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Abstract

This paper provides a real option methodology for evaluating R&D
investment opportunities assuming that potential competitors can en-
ter in the market. As it is well known, R&D investments are made often
in a phased manner and so each stage creates an opportunity (option)
for subsequent investment. Therefore, R&D projects can be consid-
ered as ‘Compound Exchange Options’ in which investments present
uncertainty both in the gross project value and in costs.
According to Majd and Pindyck (1987), in a real options context, “div-
idends” are the opportunity costs inherent in the decision to defer an
investment project and so deferment implies the loss of project’s cash
flows. Moreover, Trigeorgis (1996) incorporates the preemption effect
through the “competitive dividends” which are the cash flows that can
be eroded by anticipated competitive arrivals.
In this paper we propose to value, using Montecarlo simulation, the
R&D investments of a pioneer firm assuming that the Development
cost can be spent in two moments: t2 or t3. If the Develpment cost
is realized in t2 no firms enters in the market since the rivals’ R&D
plan is not yet concluded otherwise, if the investment D is delayed at
time t3 waiting better market conditions, other rivals can enter in the
market and so the opportunity costs (“dividends”) increase.

Keywords: Real options; R&D; Monte Carlo methods; Competitive
dividends.
JEL Codes: G13; O32; C15; D40.
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1 Introduction

In recent years, academic studies have argued that traditional valuation model,
NPV (net present value), can not adequately capture the value of an investment
project. Therefore, the real options approach becomes very important to give ex-
plicit valutations of managerial flexibility to grow, delay, scale down or abandon
projects (Smith 2003). The main difference between the NPV rule and real options
approach is that while the first considers uncertainty as a risk to be minimized, the
second takes uncertainty as an opportunity for maximizing the value of a project.
In real options, the options involve real assets as opposed to financial ones. So the
project value can be valued quantitatively using the analogue option pricing theory
as developed in the modern finance. In case of financial options, optimal exercise
strategies can be derived without consideration of strategic interaction across op-
tion holders. However, it is widely acknowledged that a competitive environment
may have a considerable impact on the valuation of real options.
Under the threat of competition, the exercise of options strategically depends on the
tradeoff between the benefits and costs of going ahead with an investment against
waiting for more information. Waiting can have an informational benefit (McDon-
ald and Siegel 1986). However, if a firm chooses to defer exercising its option until
better information is received (thus resolving uncertainty), it runs the risk that
other firms may preempt it by exercising first (Zhu and Weyant 1999). Such an
early exercise by a competitor can erode the profits or even force the option to
expire prematurely.
If a real options is held in isolation by a single firm, no competitive interations
should be considered and so, the decision to invest is not influenced by any rival’s
actions (Dixit and Pindyck 1994). But, most of the real investment opportunity
are shared with other firms. Then, when this is the case, the models should incor-
porate this competitive dimension, since it could have a considerable impact on the
decision to invest. Game theory is a regular tool that come down of industrial or-
ganization and model in imperfect competition as is presented in Grenadier (1996),
Weeds (2002), Tsekrekos (2003), Huisman (2001) and so on. In these papers the
problem is, basically, the following: two competing firms have the option to invest
and enter in a duopoy market; the first company to do so (the Leader or pioneer)
may benefit, after investing, from a temporary or permanent competitive advantage
over the other firm (the Follwer), by securing, for example, a higher market share.
In addition, during the last two decades, numerous studies have attempted to apply
option pricing formula to R&D investment. As it is well know, R&D investments
are made often in a phased manner, with the commencement of subsequent phase
being dependent on the successuful completation of the preceding phase. Each stage
provides information about the R&D success and creates an opportunity (option)
for subsequent investment. Therefore, R&D projects can be considered as ‘Com-
pound Exchange Options’ in which investments present uncertainty both in the
gross project value and in costs. The most important valuation models of exchange
options are given in Margrabe (1978), McDonald and Siegel (1985), Carr (1988),
Carr (1995) and Armada et al. (2007). In particular way, McDonald and Siegel
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(1985) and Margrbe (1978) value a simple European exchange option (SEEO), Carr
(1988) develops a model to price a compound European exchange option (CEEO)
and Carr(1995) and Armada et al. (2007) present the pricing of a simple American
exchange option (SAEO). However, if we consider the possibility that the develop-
ment investment can be realized in two moments before the maturity time, we have
a pseudo compound American exchange option. In this case numerical approxi-
mation is an important task as withnessed by the contribution of Tilley (1993),
Barraquand and Martineau (1995), Broadie and Glasserman (1997), Longstaff and
Schwartz (2001).
Aim of this paper is to propose a new way to value the R&D investment opportu-
nity of a pioneer firm assuming that potential rivals can enter in the market. The
sudden entry of a competitor may significantly diminish the current cash flow de-
riving from an existing asset and so alter its value. In real market terms, dividends
may represent several types of opportunity costs caused by holding the real option
unexercised, namely the loss of project’s cash flows when an investment opportu-
nity is postponed as it shown in Majd and Pindyck (1987) and Trigeorgis (1996).
Specifically, we consider that R&D project deferment may contribute to the early
entrance of competitors in a competitive environment that produces a negative im-
pact on the R&D project value.
The structure of this paper is organized as follows. In Section 2, we present the
option model to value the R&D investment opportunity of a pioneer firm assuming
that other rivals can enter in the market. First of all, we analyses the case with
a single and two potential rivals and, after that, we propose a general case with
the threat of k potential competitors. We use a Monte Carlo approach to value the
pioneer R&D opportunity. In Section 3 we propose a numerical application showing
as the pioneer’s R&D opportunity value depend on the number of potential rivals
that can erode cash-flows and on the information revalation. Finally, Section 4
concludes.

