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Abstract: This paper extends the existing fully parametric Bayesian literature on stochastic
volatility to allow for more general return distributions. Instead of specifying a particular
distribution for the return innovation, nonparametric Bayesian methods are used to flexibly
model the skewness and kurtosis of the distribution while the dynamics of volatility continue
to be modeled with a parametric structure. Our semiparametric Bayesian approach provides
a full characterization of parametric and distributional uncertainty. A Markov chain Monte
Carlo sampling approach to estimation is presented with theoretical and computational issues
for simulation from the posterior predictive distributions. An empirical example compares
the new model to standard parametric stochastic volatility models.
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1 Introduction

This paper proposes a model of asset returns that draws from the existing literature on

autoregressive stochastic volatility (SV) models and the advances made in Bayesian non-

parametric modeling and sampling to create a semiparametric SV model. By applying both

parametric and nonparametric features to the return process, an estimable SV model with

a flexible nonparametric innovation distribution is provided. The nonparametric portion of

the model consists of an infinitely ordered mixture of normals whose component probabil-

ities and parameters are modeled with a particular Bayesian prior - the Dirichlet process

mixture prior (DPM). Under the DPM representation of the returns conditional distribu-

tion, our model produces a more robust predictive density of returns than parametric SV

models. The paper takes a likelihood based approach to model inference and provides exact

finite sample properties, including a full characterization of parametric and distributional

uncertainty.

There exists a long history of modeling asset returns with a mixture of normals (see Press

(1967); Praetz (1972); Clark (1973); Gonedes (1974); Kon (1984)). These early mixture

models produced fat-tailed behavior but could not capture the dynamic clustering observed

in the conditional variance of returns. SV models were designed to fit this time-varying

behavior (see Taylor (1986); Harvey et al. (1994)). They consist of a continuous mixture

of normals where their variances follow a dynamic stochastic process. However, parametric

SV models have not fully captured the asymmetries and leptokurtotic behavior present in

return data (see Gallant et al. (1997); Mahieu & Schotman (1998); Liesenfeld & Jung (2000);

Meddahi (2001); and Durham (2006)). These characteristics play an important role in the

pricing of derivatives, the measuring and managing of risk, and in portfolio selection. A

flexible nonparametric version of the SV model will be useful to risk and portfolio managers

alike.

The DPM consists of modeling the probabilities and parameters of an infinitely ordered

mixture model with the Dirichlet process prior of Ferguson (1973). As a Bayesian nonpara-

metric estimator of a unknown distribution, the DPM offers a number of attractive features;

i) the DPM spans the class of continuous distributions (Escobar & West (1995) and Ghosal

et al. (1999)), ii) the DPM is more flexible and realistic than a mixture model with a prede-

termined number of components, iii) the Dirichlet process prior helps determine the number

of mixture clusters that best fits the data, iv) as an almost surely discrete prior it is parsi-

monous, v) as a conjugate prior it is easy to use and facilitates Gibbs sampling, and vi) it

works well in practice.1

1Examples of the DPM being used in economics include Chib & Hamilton (2002), Conley et al. (2008),
Griffin & Steel (2004), Hirano (2002), Jensen (2004), Kacperczyk et al. (2005), and Tiwari et al. (1988).
Jensen (2004) uses a DPM to model the distribution of additive noise of log-squared returns while in this
paper we are concerned with the conditional distribution of returns.
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This paper provides a flexible semiparametric stochastic volatility, Dirichlet process mix-

ture model (SV-DPM) by combining a nonparametric independently identically distributed

DPM model of innovations scaled by a autoregressive model of the return’s latent conditional

variance process.2 The SV-DPM will nest within it parametric versions of the SV model. A

Markov chain Monte Carlo (MCMC) sampler is constructed to estimate the unknown pa-

rameters of the SV-DPM. Our MCMC algorithm extends the DPM samplers of West et al.

(1994) and MacEachern & Müller (1998) to the time-varying structure of the SV model.

Due to the independence between the volatility process and the DPM, a tractable efficient

posterior sampler is possible. Conditional on the value of the other unknowns, one block of

our sampler consists of drawing the parameters of the clusters, while the other blocks draw

the parameters and volatilities for the SV model’s latent volatility process (see Chib et al.

