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Abstract 
 

Most, if not all, production technologies are stochastic. This article demonstrates how 
data envelopment analysis (DEA) methods can be adapted to accommodate stochastic 
elements in a state-contingent setting. Specifically, we show how observations on a 
random input, not under the control of the producer and not known at the time that 
variable input decisions are made, can be used to partition the state space in a fashion 
that permits DEA models to approximate an event-specific production technology. The 
approach proposed in this article uses observed data on random inputs and is easy to 
implement. After developing the event-specific DEA representation, we apply it to 
a data set for Western Australian wheat farmers. Our results highlight the need for 
acknowledging stochastic elements in efficiency analysis. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Agricultural production technologies are inherently uncertain. Unpredictable climatic vari-

ables such as rainfall are essential to production and farmers must plan for a range of contin-

gencies when making production decisions. However, with few exceptions, data envelopment

models and methods used in making efficiency comparisons rely on the assumption that the

underlying technology is deterministic, with any stochastic component being confined to an

error term. O’Donnell, Chambers and Quiggin (2006) have shown that efficiency analysis,

whether based on stochastic frontier or data envelopment models, can be seriously biased

if methods developed for nonstochastic technologies are applied to data sets generated by

firms facing truly stochastic technologies and decision environments. The purpose of this

article is to demonstrate how data envelopment analysis (DEA) methods can be adapted to

accommodate stochastic elements in a state-contingent setting. Specifically, we show how

observations on a random input, not under the control of the producer and not known at

the time that variable input decisions are made, can be used to partition the state space in

a fashion that permits DEA models to approximate an event-specific production technology.

After developing the event-specific DEA representation, we apply it to a data set from West-

ern Australia to illustrate the differences in efficiency calculations that can emerge when

the stochastic nature of the technology is taken into account. For our data set, allowing for

the event-specific nature of the data set has dramatic consequences in calculated efficiency

scores.

In what follows, we first define a stochastic production technology. Then we show how

information on a random input can be used to define a partition of the state-space that

permits specification of an event-specific version of the technology, and we show how that

specification can be implemented in a DEA framework. We discuss our data set next,

and then we apply our method to that data set, discuss our findings, and then the article

concludes.

The Stochastic Technology

The stochastic setting is represented by a measurable space (S, Ω) where S is the state space

and Ω are its measurable subsets (events). In this setting random variables are treated as
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measurable maps from S to the reals. Thus, random variable, f̃ , can be thought of as the

element of RS, defined by

f̃ = {f (s) : s ∈ S} ,

where f : S → R is the map defining the random variable, and it is required that {s : f (s) = v} belongs
to Ω for all v ∈ R. Random variables will always be distinguished from their ex post values

by a tilde (˜) . Hence, f̃ ∈ RS represents the random variable, and f (s) denotes the ex post

(observed) outcome associated with realization s of S. Denote by 1̃ the degenerate (constant)

random variable whose outcome equals one for all s ∈ S.

The stochastic production technology uses multiple non-stochastic inputs to produce a

single stochastic output.1 That stochastic output is represented by the random variable z̃

∈ RS
+. The technology is represented by a set T ⊂ RS

+×RN
+ , where N represents the number

of inputs that are under the direct control of the producer and that are applied prior to the

resolution of uncertainty. T is defined by

T = {(z̃,x) : x can produce z̃} ,

where z̃ ∈ RS
+ denotes the stochastic output, and x ∈ RN

+ denotes the nonstochastic inputs.

We assume that T is nonempty, exhibits free disposal of inputs and outputs, and is convex.

The interpretation of the technology is as follows. Before the producer knows the realization

s ∈ Ω, he or she picks (z̃,x) from within T . If the realized state is s ∈ S, then realized

output is z (s), while if s′ 6= s is realized, then ex post output is z (s′).

We now consider a comprehensive partition of the state space, S, into mutually exclusive

events. Call that partition Ω̂ and denote a typical element of it by ω. These events are

mutually exclusive

ω 6= ω′ ⇒ ω ∩ ω′ = ∅,

and the partition is comprehensive
⋃

ω∈Ω̂

= S.