2 The Basic Model

In this section, we propose to value the R&D investment opportunity of a pioneer
firm assuming that potential competitors can enter in the market. The sudden
entry of a competitor may significantly diminish the current cash flow deriving
from an existing asset and so alter its value. In this connection, we consider that
the Development cost can be spent in two moments: t2 or t3. If the Development
investment is realized in t2 no firm enters in the market, as the rivals’ R&D plan
is not yet concluded. Otherwise, if the Development cost is delayed at time t3
waiting better market conditions, other rivals can enter in the market and so the
opportunity costs, namely dividend-yields, increase.
About the frame of an R&D investment, we denote by:

• R the Research Investment spent at initial time t0 = 0;

• IT the Investment Technology payed at time t1. We suppose that IT = ϕD
is a proportion of asset D;
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• D the Development Investment that can be realized at time t2 or at time t3.
Obviously, we suppose that t1 < t2 < t3;

• V the Gross Project value obtained spending the Develpment Investment D.

We assume that V and D follow a geometric brownian motion process given by:

dV

V
= (µv − δv)dt + σvdZv (1)

dD

D
= (µd − δd)dt + σddZd (2)

cov

(

dV

V
,
dD

D

)

= ρvdσvσd dt. (3)

where µv and µd are the expected rates of return on asset V and D respectively,
δd and δv are the corresponding dividend yields, σ2

v and σ2
d are the respective

variance rates, Zv and Zd are the brownian standard motions of assets V and D
with correlation ρvd.
In addition, assuming by q and p the R&D success probability of pioneer firm and
potential competitors respectively, we introduce two Bernoulli random variates X
and Y :

X :

{

1 q
0 1 − q

Y :

{

1 p
0 1 − p

The R&D Investment of pioneer firm generates an information revelation that in-
fluences the investment decision of other firms. So, if pioneer R&D investment is
successful, the rivals probability p changes in positive information revelation p+.
Using Dias (2004) model, it results that:

p+ = Prob[Y = 1/X = 1] = p +

√

1 − q

q
·
√

p(1 − p) · ρ(X, Y ) (4)

where the correlation ρ(X, Y ) is measure of information revelation from pioneer to
rivals.
About the evolution of asset V , we can distinguish two situations:

• If the pioneer firm spends the Development Investment D at time t2, it
obtains the monopolistic Gross Project value V at time t2. In this case no
rival is entered in the market and so no cash flow is lost. We can state that
δv = 0 in Eq.(1) and consequently the evolution of asset V evolution becomes:

dV

V
= µvdt + σvdZv. (5)

• If the pioneer firm postpones the Development Investment D at time t3 wait-
ing better market conditions, other firms can enter in the market and so to
reduce the pioneer cash flows. In this case δv assumes positive values de-
pending on the number of rivals that invest with success in R&D. We denote
by k the number of potential rivals and by h the number of competitors that
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realize successfully the R&D project, with h ≤ k. The Gross project value
for the pioneer firm is the asset value V at time t3 assuming positive values
of δv, that we denote by V hδ. The evolution of asset V hδ is given by Eq.(1)
considering positive dividends:

dV hδ

V hδ
= (µv − hδv)dt + σvdZv. (6)

In particular way, in case of all rivals failure (h = 0), the Gross project value
for the pioneer is the asset V at time t3 without dividends. In this situation,
the evolution of asset V is given by Eq.(5).

2.1 First Case: k = 1.

First of all, we analyse the pioneer R&D investment opportunity at time t2 assuming
that only a single firm can enter in the market and therefore k = 1. This situation
may characterized an oligopoly market. The investment D will be realized at time
t2 if the exercised value Vt2 − Dt2 is bigger than waiting value and so the option
value:

Vt2 − Dt2 > (1 − p+)s(Vt2 , Dt2 , τ2) + p+s(V δ
t2

, Dt2 , τ2) (7)

where:

• s(Vt2 , Dt2 , τ2) is the value at time t2 of a Simple European Exchange Option
(SEEO) without dividends δv and with maturity τ2 = t3 − t2. This option is
obtained in case of rival’s R&D failure (h = 0) with a probability 1− p+. Its
final payoff is max[Vt3 − Dt3 , 0];

• s(V δ
t2

, Dt2 , τ2) is the value at time t2 of a SEEO with positive dividends δv

and with maturity τ2. This option is obtained in case of rival’s R&D success
(h = 1) with a probability p+. Its final payoff is max[V δ

t3
− Dt3 , 0].

Using Margrabe (1978) and McDonald & Siegel (1984) models, we have that:

s(Vt2 , Dt2 , τ2) = Vt2N(d1(Pt2 , τ2)) − Dt2e
−δdτ2N(d2(Pt2 , τ2)) (8)

and

s(V δ
t2

, Dt2 , τ2) = Vt2e
−δvτ2N(d1(P

δ
t2

, τ2)) − Dt2e
−δdτ2N(d2(P

δ
t2

, τ2)) (9)

where:

• Pt2 = Vt2/Dt2 ; P δ
t2

= Pt2e
−δv τ2 ; σ =

√

σ2
v − 2ρvdσvσd + σ2

d;

• d1(a, b) =
log(a)+

(

σ
2

2
+δd

)

b

σ
√

b
; d2(a, b) = d1(a, b) − σ

√
b

• N(d) is the cumulative standard normal distribution.
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Assuming the asset D as numeraire, we can reduce the by-dimensionality of in-
equality (7) to one variable P = V

D
:

Pt2 − 1 > (1 − p+)
[

Pt2N(d1(Pt2 , τ2)) − e−δdτ2N(d2(Pt2 , τ2))
]

+ p+
[

Pt2e
−δvτ2N(d1(P

δ
t2

, τ2)) − e−δdτ2N(d2(P
δ
t2

, τ2))
]

namely:
Pt2 − 1 > (1 − p+)s(Pt2 , 1, τ2) + p+s(P δ

t2
, 1, τ2) (10)

where:

• s(Pt2 , 1, τ2) is the value of a Simple European Option (SEO) whose underlying
asset is Pt2 without dividends (δv = 0), the exercise price is equal to 1 and
the risk-free rate is r = δd;

• s(P δ
t2

, 1, τ2) is the value of a SEO whose underlying asset is Pt2 with dividends
δv, the exercise price is equal to 1 and the risk-free rate is r = δd.