(2002); Eraker et al. (2003); Jacquier et al. (1994 2004); and Kim et al. (1998)). In addition

to providing smoothed estimates of the latent volatility process, the sampler also generates

the predictive density and likelihood of returns that fully accounts for the uncertainty in the

latent volatility process as well as the unknown return distribution.

A second contribution of the paper is a simple random block sampler of latent volatility.

We extend Fleming & Kirby (2003) block sampler of volatility by including the return data in

the proposal distribution. This results in better candidate draws to the Metropolis-Hasting

sampler resulting in lower correlation, leading to fewer sweeps being required. Our simple

random block sampler of volatility can be used for all the SV models discussed in the paper.

We evaluate our SV-DPM model against standard SV models found in the literature; the

SV model with normal innovations (SV-N) and the SV model with Student-t innovations

(SV-t). In an empirical application with daily CRSP return data over the period 1980-2006,

the predictive distribution for the SV-DPM model is very different from the parametric SV

models. The SV-DPM model’s predictive density displays negative skewness and kurtosis

whereas neither the SV-N nor SV-t do. The estimate of the variance of log-volatility is

considerably smaller for the semiparametric model indicating that some tail thickness in

conditional returns is better captured by the DPM.

The results highlight important differences in the predictive density and parameter esti-

mates of the SV-DPM model relative to parametric alternatives in a large sample setting.

Next we consider what the model can offer in a small sample analysis. We compare the

relative quality of the density forecasts of the new models by pooling the log predictive score

function (Geweke & Amisano 2008) over a shorter sample of daily return data from 2006-

2008. The models in the pool are the SV-DPM, SV-N, SV-t, and a SV-DPM model with

the means of its mixture set to zero but its variance governed by the DPM prior. This latter

2The Dirichlet process prior has been used in autoregressive time-series models (Lau & So 2008, Muller
et al. 1997) and in models with ARCH effects (Lau & Siu 2008). A time-dependent Dirichlet process is
introduced in Griffin & Steel (2006).
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model displays the largest weight of 0.70 in the optimal pooling score function. Dropping

this specification from the pool results in a decrease of 8 points in the log predictive score.

We conclude that the SV-DPM models can provide improvements in both large and small

samples.

The paper is organized as follows. The SV-DPM model is constructed in Section 2.

Section 3 present Bayesian inference for the SV-DPM model and Section 4 discusses features

of the model. An application to daily return data is found in Section 5. Section 6 contain our

conclusions and suggestions for possible future extensions for our Bayesian semiparametric

SV model. The working paper version (Jensen & Maheu 2008) includes additional details

and simulation results.

2 SV-DPM Model

We model the return of an asset with a stochastic volatility model whose unconditional

return distribution is modeled nonparametrically with the Dirichlet process mixture prior.

The stochastic volatility, Dirichlet process mixture model (SV-DPM), is defined as:

yt|fN , ht, ηt, λ
2
t

⊥∼ N
(
ηt, λ

−2
t exp{ht}

)
, (1)

ht|ht−1, δ, σ
2
v ∼ N(δht−1, σ

2
v), and ht ⊥ yt, (2)(

ηt

λ2
t

)∣∣∣∣G iid∼ G, (3)

G|G0, α ∼ DP(G0, α), (4)

G0(ηt, λ
2
t ) ≡ N

(
m, (τλ2

t )
−1

)
− Γ(v0/2, s0/2), (5)

where
⊥∼ denotes independently distributed.

At time t = 1, . . . , n the continuously compounded return from holding a financial asset

equals yt and the latent log-volatility ht follows the first-order autoregressive (AR) process

defined by Equation (2) with the AR-parameter δ. Identification of the SV-DPM model

requires the unconditional mean of ht to equal zero with its effect subsumed into λ2
t . Sta-

tionary returns are ensured by restricting δ to the interval (−1, 1). This guarantees a finite

mean and variance for the volatility process, ht. In Equation (2), ht ⊥ yt assumes away any

leverage effects (see Jacquier et al. (2004); Yu (2005); Omori et al. (2007)).3

Equation (3)-(5) places a nonparametric prior on the random unconditional return dis-

tribution. It consists of a infinite ordered mixture of normals, a basis that is dense over the

entire class of continuous distributions.4 Equation (3)-(4) assumes the mixture’s probabil-

ities and parameters ηt and λ2
t follow the Dirichlet process prior (DP) of Ferguson (1973).

