defining an

economy are the initial endowments. We then denote an economy by ω =

(ω1, . . . , ωI) ∈ Ω = XI . For a fixed economy ω ∈ Ω its aggregate excess

demand function is a map Zω : S → C(M,Rn) defined by

Zω(p) =
I∑
i=1

(fi(p, 〈p, ωi〉)− ωi) .

We also define Z : Ω× S → C(M,Rn) by the evaluation

Z(ω, p) = Zω(p).

Definition 1. We say that p ∈ S is an equilibrium of the economy ω ∈ Ω

if Zω(p) = 0. We denote the equilibrium set by

Γ = {(ω, p) ∈ Ω× S : Z(ω, p) = 0} .

In order to explore the structure of aggregate excess demand functions,

we first show the well-known result that the excess demand defines a vector

field on the price space4.

4In the language of vector bundles, if we denote by TS the tangent bundle of S and
TS0 its zero section, Theorem 1 says that we can interpret Zω as a section of TS and an
equilibrium as a point where this section intersects TS0.
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Theorem 1. The excess demand function Zω : S → C(M,Rn) of economy

ω ∈ Ω is a vector field on S.

Proof. Since fi satisfies the property that 〈p, fi(p, y)〉 = y for any p ∈ S and

for any y ∈ (0,∞), then

〈p , Zω(p)〉 = 〈p ,
I∑
i=1

(fi(p, 〈p, ωi〉)− ωi)〉

=
I∑
i=1

〈p , fi(p, 〈p, ωi〉)〉 −
I∑
i=1

〈p, ωi〉

=
I∑
i=1

〈p, ωi〉 −
I∑
i=1

〈p, ωi〉

= 0.

In order to use techniques of differential topology in infinite dimensions,

we require our maps to be Fredholm. We now show that this is the case for

the excess demand function.

Theorem 2. The excess demand function Zω : S → C(M,Rn) of economy

ω ∈ Ω is a Fredholm map of index zero.

The proof of Theorem 2 is rather computational and so we leave it to

the appendix. We can mention, however, that the proof consists of two

parts. The first is to show that if Dfi denotes the Fréchet derivative of
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fi : S × (0,∞) → X, then Dfi can be written as the sum of an invertible

operator plus a finite rank operator and hence it is a Fredholm map of index

zero. The second part consists of explicitly writing the Fréchet derivative of

the excess demand function Zω : S → C(M,Rn), denoted DZω, in terms of

the Dfi’s and once again showing that it can be written as the sum of an

invertible operator plus a finite rank operator.

6 The equilibrium set

6.1 Regular values of Z

In this section we wish to show that the equilibrium set Γ is a manifold. Our

result is an extension of Balasko’s work (1988) to infinite dimensions. We

will show that Γ is a manifold in two steps: first, in Theorem 3, we show that

0 is a regular value of the excess demand function Z. We will then use this

fact in Theorem 4 to show that Γ is indeed a manifold (actually a Banach

manifold), and also that the projection map from the equilibrium set to the

parameter space Ω is smooth.

Theorem 3. Let TS denote the tangent bundle to the price space S. Then,

the derivative of the map Z : Ω×S → TS is a surjective map. In particular,

it has 0 as a regular value.

We also leave the proof to the appendix since it is rather computational.
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6.2 Transversality

We need two final definitions in order to show that Γ is a manifold. But

first recall that the “components” of a topological space are the “pieces”

that the space can be broken into. Precisely, given a topological space T ,

one defines an equivalence relation by setting t1 ∼ t2 if there is a connected

subspace of T containing both t1 and t2. The equivalence classes are called

the components of T .

Additionally, the closed subspace F of a Banach space E is said to split,

if there is a closed subspace G ⊂ E such that E = F ⊕G.

Definition 2. (Abraham and Robbin, 1967, p.45) Let X and Y be C1 man-

ifolds, f : X → Y a C1 map, and W ⊂ Y a submanifold. We say that f

is transversal to W at a point x ∈ X, in symbols f tx W , iff, where

y = f(x), either y /∈ W or y ∈ W and

1. the inverse image (Txf)−1(TyW ) splits; and,

2. the image (Txf)(TxX) contains a closed component to TyW in TyY .

We say f is transversal to W , in symbols f t W , iff f tx W for every

x ∈ X.

Definition 3. (Quinn, 1970) A C∞ representation of maps ρ : A :

M → N consists of Banach manifolds A,M,N together with a function
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ρ : A→ C∞(M,N) such that the evaluation map

Evρ : A×M → N, (a,m) 7→ ρa(m)

is C∞.