We determine the critical ratio price P ∗
1 that makes indifferent to invest or not at

time t2 solving the following equation:

P ∗
1 − 1 = (1 − p+)

[

P ∗
1 N(d1(P

∗
1 , τ2)) − e−δdτ2N(d2(P

∗
1 , τ2))

]

+ p+
[

P ∗
1 e−δvτ2N(d1(P

∗
1 e−δv τ2 , τ2)) − e−δdτ2N(d2(P

∗
1 e−δv τ2 , τ2))

]

(11)

So, the value of this investment opportunity at time t1 is a particular Pseudo Simple
American Exchange option (PSAEO) that can be exercised at time t2 and t3, whose
maturity time is τ = t3 − t1. Denoting by S1(Vt1 , Dt1 , τ) this PSAEO with k = 1,
its payoff will be:

• (Vt2 − Dt2) > 0 if Pt2 ≥ P ∗
1 ;

• p+ max[V δ
t3
− Dt3 , 0] + (1 − p+)max[Vt3 − Dt3 , 0] if Pt2 < P ∗

1 .

So, if Pt2 ≥ P ∗
1 , the investment D is realized at time t2 otherwise, if Pt2 < P ∗

1 , the
investment D is postponed at time t3 and it will be carried out if the option is in
the money. The pioneer firm does not know at time t1 if the rival’s R&D invest-
ment will be successfull or not. Therefore, we must consider the expectation value
between two options. For instance, if p+ = 1 (we are sure that the rival’s R&D
investment is successful), then the option payoff at time t3 is max[V δ

t3
− Dt3 , 0]; if

p+ = 0 (we are sure that the rival’s R&D investment has failed), then the option
payoff at time t3 is max[Vt3 − Dt3 , 0].
In order to determine the value of S1(Vt1 , Dt1 , τ) with the threat of a single com-
petitor (k = 1), we implement a Monte Carlo simulation assuming the asset D as
numeraire. So we price te PSAEO as the expectation value of discounted cash-flows
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under the risk-neutral probability Q:

S1(Vt1 , Dt1 , τ) = e−rτ1EQ

[

(Vt2 − Dt2)1{Pt2
≥P∗

1
}
]

+ e−rτEQ

[

p+ max(V δ
t3
− Dt3 , 0)1{Pt2

<P∗

1
}
]

+ e−rτEQ

[

(1 − p+)max(V δ
t3
− Dt3 , 0)1{Pt2

<P∗

1
}
]

(12)

where τ1 = t2 − t1. Denoting by:

• A1 ≡ e−rτ1EQ

[

(Vt2 − Dt2)1{Pt2
≥P∗

1
}
]

;

• A2 ≡ e−rτEQ

[

p+ max(V δ
t3
− Dt3 , 0)1{Pt2

<P∗

1
}
]

;

• A3 ≡ e−rτEQ

[

(1 − p+)max(Vt3 − Dt3 , 0)1{Pt2
<P∗

1
}
]

;

and using the asset D as numeraire given by Eq.(46) (see Appendix A), we have
that:

A1 = e−rτ1Dt2EQ

[

(Pt2 − 1)1{Pt2
≥P∗

1
}
]

= e−rτ1Dt1e
(r−δd)τ1EQ



(Pt2 − 1)1{Pt2
≥P∗

1
}
d

∼
Q

d Q





= Dt1e
−δdτ1E∼

Q

[

(Pt2 − 1)1{Pt2
≥P∗

1
}
]

; (13)

A2 = e−rτDt3EQ

[

p+ max(P δ
t3
− 1, 0)1{Pt2

<P∗

1
}
]

= e−rτDt1e
(r−δd)τEQ



p+ max(P δ
t3
− 1, 0)1{Pt2

<P∗

1
}
d

∼
Q

d Q





= Dt1e
−δdτE∼

Q

[

p+ max(P δ
t3
− 1, 0)1{Pt2

≥P∗

1
}
]

; (14)

A3 = e−rτDt3EQ

[

(1 − p+)max(Pt3 − 1, 0))1{Pt2
<P∗

1
}
]

= e−rτDt1e
(r−δd)τEQ



(1 − p+)max(Pt3 − 1, 0)1{Pt2
<P∗

1
}
d

∼
Q

d Q





= Dt1e
−δdτE∼

Q

[

(1 − p+)max(Pt3 − 1, 0)1{Pt2
≥P∗

1
}
]

. (15)

where
∼
Q is the new risk-neutral probability equivalent to Q, as illustrated in Ap-

pendix A. Using Eqs. (13), (14) and (15), we can write that:

S1(Vt1 , Dt1 , τ) = Dt1S1(Pt1 , 1, τ) (16)
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where S1(Pt1 , 1, τ) is the value of Pseudo Simple American option (PSAO) whose
underlying asset is Pt1 , the exercise price is equal to 1 and the risk-free rate r =
δd. Therefore we can write, using the Monte Carlo approximation with a single
stochastic factor P , the PSAO S1(Pt1 , 1, τ) that can be exercised at time t2 or t3
as:

S1(Pt1 , 1, τ) ≈
∑

j∈H1
e−δdτ1(P̂t2,j − 1)

m

+

∑

j∈H̄1
e−δdτ

(

p+ max[P̂ δ
t3,j − 1, 0]

)

m

+

∑

j∈H̄1
e−δdτ

(

(1 − p+)max[P̂t3,j − 1, 0]
)

m
(17)

where H1 = {j = 1...m s.t. P̂t2,j ≥ P ∗
1 }, P̂t2,j are the simulated price of asset P and

m is the number of simulations to determine the PSAO.
Finally, the investment IT will be realized at time t1 if the underlying value
S1(Vt1 , Dt1 , τ) is bigger than exercise price IT = ϕDt1 . This investment opportu-
nity can be valued at time t0 as a Compound Exchange option (CEO) c(S1, IT, t1)
whose underlying asset is S1(Vt1 , Dt1 , τ), the exercise price is IT = ϕDt1 and the
maturity date is t1. The final payoff is:

c(S1, IT, 0) = max[S1(Vt1 , Dt1 , τ) − IT, 0]

= Dt1 (max[S1(Pt1 , 1, τ) − ϕ, 0]) (18)