If one only has data on ex post output realizations, then empirical approximation of T

requires an identifying restriction on T . To that end, we assume that T can be represented
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in terms of a family of event-specific stochastic production functions so that

T =
{

(z̃,x) : z (s) ≤ gω (x,s) , ω ∈ Ω̂, s ∈ ω
}

,

where each gω is a nondecreasing and concave function of the nonstochastic inputs. In what

follows, gω is termed the event-specific production function for the event ω. The basic idea

behind an event-specific representation of the technology is that the occurence of different

events fundamentally changes the ex post conditions under which stochastic production takes

place. An obvious special case of an event-specific production function is the state-contingent

production function that has been axiomatically studied by Chambers and Quiggin (2000).

In that case, Ω̂ = S, and

T = {(z̃,x) : z (s) ≤ gs (x,s) , s ∈ S} .

An event-specific technology has a number of advantages for applied work. Most impor-

tantly, as noted above and as we show below, it allows one to use ex post observations on

output in the construction of empirical approximations of the technology. Thus, choosing

an event-specific representation represents an important identifying restriction. However, it

comes with costs. In particular, as O’Donnell, Chambers, and Quiggin (2006) have shown

through simulation analysis, if the true technology is not event-specific then empirical rep-

resentations of the technology based upon this identifying restriction can lead to serious

errors and biases in approximating the frontier of the technology and in measuring effi-

ciency. Theoretically, as Chambers and Quiggin (2000) have demonstrated, event-specific

technologies place strong a priori assumptions on the degree of substitutability between ex

post realizations of the stochastic output.

The special case of the event-specific technology, known as the state-contingent produc-

tion function, is decidedly the most common empirical representation of stochastic technolo-

gies. It forms the basis for the standard representation of most stochastic frontier represen-

tation of technologies. As a general rule in applied econometric work, however, the practical

specification of S is predicated more upon econometric and empirical convenience than it is

on capturing the actual decision environment that the decision maker faces. More specifi-

cally, S is usually viewed as an ’error’ space that arises from problems in measuring inputs
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and outputs and simple, although econometrically convenient, stochastic errors by producers

who face a nonstochastic decision environment.

But in the truly stochastic decision environment in which most firms operate, S is not an

’error space’. Rather, S provides a comprehensive and mutually exclusive description of all

possible states of the world that the producer can face after he or she makes his or decision

about the nonstochastic inputs x and the stochastic output z̃. For many practical instances,

S can be relatively narrowly defined. In what follows, we assume that it can be defined by

the possible realizations of a real-valued, random input, which with an abuse of notation we

denote as s, to the production process whose realization occurs after (z̃,x) is chosen. Hence,

in what follows S ⊂ R+ corresponds to the support of that random input. The partition of

S given by Ω̂ is then given by consecutive subintervals of the positive reals.

The choice of Ω̂ is motivated by the need to represent production uncertainty in a rela-

tively compact and empirically tractable fashion. For practical purposes, this requires that

the number of elements of the partition Ω̂ should be small. It does not mean, however, that

our method can only be applied if there is only one random input to the production process.

Suppose that there were two. Then S could be defined as a subset of R2
+, and events could

be defined by appropriate partitions of that set.

A DEA model of the event-specific technology

Our theoretical model relates ex post output to realizations of the random input, s, according

to

z (s) ≤ gω (x,s) ,

ω ∈ Ω̂, s ∈ ω. Thus, in terms of a DEA technology, one can legitimately think in terms of

a technology that characterizes the interaction between nonstochastic inputs, the stochastic

input s, and realized output. A standard (VRS) DEA representation of such a technology,
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assuming free disposability, would be:

TD =
{

(z,x,s) : z ≤
K∑

k=1

λkz
k, x ≥

K∑

k=1

λkx
k,

s ≥
K∑

k=1

λks
k,

K∑

k=1

λk = 1,

λk ≥ 0, k = 1, .., K
}

,

where
(
zk,xk,sk

)
corresponds to the kth observations on the ex post output, the nonstochas-

tic inputs, and the observed random input, and where λ = (λ1, ..., λK) are the DEA activity

variables.