The relevance of these two notions is because Quinn (1970) shows that if

we have a C∞ map F : W → N which is transversal to Evρ and if we form

the pullback diagram

P
g−−−→ W

h

y F

y
A×M Evρ−−−→ N

πA

y
A

(1)

where P = (Evρ × F )−1(∆N) and ∆N denotes the diagonal in N ×N , then

P is a C∞ Banach manifold, and πA ◦ h is a C∞ map.

6.3 The equilibrium set is a Banach manifold

We are finally ready to show that the equilibrium set Γ is indeed a Banach

manifold.

Theorem 4. The equilibrium set Γ is a C∞ Banach manifold. We shall

call it the equilibrium manifold. Furthermore the natural projection map

prΩ : Ω× S|Γ → Ω is a C∞ map.

Proof. We start then by noticing that Z : Ω×S → TS is a C∞ representation

17



of maps as defined above. Notice also that the inclusion T0S → TS is a C∞

map. We also know from Theorem 3 that DZ is surjective, so it has 0 as a

regular value. Then, we can form the pullback diagram

Γ −−−→ T0Sy y
Ω× S Z−−−→ TS

prΩ

y
Ω

and as in diagram (1) of definition 3 we get that Γ is a C∞ Banach manifold

and the natural projection map is a C∞ map.

7 Regular and Critical Economies

In this section we define the notion of regular and critical infinite economies,

and regular and critical infinite prices. Recall that if f is a C1 map from an

open connected subset of a Banach space X to another Banach space Y , and

Df denoted the Fréchet derivative of f , then x ∈ X is is a regular point

for f if Df(x) if a surjective linear mapping. If x ∈ X is not regular, x is

then called a singular point.

Similarly, singular values and regular values y of f are defined by consid-

ering the sets f−1(y). If f−1(y) has a singular point, y is called a singular

value, otherwise y is a regular value.

Definition 4. We say that a smooth infinite economy is regular (resp. crit-
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ical) if and only if ω is a regular (resp. critical) value of the projection

pr : Γ→ Ω .

Definition 5. Let Zω be the excess demand of economy ω. A price system

p ∈ S is a regular equilibrium price system if and only if Zω(p) = 0 and

DZω(p) is surjective.

We would like to compare the set of regular economies with those econo-

mies whose excess demand function has only regular prices. In finite dimen-

sions these two sets are equal. Quinn (1970) will tell us that these two sets

coincide; precisely, in diagram (1) of definition 3, ρa t F if and only if a is a

regular value of πA ◦ h. And so we get,

Theorem 5. The economy ω ∈ Ω is regular if and only if all equilibrium

prices of Zω are regular.

Proof. Consider the diagram

Γ −−−→ T0Sy y
Ω× S Z−−−→ TS

prΩ

y
Ω

Quinn’s result says that the excess demand Zω is transversal to zero if

and only if 0 is a regular value of prΩ.
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7.1 Determinacy

We would now like to understand how big is the set of economies that give an

excess demand function with all equilibrium prices being regular. For that,

we need a result of Quinn who has also proved that a transversal density

theorem holds in infinite dimensions.

Theorem 6. (Quinn, 1970) Let ρ : A : M → N be a C∞ representation

of left Fredholm maps, M separable, and F : W → N a C∞ σ-proper left

Fredholm map. If further

1. F is transversal to Evρ; and,

2. each ρa satisfies that for each m ∈ M and w ∈ W such that ρa(m) =

F (w), then (imTmρa) ∩ (imTwF ) is finite dimensional

then the set of a with ρa t F is residual in A.

The infinite-dimensional transversal density theorem can be used to give

us an alternative proof that a generic economy is regular.

Theorem 7. The set of regular economies is residual in Ω. That is, the set

of economies ω ∈ Ω that give rise to an excess demand function Zω with only

regular equilibrium prices, are residual in Ω.

Proof. Observe that the inclusion T0S → TS given by p′ 7→ (p′, 0) is σ-proper

since its domain consists of one set restricted to which the inclusion is proper

since the inclusion map is continuous. Now, T0S → TS is also left Fredholm
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since the derivative of the inclusion map is again the inclusion map, so it is

continuous (and so has a closed image) and has finite dimensional kernel.

We also know that Z(ω, p) has 0 as a regular value since DZ(ω, p) is

surjective.