So, using the asset D as numeraire, we can write the value of pionner R&D invest-
ment opportunity c(S2, IT, t1) at intial time t0 = 0 as:

c(S1, IT, t1) = e−rt1Dt1EQ [max(S1(Pt1 , 1, τ) − ϕ, 0)]

= e−rt1D0e
(r−δd)t1EQ



max(S1(Pt1 , 1, τ) − ϕ, 0)
d

∼
Q

d Q





= D0e
−δdt1E∼

Q
[max(S1(Pt1 , 1, τ) − ϕ, 0)] (19)

Using Monte Carlo simulation, it is possible to approximate:

c(S1, IT, t1) ≈ D0e
−δdt1

(

∑n

i=1 max[S1(P̂
i
t1

, 1, τ) − ϕ, 0]

n

)

(20)

where n is the number of simulation paths to compute the CEO. So for each path
simulation ith, we have the price P̂ i

t1
at time t1 and starting from this value, we

implement a new Monte Carlo simulation to determine the ith option S2(P̂
i
t1

, 1, τ).
Finally, investing R at time t0, the pioneer firm obtains, in case of success with a
probability q, the investment opportunity which value is given by CEO c(S1, IT, t1).
So the Research investment R will be realized at time t0 if the profit Π given by:

Π = −R + q c(S1, IT, t1) (21)
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is positive. Fig. 1 summarizes the pioneer R&D investment with the threat of a
single competitor.

t
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 t
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t
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D
t
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Figure 1: The frame of a pioneer R&D investment with the threat of a single
competitor.

Moreover, the appendix B illustrates the Matlab algorithm to simulate the pioneer
R&D investment opportunity with k = 1.

2.2 Second Case: k = 2.

Now we analyse the situation in which there are k = 2 potential firms that can
enter in the market. So, the pioneer will be realize the investment D at time t2 if
the exercised value Vt2 −Dt2 is bigger than waiting value, namely the option value:

Vt2−Dt2 > (1−p+)2s(Vt2 , Dt2 , τ2)+2p+(1−p+)s(V δ
t2

, Dt2 , τ2)+(p+)2s(V 2δ
t2

, Dt2 , τ2)
(22)

where s(V 2δ
t2

, Dt2 , τ2) is the value at time t2 of a SEEO with positive divedends
2 δv whose final payoff is max[V 2δ

t3
− Dt3 , 0]. So we can remark that pioneer will

obtain at time t2 the monopolistic revenue s(Vt2 , Dt2 , τ2) without to lose dividends
in case of both rivals’ failure (h = 0) with probability (1 − p+)2, the oligopolistic
revenue s(V δ

t2
, Dt2 , τ2) losing the cash flow δv in case of R&D success of only one

rival (h = 1) with probability 2(1 − p+)p+ and finally, the revenue s(V 2δ
t2

, Dt2 , τ2)
in case of both competitors’ success (h = 2) with probability (p+)2.
Using Margrabe (1978) and McDonald & Siegel (1984) models we have that:

s(V 2δ
t2

, Dt2 , τ2) = Vt2e
−2δvτ2N(d1(P

2δ
t2

, τ2)) − Dt2e
−δdτ2N(d2(P

2δ
t2

, τ2)) (23)

where P 2δ
t2

= Pt2e
−2δvτ2 . Assuming the asset D as numeraire, we can reduce the

by-dimensionality to one variable P = V
D

. So we rewrite Eq. (22) as:

Pt2 − 1 > (1 − p+)2
[

Pt2N(d1(Pt2 , τ2)) − e−δdτ2N(d2(Pt2 , τ2))
]

+ 2(1 − p+)p+
[

Pt2e
−δvτ2N(d1(P

δ
t2

, τ2)) − e−δdτ2N(d2(P
δ
t2

, τ2))
]

+ (p+)2
[

Pt2e
−2δvτ2N(d1(P

2δ
t2

, τ2)) − e−δdτ2N(d2(P
2δ
t2

, τ2))
]

(24)
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namely:

Pt2 − 1 > (1− p+)2s(Pt2 , 1, τ2) + 2p+(1− p+)s(P δ
t2

, 1, τ2) + (p+)2s(P 2δ
t2

, 1, τ2) (25)

where s(P 2δ
t2

, 1, τ2) is the value of a SEO whose underlying asset is Pt2 with dividends
2δv. We determine the critical ration price P ∗

2 that makes indifferent to invest or
not at time t2 solving the following equation:

P ∗
2 − 1 = (1 − p+)2

[

P ∗
2 N(d1(P

∗
2 , τ2)) − e−δdτ2N(d2(P

∗
2 , τ2))

]

+ 2(1 − p+)p+
[

P ∗
2 e−δvτ2N(d1(P

∗
2 e−δvτ2 , τ2)) − e−δdτ2N(d2(P

∗
2 e−δvτ2 , τ2))

]

+ (p+)2
[

P ∗
2 e−2δvτ2N(d1(P

∗
2 e−2δvτ2 , τ2)) − e−δdτ2N(d2(P

∗
2 e−2δvτ2 , τ2))

]

(26)

The value of this investment opportunity at time t1 with the threat of k = 2
competitors entry is a PSAEO that can be exercised at time t1 and t2, whose
maturity time is τ ≡ t3 − t1 and that we denote by S2(Vt1 , Dt1 , τ). Its payoff will
be (Vt2 −Dt2) if Pt2 ≥ P ∗

2 and so the pioneer realizes the investment D at time t2,
otherwise it will be:

(p+)2 max[V 2δ
t3

−Dt3 , 0]+2p+(1−p+)max[V δ
t3
−Dt3 , 0]+ (1−p+)max[Vt3 −Dt3 , 0]

if Pt2 < P ∗
2 , and so the investment D is postponed at time t3. As it is shown

previously, in order to determine the value of S2(Vt1 , Dt1 , τ) we use the Monte
Carlo approach. So we price the PSAEO as the expectation value of discounted
cash-flows under the risk-neutral probability Q:

S2(Vt1 , Dt1 , τ) = e−rτ1EQ

[

(Vt2 − Dt2)1{Pt2
≥P∗

2
}
]

+ e−rτEQ

[

(p+)2 max(V 2δ
t3

− Dt3 , 0)1{Pt2
<P∗

2
}
]