Notice that while TD accounts for the presence of the random input, it is not a prop-

erly event-specific technology because it presumes that the same production frontier applies

across all events ω ∈ Ω̂. A technology that accommodates both the presence of the random

input and the event-specific nature of the technology can be constructed by using the K

ex post values of the random input to partition the data into subsets that correspond to

each of the events ω defined by the partition Ω̂ of the state space. Denote the number

of observations falling into the event ω by K (ω) and the kth observation falling into that

event by
(
zk (ω) ,xk (ω) , sk (ω)

)
. Then the event-specific DEA frontier associated with those

observations and with event ω is given by

T ω =
{

(z,x,s) : z ≤
K(ω)∑

k=1

λkz
k (ω) , x ≥

K(ω)∑

k=1

λkx
k (ω) ,

s ≥
K(ω)∑

k=1

λks
k (ω) ,

K(ω)∑

k=1

λk = 1,

λk ≥ 0, k = 1, .., K (ω)
}

and the (VRS) DEA approximation to T is given by

T Ω̂ =
{

(z,x,s) : (z,x,s) ∈ T ω, ω ∈ Ω̂
}

.

An Application

To illustrate how a DEA approximation to an event-specific technology can be constructed

and the difference that it can make in actual efficiency calculations, we apply our method-
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ology to a data set on crop yields derived from experimental field trial data. The data were

obtained from the Crop Variety Testing (CVT) program of the West Australian Depart-

ment of Agriculture (Hunter, 2005). The data relate yields on barley production to three

fertilizer inputs (Nitgrogen, Phosphorus and Sulphur) that were under the direct control of

the experimenter and two inputs (pre- and post-sowing rainfall) that were not under the

control of the experimenters at the time that fertilizer applications were made. Thus, for

the purposes of our analysis, we take the random inputs, s, defining the state space to be

rainfall as measured in millimeters.

There are several reasons why agricultural field trial data provide a particularly conve-

nient framework in which to illustrate our methodology. First, because these data emerge

from experiments by professional agronomists who are presumably well-acquainted with the

most modern and advanced production methods, it is hard to imagine that there should be

any inherent efficiency differences across observations, other than those that emerge from

truly random effects and observation error. Thus, in principle, one would expect most such

observations to be relatively close to the ideal frontier. This is not the case, for example, in

data that are gathered under less controlled circumstances, where true differences in ability

and in "human capital" can explain observed efficiency differences. Second, these data con-

tain inputs that are both under the direct control of the experimenters (fertilizer levels) and

inputs that are controlled by Nature. Hence, they seem to offer an ideal framework in which

to investigate how apparent efficiency differences can emerge across observations not from

any inherent different in knowledge or true efficiency but from the truly stochastic nature of

such technologies.

Figure 1 presents the empirical distribution for rainfall over the farms in the sample.

On the basis of this empirical distribution, we have split the rainfall state space into three

events: low rainfall (below 277.2 mm per annum), medium rainfall (between 277.2 and 426.8

mm per annum) and high rainfall (above 426.8 mm per annum). These three groups have,

respectively, 82, 91, and 97 observations in them.

Figure 1 about here.

In the empirical analysis, input- (TEx) and output-oriented (TEy) technical efficiency
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scores were computed for the observations. First, we calculated the efficiency scores using

representation TD above that presumed that all observations come from a common technol-

ogy (i.e. a combined frontier). Then we calculated efficiency scores from frontiers calculated

from the data partitioned according to the three rainfall events {low, medium, high} using

the representation T ω. In all cases, we presumed that the technology exhibited variable re-

turns to scale and free disposability of inputs and outputs. Summary of these estimates are

presented in table 1.

Table 1 about here.

We then compared the resulting efficiency scores that emerged from these two distinct

methods using two different test statistics: the Kolmogorov-Smirnov nonparametric test and

Banker tests. The Kolmogorov-Smirnov test statistic is a general distribution-free nonpara-

metric test which quantifies differences in both location and shape of empirical cumulative

distribution functions. Banker’s test (Banker, 1993), on the other hand, uses F-statistics that

can be constructed from the TE estimates under the assumption of normal or exponential

distributions for the efficiency terms (Banker 1993 and Banker and Chang 1995), under the

null hypothesis that TD and T Ω̂ are the same.2

According to the Kolmogorov-Smirnov test results (please see table 2), the input- and

output-oriented efficiency scores calculated relative to T ω for ω equal to high rainfall are

significantly higher (at 99% confidence level) than those calculated relative to TD. Similar

results are obtained for ω equal to medium rainfall. The Banker test results reported in

table 3 confirm these findings except in the case of the output-oriented scores for the medium

rainfall group.