All that we need to show is that for each p ∈ S and p′ ∈ T0S such that

Zω(p) = I(p′), where I : T0S → TS is the inclusion map, we have

(imTpZω) ∩ (imTxI)

is finite-dimensional. But this follows immediately if we notice that Zω(p) =

I(p′) whenever p is an equilibrium, i.e. a zero of the vector field Zω. In

this case (imTpZω) = 0 and (imTxI) = 0. Therefore, Theorem 6 implies the

result.
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Appendix

Proof of Theorem 2

Proof. Recall that the consumers’ problem is given by

max
x∈X

Ui(x) s.t. 〈p, x〉 = wi

where

• X = C++(M,Rn);

• Ui : X → R is given by Ui(x) =
∫
M
ui(x(t), t) dt;

• ui : Rn
++ × M → R is, for each i, strictly monotonic, concave, C2

function where {y ∈ Rn
++ : ui(y, t) ≥ ui(x, t)} is closed;

• In principle, p is an element of the positive cone of the dual of C(M,Rn).

However, we have explained that with separable utilities, actually p is

an element of X = C++(M,Rn);

• Furthermore, we normalize so that p ∈ S = {p ∈ C++(M,Rn) : ‖p‖ = 1};

• wi = 〈p, ωi〉 ∈ (0,∞).

Notice that p ∈ S and ωi ∈ X, for each i, are independent (i.e., exoge-

nously determined) variables of the problem.

Now, because of the assumptions that we have placed on the utility func-

tions ui (smoothness, concavity, monotonicity), this implies that for each
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p ∈ S and for each wi ∈ (0,∞) the optimization problem has a unique

solution that we will denote by fi(p, wi) where fi : S × (0,∞)→ X.

The first order optimality conditions can then be written as:

wi = 〈p, fi(p, wi)〉 (2)

DUi(fi(p, wi)) = λi(p, wi) · p (3)

where DUi denotes the Fréchet derivative of Ui : X → R and λi : S ×

(0,∞)→ R is a Lagrange multiplier.

The strategy is to calculate the total derivatives of equations (2) and (3)

and solve for Dfi(p, wi). We will exploit the simplicity of Ui(x) written in

terms of ui. Hence, we first write equations (2) and (3) as

wi = 〈p, fi(p, wi)〉 (4)

uix(fi(p, wi), t) = λi(p, wi) · p (5)

Taking total derivatives on both sides of equations (4) and (5) we get

Dwi = fi(p, wi) + 〈p,Dfi(p, wi)〉

uixx(fi(p, wi), t) ·Dfi(p, wi) = λi(p, wi) + p ·Dλi(p, wi)

where we write 〈p,Dfi(p, wi)〉 to denote the linear transformation Dfi com-

posed with the linear transformation p.
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Simplifying, and remembering that since ui(x) is concave, the linear trans-

formation (uixx) is negative definite and hence (uixx) is invertible for each t,

we now have

Dwi = fi(p, wi) + 〈p,Dfi(p, wi)〉 (6)

Dfi(p, wi) = λi(p, wi) (uixx)
−1 + (uixx)

−1 p ·Dλi(p, wi) (7)

Making a substitution of the expression of Dfi found in (7) into Dwi of

equation (6), and remembering that p is linear, we get

Dwi = fi(p, wi) + 〈p,Dfi(p, wi)〉

= fi(p, wi) + 〈p, λi(p, wi) (uixx)
−1 +Dλi(p, wi) (uixx)

−1 p〉

= fi(p, wi) + 〈p, λi(p, wi) (uixx)
−1〉+ 〈p,Dλi(p, wi) (uixx)

−1 p〉

= fi(p, wi) + λi(p, wi) (uixx)
−1p+Dλi(p, wi) 〈p, (uixx)−1 p〉.

Therefore,

Dλi(p, wi) =
1

〈p, (uixx)−1 p〉
[
Dwi − fi(p, wi)− λi(p, wi) (uixx)

−1p
]

(8)

where the denominator 〈p, (uixx)−1 p〉 does not vanish since p and (uixx)
−1 are

positive operators.
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We substitute the expression of Dλi found in (8) into (7) to get,

Dfi(p, wi) = λi(p, wi) (uixx)
−1 +Dλi(p, wi) (uixx)

−1 p

= λi(p, wi) (uixx)
−1+

+
(uixx)

−1 p

〈p, (uixx)−1 p〉
[
Dwi − fi(p, wi)− λi(p, wi) (uixx)

−1p
]
.