+ e−rτEQ

[

2p+(1 − p+)max(V δ
t3
− Dt3 , 0)1{Pt2

<P∗

2
}
]

+ e−rτEQ

[

(1 − p+)2 max(Vt3 − Dt3 , 0)1{Pt2
<P∗

2
}
]

(27)

Also in this case, using the asset D as numeraire given by Eq.(46) illustrated in
Appendix A, we have that:

S2(Vt1 , Dt1 , τ) = Dt1S2(Pt1 , 1, τ) (28)
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Therefore, using the Monte Carlo simulation, we can price the PSAO S2(Pt1 , 1, τ)
using the stochastic factor P as:

S2(Pt1 , 1, τ) ≈
∑

j∈H2
e−δdτ1(P̂t2,j − 1)

m

+

∑

j∈H̄2
e−δdτ (p+)2(max[P̂ 2δ

t3,j − 1, 0])

m

+

∑

j∈H̄2
e−δdτ2(p+)2(1 − p+)max[P̂ δ

t3,j − 1, 0]

m

+

∑

j∈H̄2
e−δdτ (1 − p+)2 max[P̂t3,j − 1, 0]

m
(29)

where H2 = {j = 1...m s.t. Pt2,j ≥ P ∗
2 } and m is the number of simulations.

Also in this case, the investment IT will be realized at time t1 if the underlying
value S2(Vt1 , Dt1 , τ) is bigger than exercise price IT = ϕDt1 , otherwise the firm
prefers to abandon the project. So this investment opportunity can be valued at
time t0 as a Compound Exchange option c(S2, IT, t1) whose underlying asset is
S2(Vt1 , Dt1 , τ), the exercise price is IT = ϕDt1 and the maturity date is t1 as
t0 = 0. The final payoff is:

c(S2, IT, 0) = max[S2(Vt1 , Dt1 , τ) − IT, 0]

= Dt1 (max[S2(Pt1 , 1, τ) − ϕ, 0]) (30)

So, using the asset D given by Eq.(46), we can write the value at time t0 of pioneer
R&D investment opportunity c(S2, IT, t1) with the threat of k = 2 rivals:

c(S2, IT, t1) = e−rt1Dt1EQ [max(S2(Pt1 , 1, τ) − ϕ, 0)]

= e−rt1D0e
(r−δd)t1EQ



max(S2(Pt1 , 1, τ) − ϕ, 0)
d

∼
Q

d Q





= D0e
−δdt1E∼

Q
[max(S2(Pt1 , 1, τ) − ϕ, 0)] (31)

Using Monte Carlo simulation, it is possible to approximate:

c(S2, IT, t1) ≈ D0e
−δdt1

(
∑n

i=1 max[S2(P
i
t1

, 1, τ) − ϕ, 0]

n

)

(32)

where n is the number of simulation paths to determine the CEO.

2.3 General Case with k potential competitors entry.

Finally, we analyse the general case with k rivals that can enter in the market.
So, the investment D will be realized at time t2 if the exercised value Vt2 − Dt2 is

11



greater than waiting value:

Vt2 − Dt2 >

k
∑

h=0

(

k
h

)

(p+)
h
(1 − p+)

k−h
s(V hδ

t2
, Dt2 , τ2) (33)

Using Margrabe (1978) and McDonald & Siegel (1984) models we have that:

s(V hδ
t2

, Dt2 , τ2) = Vt2e
−hδvτ2N(d1(P

hδ
t2

, τ2)) − Dt2e
−δdτ2N(d2(P

hδ
t2

, τ2)) (34)

where P hδ
t2

= Pt2e
−hδvτ2 . Assuming the asset D as numeraire we reduce the by-

dimensionality of Eq.(33) to one variable P = V
D

:

Pt2 − 1 >

k
∑

h=0

(

k
h

)

(p+)
h
(1 − p+)

k−h
s(P hδ

t2
, 1, τ2) (35)

After that, we determine the critical ratio price P ∗
k that makes indifferent to invest

or not at time t2 solving the following equation:

P ∗
k − 1 =

k
∑

h=0

(

k
h

)

(p+)
h
(1 − p+)

k−h
s((P ∗

k )hδ, 1, τ2) (36)

where:

s((P ∗
k )

hδ
, 1, τ2) = P ∗

k e−hδvτ2N(d1(P
∗
k e−hδvτ2 , τ2))−Dt2e

−δdτ2N(d2(P
∗
k e−hδvτ2 , τ2)).

We price the PSAEO Sk(Vt1 , Dt1 , τ) with the threat of k competitors entry as the
expectation value of discounted cash-flows under the risk-neutral probability Q:

Sk(Vt1 , Dt1 , τ) = e−rτ1EQ

[

(Vt2 − Dt2)1{Pt2
≥P∗

k
}
]

+ e−rτEQ

[

k
∑

h=0

(

k
h

)

(p+)
h
(1 − p+)

k−h
max(V hδ

t3
− Dt3 , 0)1{Pt2

<P∗

k
}

]

(37)

Using the same procedure, it results that:

Sk(Vt1 , Dt1 , τ) = Dt1Sk(Pt1 , 1, τ) (38)
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By Monte Carlo simulation, we can approximate the value of PSAO Sk(Pt1 , 1, τ)
as:

Sk(Pt1 , 1, τ) ≈
∑

j∈Hk
e−δdτ1(P̂t2,j − 1)

m

+

∑

j∈H̄k
e−δdτ (1 − p+)n max[P̂t3,j − 1, 0]

m

+

∑

j∈H̄k
e−δdτk(p+)(1 − p+)k−1 max[P̂ δ

t3,j − 1, 0]

m
+ · · ·

+

∑

j∈H̄k
e−δdτk(p+)k−1(1 − p+)max[P̂

(k−1)δ
t3,j − 1, 0]

m

+

∑

j∈H̄k
e−δdτ (p+)k max[P̂ kδ

t3,j − 1, 0]

m
(39)

where Hk = {j = 1...m s.t. Pt2,j ≥ P ∗
k } and m is the number of simulations to

compute the PSAO.
Finally, using Monte Carlo simulation again, it is possible to approximate:

c(Sk, IT, t1) ≈ D0e
−δdt1

(

∑n

i=1 max[Sk(P̂ i
t1

, 1, τ) − ϕ, 0]

n

)

(40)

where n is the number of simulation paths in order to have the CEO.