Tables 2 and 3 about here.

The input- and output-oriented efficiency scores calculated relative to T ω for ω equal to

low rainfall, however, are found to be similar to those calculated for these observations from

TD. Thus, on the basis of these results, we are led to conclude that TD does a relatively good

job of capturing the stochastic technology for low rainfall observations, but fails to capture
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the event-specific nature of the technology for increased levels of rainfall. A closer look at

these numbers reveals some interesting patterns.

First, as the test results above indicate, for the medium and high rainfall groups, efficiency

scores are higher when the DEA frontier includes only observations from the group. The

magnitude and proportion of efficiency score changes are most pronounced for the high

rainfall group. All the input-oriented efficiency scores and 78% of the output-oriented scores

for the high rainfall observations are strictly higher when efficiency is calculated relative to

T ω rather than TD. See table 4. The corresponding figures for the medium rainfall group

are 90% and 71%. These changes are less frequent in the case of the low rainfall group but

are virtually nill in magnitude as the figures in table 1 show. These ratios of input-oriented

efficiency scores from separate and combined frontiers (TEx ratios)are plotted against rainfall

measurements in figures 2 and 3.

Table 4 about here.

Figure 2 about here.

Second, the frequency and level of disparity between efficiency scores is greater for

the input-based scores than for output-oriented scores (for both medium and high rain-

fall groups). For the high rainfall group, the TE ratios of the input-oriented scores from

separate and combined frontiers have a mean (and also median) value of 2.25; these mean

and median values are lower (1.08 and 1.28, respectively) for the output-oriented scores. The

pattern is the same for the medium rainfall group with the TE ratios from the input-oriented

frontier being higher. However, the degree of efficiency understatement from TD increases

with rainfall in the case of input-oriented measures but not in the case of the output-oriented

scores.

Figure 3 about here.

The observed pattern of efficiency underestimation associated with TD can be explained

as follows. When TD is used, observations from the high rainfall category are dominated by

those from the other two categories. In fact, for both input- and output-oriented frontiers,
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none of the high rainfall observations are included as members of the best practice frontier

for TD. The pattern is less pronounced, but still observable, for the middle rainfall groups.

This suggests that medium to high levels of rainfall fundamentally alter the production rela-

tionships between the inputs under producer control and rainfall variables. As we have noted

above, we have imposed free disposability of inputs in the construction of DEA frontiers.

However, it is very obvious that, in the extreme, very high levels of rainfall on a fixed plot of

land can lead to a downward shift in productivity frontiers as the land becomes increasingly

waterlogged. But even less dramatically, as rainfall reaches medium levels, there appears to

be a levelling of the yield frontier associated with rainfall (in physical production terms, a

von Liebig effect (Paris, 1992; Chambers and Lichtenberg, 1996)). Empirically, outliers in

the data for rainfall levels that are low but not low enough to severely damage crop growth

dominate observations from the high rainfall and medium rainfall groups that enjoy higher

rainfall levels without correspondingly higher yield levels. Although rainfall levels in West-

ern Australia are not very high, the yield plateau associated with von Liebig effects occurs

within the range of the data. For soils with low water holding capacity, common in the

West Australian Wheatbelt, additional rain mainly contributes to increased drainage (As-

seng, Turner and Keating, 2001). A levelling of the yield frontier due to a von Liebig type

effect would naturally be associated with greater measured input inefficiency than measured

output inefficiency.

Conclusion

When stochastic elements alter the nature of the underlying technology, efficiency measures

computed from models that ignore stochasticity can lead to misguided management actions.

The standard approaches to efficiency measurement do not allow for the stochastic nature

of technologies. This is true of both deterministic approaches, such as data envelopment

analysis (DEA), and stochastic frontier (SFA) formulations, which incorporate stochastic

errors merely as representations of measurement problems or omitted variables rather than

as an explicit recognition of the stochastic nature of the underlying technology. Applying

these models to data sets generated by a stochastic technology can lead to biased or erroneous
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estimates of efficiency performance. The purpose of this article is to show how event-specific

representation of the production technology can be specified and then implemented within

a data envelopment analysis framework.