What we have shown is that Dfi(p, wi) can be written as the sum of the

invertible operator

λi(p, wi) (uixx)
−1 +

(uixx)
−1 p

〈p, (uixx)−1 p〉
Dwi

and the finite rank operator

− (uixx)
−1 p

〈p, (uixx)−1 p〉
[
fi(p, wi) + λi(p, wi)(u

i
xx)
−1 p

]
.

Now, let wi = 〈p, ωi〉 and recall that Zω : S → C(M,Rn) is given by

Zω(p) =
I∑
i=1

(fi(p, 〈p, ωi〉)− ωi)
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and so DZω : TS → TC(M,Rn) is given by

DZω(p) =
I∑
i=1

Dfi(p, wi)

=
I∑
i=1

{
λi(p, wi) (uixx)

−1 +
(uixx)

−1 p

〈p, (uixx)−1 p〉
Dwi

}
+

+
I∑
i=1

{
− (uixx)

−1 p

〈p, (uixx)−1 p〉
[
fi(p, wi) + λi(p, wi)(u

i
xx)
−1 p

]}
.

Finally, noticing again that since ui(x) is concave, the linear transfor-

mation (uixx) is negative definite and hence (uixx) is invertible. Additionally,

the sum of negative-definite linear transformations is again negative-definite.

Hence,
I∑
i=1

{
− (uixx)

−1 p

〈p, (uixx)−1 p〉
[
fi(p, wi) + λi(p, wi)(u

i
xx)
−1 p

]}
has finite rank, and

I∑
i=1

{
λi(p, wi) (uixx)

−1 +
(uixx)

−1 p

〈p, (uixx)−1 p〉
Dwi

}

is invertible. Therefore, DZω is written as the sum of an invertible operator

and an operator of finite rank which in turn implies that Zω is a Fredholm

map of index zero.
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Proof of Theorem 3

Proof. Notice that because of the properties of individual demand functions

studied in section 4.3, we get that Z is differentiable. We need to compute

the derivative

DZ : T (Ω× S)→ T (TS).

Linearizing Z(ω, p) to first order in ε, dropping the O(ε2) terms, and

letting wi = 〈p, ωi〉, we get

Z(ω1 + εk1, . . . , ωI + εkI , p+ εh)

=
∑

fi(p+ εh, 〈p+ εh, ωi + εki〉)−
∑

(ωi + εki)

=
∑

fi(p+ εh, 〈p, ωi〉+ ε〈p, ki〉+ ε〈h, ωi〉)−
∑

ωi − ε
∑

ki

=
∑

[fi(p, 〈p, ωi〉) + ε(Dwifi)(p,〈p,ωi〉)(〈p, ki〉)+

+ ε(Dwifi)(p,〈p,ωi〉)(〈h, ωi〉) + ε(Dpfi)(p,〈p,ωi〉)(h)]−
∑

ωi − ε
∑

ki

= Z(ω1, . . . , ωI , p)+

+ ε
∑

[(Dpfi)(p,〈p,ωi〉)(h) + (Dwifi)(p,〈p,ωi〉)(〈p, ki〉+ 〈h, ωi〉)− ki]

Alternatively, in matrix form, DZ(ω,p) =



i=1,...,I︷ ︸︸ ︷
0 . . . 0 1

(Dwifi)(p,〈p,ωi〉)(〈p,−〉)− Id︸ ︷︷ ︸
i=1,...,I

∑
i(Dpfi)(p,〈p,ωi)(−)+

+
∑

i(Dwifi)(p,〈p,ωi〉)(〈−, ωi〉)


30



where the dashes simply indicate that the left side of the matrix acts on

(k1, . . . , kI) while the right acts on h .

To compute the cokernel let

DZ(ω,p)(k1, . . . , kI , h) = (Q, Q̇) ∈ T (TS).

We need to solve for (k1, . . . , kI , h). We first observe that h = Q. The

second row would then be,

∑
{[(Dwifi)(〈p, ki〉)− (ki)] + [(Dpfi)(Q)] + [(Dwifi)(〈Q,ωi〉)]} = Q̇.

Then, ∑
[(Dwifi)(〈p, ki〉)− (ki)] = H(Q, Q̇) (9)

where

H(Q, Q̇) = Q̇−
∑
{[(Dpfi)(Q)] + [(Dwifi)(〈Q,ωi〉)]}.

But for every i = 1, . . . , I, the map

ki 7→ (Dwifi)(〈p, ki〉)− (ki)

is onto. And, therefore, so is DZ.
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