3 Real Application

To illustrate the concepts and equations presented, we develop a numerical example
to value a pioneer R&D investment opportunity assuming the threat of competitors
that can erode the cash-flows. In particular we consider that:

• Gross Project Value: V0=220000 $;

• Research Investment: R= 36 500 $;

• Investment Technology: IT0=30000 $;

• Proportion of D required for IT : ϕ = IT
D

= 0.12

• Development Investment: D0= 250000 $;

• Market and Costs Volatility: σv = 0.55; σd = 0.23;

• Correlation between V and D: ρvd = 0.10;

• Dividend-Yelds of V : δv = 0.30;

• Dividend-Yelds of D: δd = 0.05;

13



• Initial time: t0 = 0;

• Expiration Time of CEO (Deadline Investment IT ): t1 = 2 years;

• First time to exercise the PSAEO (First time to realize D): t2 = 3 years;

• Expiration time of PSAEO (Second time to realize D): t3 = 4 years;

• Pioneer’s and Rivals’ success probabilities: q = 0.60; p = 0.55.

The Gross Project Value V0 is the present value of the R&D project’s discounted
expected cash flows. V is the underlying asset that the pioneer receives realizing
investment D. We assume that the evolution of asset V follows Eq. (5) if no rival
invests with success in R&D, or Eq. (6) if h rivals realize successfully the R&D
program.
The Development investment D0 is the current amount of capital that the pioneer
needs to invest today to receive the R&D project’s value. We assume that D fol-
lows the geometric Brownian motion defined in Eq. (2) and it can be spent at time
t2 = 3 or at time t3 = 4.
As we consider a two-stage R&D plan, we considering two different investments
denoted by R and IT . The first is the Reserch investment spent a time initial time
t0 = 0 that allows to obtain, in case of success, the investment opportunity, while
IT0 represents the current amount of Investment Technology to research innova-
tions. We suppose that IT is a proportion ϕ of asset D; therefore it assumes the
identical stochastic process of D, except that it occurs at time t1 = 2 .
Conveniently, we assume that the quoted shares and trade options of similar com-
pany are adequate proxies in order to value the volatility of assets V and D.
In our application, δv = 0.30 is the competitive dividend, namely the loss of cash-
flows deferring the R&D project owing to each competitor entrance in the market.
Moreover, as pointed out by McDonald and Siegel (1986), δd is negative when
there are carrying costs associated with a project’s capital costs, while δd is posi-
tive when there are technological befenits from the capital cost’s level from deferring
the project. We suppose δd = 0.05.
In addition, we consider that pioneer has an higher and more efficient Know-How
than potential rivals and so, pioneer success probability is q = 0.60 while rivals’ one
is p = 0.55.
Evaluation of R&D investment opportunity is generally a complex and computa-
tionally intensive problem. To determine the simulated R&D investment opportu-
nity values, we have assumed the same number of path-simulations to compute the
CEO and PSAO, and so n = m = 10 000. Moreover, Appendix B shows the Matlab
algorithm about the Stratified Sample method to simulate the asset P that allows
to reduce the variance. We assume that a = 0.80.
Table 1 illustrates four simulated Monte Carlo values about the pioneer R&D in-
vestment. In particular way, we have considered three situation: in the first case
there is a single potential competitor and so k = 1, in the second case we assume
two potential rivals and so k = 2, and finally we have three potential competitors
and therefore k = 3. For each situation we suppose three value about the infor-
mation revelation from pioneer to rivals: ρ(X, Y ) = 0, 0.40 and 0.80. Moreover,
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we have considered the average among the four simulations in order to determine
a single simulated value of CEO. The last column summarizes the pioneer profit Π
that invests in R&D given by Eq.(21).

Table 1: Monte Carlo Simulations

k ρ(X,Y ) P ∗

k
1st MC 2nd MC 3rd MC 4th MC CEO Π

1 0 1.3836 64 826 64 978 64 513 64 876 64 798 +2 379

1 0.40 1.2818 63 540 63 692 63 229 63 594 63 514 +1 608

1 0.80 1.2081 62 426 62 578 62 117 62 486 62 402 +941

2 0 1.1790 61 146 61 296 60 841 61 211 61 123 +174

2 0.40 1.1128 60 275 60 425 59 973 60 345 60 254 −348
2 0.80 1.0679 59 760 59 911 59 461 59 833 59 741 −655

3 0 1.0982 60 712 60 862 60 403 60 780 60 689 −87
3 0.40 1.0522 59 812 59 963 59 513 59 884 59 793 −624
3 0.80 1.0245 59 255 59 405 58 957 59 329 59 236 −958

Using the real option methodology, we are able to determine the value of pioneer
R&D investment opportunity assuming the threat of rivals entry. In particular way
we can observe that, when the information revelation ρ(X, Y ) and the number of
potential competitors k increase, then the value of CEO goes down. By the compet-
itive dividends, the option value takes into account the reduction of cash-flows that
potential competitors can erode when the pioneer delays the realization of R&D
waiting better market conditions. In addition, the increasing information revelation
benefits the rivals R&D success and so the pioneer’s option reduces its value. We
can state that, if Π < 0, the pioneer firm preferes to abandon the R&D investment
project at time t0 otherwise, if Π > 0, the pioneer realizes the investment R at
time t0. For our adapted numbers, it results that pioneer invests R at time t0 when
k = 1 for each information revelation value and when k = 2 without information
revelation. In this case the profit Π is positive, as it is denoted by bold value in
Table 1. In the other situations, the pioneer prefers abandon the R&D program.
Obviously, if R 6= 36 500 $, the pioneer’s decision about the realization of R&D
project investment changes.
Finally, if the pioneer realizes the investments R at time t0 and IT at time t1, it
must decide whether to invest D at time t2 or to delay the decision at final date
t3, running the risk that potential rivals can erode its cash-flows. In particular,
we can interpret the asset P as a profitability index since it is the ratio between
the market value V and the development investment D. So, if the profitability
index Pt2 at time t2 is bigger than critical market value P ∗