The article started by describing how the state space can be partitioned to define event-

specific production relationships that approximate the underlying stochastic technology. The

purpose of these event-specific technologies is to provide empirical representations of the

underlying technology that reflect the fact that the structure of the production technology

might be shaped differently by different events. The article then shows how the event-

specific representations can be implemented in a data envelopment analysis framework using

the realized values of a random input to partition the data into comprehensive and exclusive

subsets.

The event-specific DEA models are applied to agricultural field trial data and the results

compared with those obtained from a standard DEA model that ignores the stochastic nature

of the data. These field trial data provide an excellent opportunity for demonstrating the

benefits of the event-specific formualtion. First, the trial data involve the use of inputs that

are under the direct control of the agronomist or the experimenter as well as inputs such as

rainfall that are stochastic or under the control of Nature. Second, the experimental nature

of the data imples that there is very little besides stochastic or natural events that would

be responsible for observed efficiency differences. Rainfall data is used to partition the state

space into low, medium and high rainfall events. Both input-oriented and output-oriented

efficiency scores were calculated for the comparison of the alternative DEA models.

We find that estimates of efficiency performance change dramatically when an event-

specific technology representation is adopted. This is particularly true for data points relating

to medium and high rainfall events. For the data set used in the article, the calculations

indicate that input-oriented efficiency scores were underestimated, on average, by 50% or

more in the case of high rainfall event data. The results highlight the degree to which our

understanding of efficiency levels can be distorted when models that do not recognize the

stochastic nature of the production process are used.
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Notes
1We concentrate on a single output technology for the sake of simplicity. It is apparent, however, that

our method can be easily extended to multiple-output stochastic technologies following the lines developed

in Chambers and Quiggin (2000).
2These tests are based on analytical results obtained for the single output case. For multiple output

efficiency scores, such analytically based statistical tests are not available and one has to rely on bootstrapping

methods (Simar and Wilson, 2000).
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Table 1: A comparison of technical efficiency estimates from separate and combined tech-

nology frontiers

Input-oriented TE

low rainfall group medium rainfall group high rainfall group

combined separate combined separate combined separate

frontier frontier frontier frontier frontier frontier

mean 0.88 0.88 0.72 0.89 0.44 0.90

median 0.90 0.90 0.68 0.92 0.40 0.96

Output-oriented TE

low rainfall group medium rainfall group high rainfall group

combined separate combined separate combined separate

frontier frontier frontier frontier frontier frontier

mean 0.75 0.76 0.63 0.72 0.53 0.66

median 0.73 0.75 0.62 0.73 0.52 0.65
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Table 2: Kolmogorov-Smirnov tests of technical efficiency estimates from separate and combined

frontiers (p-values for two-sided and one-sided tests)

Input-oriented/VRS

Null Hypothesis low rainfall group medium rainfall group high rainfall group

TEs from combined

and seprate frontiers

are same

0.998 0.0000 0.0000

TEs from combined

frontiers are not

smaller

0.7372 0.0000 0.0000

Output-oriented/VRS

Null Hypothesis low rainfall group medium rainfall group high rainfall group

TEs from combined

and seprate frontiers

are same

0.998 0.0247 0.0077

TEs from combined

frontiers are not

smaller

0.7372 0.0123 0.0038
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Table 3: Banker test difference in efficiency scores from separate and combined technology

frontiers (Note: figures indicate distribution area beyond ctitical statistic value, i.e. P[X >

x])

under normal distribution assumption for efficiency terms

lower rainfall group medium rainfall group high rainfall group

TEx 0.46 0.00 0.00

TEy 0.34 0.40 0.10

under exponential distribution assumption for efficiency terms

lower rainfall group medium rainfall group high rainfall group

TEx 0.44 0.00 0.00

TEy 0.36 0.41 0.02
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Table 4: Efficiency change count: proportion of TE scores that are strictly higher for separate

than for combined frontiers

lower rainfall group medium rainfall group high rainfall group

TEx 25.61 90.11 100.00

TEy 51.22 71.43 78.16
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