k , the pioneer realizes the
development investment D at time t2, otherwise it delays the decision at time t3.
We can observe that, when the information revelation ρ(X, Y ) and the number of
potential rivals k increase, the critical ratio P ∗

k decreases. This means the reduction
of critical profitability for which is indifferent to realize the investment D or to wait
to invest. For instance, we assume that ρ(X, Y ) = 0.40 and the profitability index
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of pioneer R&D project Pt2 = 1.07 at time t2. If the number of potential rivals
k = 2, the pioneer prefers delay the investment decision at time t3 waiting better
market conditions since Pt2 < 1.1128, while if the threat increases and so k = 3, the
pioneer prefers invests at time t2 in order to avoid the loss of cash-flows (preempt
the rivals) since Pt2 > 1.0522. In conclusion, the increase of threat arising from
potential rivals’ number and the information revelation reduces the critical level
P ∗

k under which the pioneer postpones the investment D at final time t3, as it is
illustrated in Table 2.

Table 2: Critical Ratios P ∗
k

ρ(X,Y ) P ∗

4
P ∗

5
P ∗

6
P ∗

7
P ∗

8
P ∗

9
P ∗

10

0 1.0571 1.03411 1.0205 1.0124 1.0075 1.0045 1.0027
0.40 1.0251 1.0121 1.0058 1.0027 1.0012 1.0005 1.0002
0.80 1.0087 1.0029 1.0009 1.0002 1.00008 1.00002 1.000006

4 Concluding Remark

In this paper we have shown as the information revelation and the threat of po-
tential competitors can affect the pioneer decision about the realization of R&D
investment. As it well known, the evaluation of R&D investment opportunity is
generally complex and computationally intensive problem. In fact, an R&D invest-
ment is made in a phased manner, in which each stage provides information about
the R&D success and creates an opportunity (option) for subsequent investment.
Therefore, we have considered a two-stage R&D plan valuated as a compound op-
tion using the Monte Carlo approach. To reduce the variance of simulation we have
used the Stratified Sample method.
In particular way, we have assumed that the threat of rivals’ entrance in the mar-
ket can diminish the cash-flows deriving from pioneer R&D project. To reach this
objective, we have used the dividends as the cash-flows eroded by other rivals when
an investment opportunity is postponed. We have analyzed two particular cases,
k = 1, 2 and then a general case k. Finally, we have illustrated numerically that
both the pioneer’s R&D opportunity value (CEO) and the critical profitability
index P ∗

k decrease when the information revelation ρ(X, Y ) and the number of po-
tential competitors k increase. This means the reduction of pioneer’s opportunity
to realize the investment R at time t0 and to delay the investment D at time t3
waiting better market conditions.
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A General Computation

The typical simulation approach is to price the PSAEO as the expectation value of
discounted cash-flows under the risk-neutral probability Q. So, for the risk-neutral
version of the Eqs. (1) and (2), it’s enough replace the expected rates of return µi

by the risk-free interest rate r plus the premium-risk, namely µi = r + λiσi, where
λi is the asset’s market price of risk, for i = V, D. So, we obtain the risk-neutral
stochastic equations:

dV

V
= (r − δv)dt + σv(dZv + λvdt) = (r − δv)dt + σvdZ∗

v (41)

dD

D
= (r − δd)dt + σd(dZd + λddt) = (r − δd)dt + σddZ

∗
d (42)

The Brownian processes dZ∗
v ≡ dZv + λvdt and dZ∗

d ≡ dZd + λddt are the new
Brownian motions under the risk-neutral probability Q and Cov(dZ∗

v , dZ∗
d) = ρvddt.

Applying the Ito’s lemma, we can reach the equation for the ratio-price simulation
P = V

D
under the risk-neutral measure Q:

dP

P
= (δd − δv + σ2

d − σvσdρvd) dt + σvdZ∗
v − σddZ

∗
d (43)

Applying the log-transformation for Dt, under the probability Q, it results:

Dt = D0 exp {(r − δd)t} · exp

(

−σ2
d

2
t + σdZ

∗
d(t)

)

. (44)

We have that U ≡
(

−σ2

d

2 t + σdZ
∗
d(t)

)

∼ N
(

−σ2

d

2 t, σd

√
t
)

and therefore exp(U) is

a log-normal which expectation value is EQ [exp(U)] = exp
(

−σ2

d

2 t +
σ2

d

2 t
)

= 1. So,

by Girsanov’s theorem, we can define the new probability measure
∼
Q equivalent to

Q and the Radon-Nikodym derivative is:

d
∼
Q

d Q
= exp

(

−σ2
d

2
t + σdZ

∗
d(t)

)

. (45)

Hence, using the Eq. (44), we can write:

Dt = D0 e(r−δd)t · d
∼
Q

d Q
(46)

By the Girsanov theorem, the processes:

dẐd = dZ∗
d − σddt (47)

dẐv = ρvddẐd +
√

1 − ρ2
vd dZ ′ (48)
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are two Brownian motions under the risk-neutral probability measure
∼
Q and Z ′ is

a Brownian motion under
∼
Q independent of Ẑd. By the Brownian motions defined

in the Eqs. (47) and (48), we can rewrite the Eq. (43) for the asset P under the

risk-neutral probability
∼
Q. So it results that:

dP

P
= (δd − δv) dt + σv dẐv − σd dẐd (49)

Using the Eq. (48), it results that:

σvdẐv − σddẐd = (σvρvd − σd) dẐd + σv

(

√

1 − ρ2
vd

)

dZ ′ (50)

where Ẑv and Z ′ are independent under
∼
Q. Therefore, as (σvdẐv − σddẐd) ∼

N (0, σ
√

dt), we can rewrite the Eq. (49):

dP

P
= (δd − δv) dt + σdZp (51)

where σ =
√

σ2
v + σ2

d − 2σvσdρvd and Zp is a Brownian motion under
∼
Q. Using the

log-transformation, we obtain the equation for the risk-neutral price simulation P
with dividends:

P hδ
t = P0 exp

{(

δd − hδv − σ2

2

)

t + σZp(t)

}

(52)

and without dividends:

Pt = P0 exp

{(

δd − σ2

2

)

t + σZp(t)

}

(53)

Using Eqs. (52) and (53), it is plain that P hδ
t = Pte

−hδv t.

B Matlab Algorithm with k = 1.

In this section we present the Matlab algorithm to determine the pioneer R&D
investment opportunity value assuming that k = 1. Using Eq. (52), we can observe

that Y = ln(
P hδ

t

P0

) follows a normal distribution with mean (δd − hδv − σ2

2 )t and

variance σ2t. So, the random variable Y can be generate by inverse of the normal

cumulative distribution function Y = F−1(u; (δd − hδv − σ2

2 )t, σ2t) where u is a
function of a uniform random variable U [0, 1]. Using Matlab algorithm, we can
generate the n simulated prices P̂ i

t , for i = 1...n, as:

Pt=P0*exp(norminv(u,(dD-h*dV)*t-0.5*sig^2*t,sig*sqrt(t)))
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where u = rand(1, n) are the n random uniform values between 0 and 1. To reduce
the variance of results, we propose the Stratified Sample with two intervas. So we
concentrate the sample in the region where the function payoff g is more variable. So
we consider the piecewise a g(u1)+ (1− a) g(u2) where u1 ∼ U [0 a] and u2 ∼ U [a 1]
as an individual sample. The Matlab algorith is the following:

function R&DValue = CONCK1(V0,D0,R,IT,T1,T2,T3,sigV,...

sigD,rhoVD,dV,dD,q,p,riv,m,n,a); %Inputs;

sig=sqrt(sigV.^2+sigD.^2-2*rhoVD*sigV*sigD); %Variance of P;

fi=(IT/D0); %Proportion of IT;

dd=(dV-dD);

P0=V0/D0;

%Rival success probability after Information Revelation;

pp=p+sqrt((1-q)/(q))*sqrt(p*(1-p))*riv;

t1=T2-T1;

t2=T3-T2;

t=T3-T1;

u=rand(1,n); %Random uniform values between 0 and 1;

%Value of Asset P in T1 with dV=0;

PT1=P0*exp(norminv(a*u,dD*T1-sig^2*T1/2,sig*sqrt(T1)));

PaT1=P0*exp(norminv(a+(1-a)*u,dD*T1-sig^2*T1/2,sig*sqrt(T1)));

for i=1:n;

h=rand(1,m);

g=rand(1,m);

%Asset Values P at time T2 and T3 with and without dividends;

PT2=PT1(i).*exp(norminv(h,dD*(t1)-0.5*(sig^2)*(t1),sig*sqrt(t1)));

PT3=PT2.*exp(norminv(g,dD*(t2)-0.5*(sig^2)*(t2),sig*sqrt(t2)));

PT3e=PT2.*exp(norminv(g,-dd*(t2)-0.5*(sig^2)*(t2),sig*sqrt(t2)));

PaT2=PaT1(i).*exp(norminv(h,dD*(t1)-0.5*(sig^2)*(t1),sig*sqrt(t1)));

PaT3=PaT2.*exp(norminv(g,dD*(t2)-0.5*(sig^2)*(t2),sig*sqrt(t2)));

PaT3e=PaT2.*exp(norminv(g,-dd*(t2)-0.5*(sig^2)*(t2),sig*sqrt(t2)));

d1=(log(PT2*exp(dD*(t2)))+0.5*(sig.^2)*(t2))/(sig*sqrt(t2));

d2=(log(PT2*exp(dD*(t2)))-0.5*(sig.^2)*(t2))/(sig*sqrt(t2));

dd1=(log(PT2*exp(-dd*(t2)))+0.5*(sig.^2)*(t2))/(sig*sqrt(t2));

dd2=(log(PT2*exp(-dd*(t2)))-0.5*(sig.^2)*(t2))/(sig*sqrt(t2));

da1=(log(PaT2*exp(dD*(t2)))+0.5*(sig.^2)*(t2))/(sig*sqrt(t2));

da2=(log(PaT2*exp(dD*(t2)))-0.5*(sig.^2)*(t2))/(sig*sqrt(t2));

dda1=(log(PaT2*exp(-dd*(t2)))+0.5*(sig.^2)*(t2))/(sig*sqrt(t2));

dda2=(log(PaT2*exp(-dd*(t2)))-0.5*(sig.^2)*(t2))/(sig*sqrt(t2));

%Conditions that makes indifferent the investment D in T2;

cond1=PT2-1-(1-pp).*PT2.*normcdf(d1)+(1-pp).*exp(-dD*t2).*normcdf(d2)-...

pp.*PT2.*exp(-(dV)*t2).*normcdf(dd1)+pp.*exp(-dD*t2).*normcdf(dd2);

conda1=PaT2-1-(1-pp).*PaT2.*normcdf(da1)+(1-pp).*exp(-dD*t2).*normcdf(da2)-...

pp.*PaT2.*exp(-(dV)*t2).*normcdf(dda1)+pp.*exp(-dD*t2).*normcdf(dda2);

%Simulations;
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for j=1:m;

if cond1(j)>=0;

r(j)=0;

v(j)=exp(-dD*t1)*(max(PT2(j)-1,0));

else

r(j)=exp(-dD*t)*((1-pp)*(max(PT3(j)-1,0))+pp*(max(PT3e(j)-1,0)));

v(j)=0;

end

if conda1(j)>=0;

ra(j)=0;

va(j)=exp(-dD*t1)*(max(PaT2(j)-1,0));

else

ra(j)=exp(-dD*t)*((1-pp)*(max(PaT2(j)-1,0))+pp*(max(PaT3e(j)-1,0)));

va(j)=0;

end

end

w=a*(r+v)+(1-a)*(va+ra);

%Value of i^th PSAEO

PSAO(i)=mean(w);

end

S=max(PSAO-fi,0);

Y=mean(S)

CEO=D0*exp(-dD*T1)*Y

Profit=q*CEO-R
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