3Leverage effects can included but the DPM portion of the model becomes computationally challenging.
As a result, we choose to focus on a SV model without leverage effects and leave this a topic for future
research.

4See Lo (1984), Ghosal et al. (1999) and Ghosal & van der Vaart (2007) for a discussion on the posterior
consistency of the DPM model.
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The DP prior consists of the base distribution G0, defined in Equation (5) as a conjugate con-

ditional normal-gamma distribution, and a nonnegative precision parameter α. In another

nonparametric DPM representation of the unconditional return distribution, we will use a

mixture of normals centered at zero with a DP prior placed only on the mixture probabilities

and the mixture precision parameter λ2
t . Under this alternative SV-DPM model G0 will be

the conjugate Γ(v0/2, s0/2) distribution.

Our SV-DPM model also has the Sethuraman (1994) representation:

yt|fN , ht
⊥∼

∞∑
j=1

VjfN

(
· |ηj, λ

−2
j exp{ht}

)
, (6)

where fN

(
· |ηj, λ

−2
j exp{ht}

)
is a normal density with mean ηj and variance λ−2

j exp{ht},
with the mixture weights distributed as V1 = W1, and Vj = Wj

∏j−1
s=1(1 − Ws), where Wj ∼

Beta(1, α). The mixture parameters (ηj, λ
2
j), have the same prior - the normal-gamma

distribution of Equation (5).

The discrete nature of Equation (6) implies clustering in the mixture parameters ηj

and λ2
j . Except for some pathological cases analytical expressions of the DPM’s posterior

expectations are not possible. Fortunately, there are Gibbs sampling techniques based on

Escobar & West (1995) that exploit Blackwell & MacQueen (1973) Polya urn representation

of the DP prior to integrate out the mixture probabilities Vj and draw the finite clusters

θ = (θ1, . . . , θk)
′, where k < n and θj = (ηj, λ

2
j), and cluster weights nj/n, where nj is the

number of observations assigned to the jth cluster.

The SV-DPM is more flexible than the existing class of parametric SV models in modeling

the distribution of yt. In the terminology of Müller & Quintana (2004), the SV-DPM model

“robustifies” the class of parametric SV models. By modeling the innovation distribution of

yt with a Dirichlet process mixture, diagnostics and sensitivity analysis can be conducted

by nesting parametric SV models within the SV-DPM model. For example, when V1 = 1,

Vj = 0 for j > 1, and φt ≡ (η, λ2) for t = 1, . . . , n, Equation (6) equals the the autoregressive,

stochastic volatility model of Jacquier et al. (1994). The SV-t model of Harvey et al. (1994)

with ν degrees of freedom is also nested within the SV-DPM model by setting α → ∞,

φt ≡ (0, λ2
t ) and G0(λ

2
t ) ≡ Γ(ν/2, ν/2).

Geweke & Keane (2007) also model the return of an asset as a mixture with their smoothly

mixing regression model. But unlike the infinite ordered mixture representation of the SV-

DPM model, the smoothly mixing regression model sets the number of mixture clusters a

priori. Probabilities of a particular cluster are then determined by a multinomial probit

whose covariates are a nonlinear combination of lagged and absolute returns.
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2.1 SV-DPM with Fixed Mixture Mean (SV-DPM-λ)

As previously mentioned the SV-DPM nests within it the SV-t model by setting ηt = 0 and

letting λ2
t be a draw from Γ(ν/2, ν/2) for every value of t. By applying the Dirichlet process

prior to a infinite ordered mixture of normals with random λ2
t , but fixed means equal to

zero, we obtain a parsimonious version of the SV-t model. As explained above in Equation

(6) with the Sethurman representation of the SV-DPM, the Dirichlet process prior ensures a

discrete finite number of mixture clusters. Our SV-DPM with a fixed mean will have fewer

clusters of λ2
j , j = 1, . . . , k, and, thus, less parameters than the SV-t model.

Formally, our SV-DPM with fixed mixture means of zero model (SV-DPM-λ) has the

following hiarchical representation:

yt|fN , ht, µ, λ2
t

⊥∼ N
(
µ, λ−2

t exp{ht}
)
, (7)

ht|ht−1, δ, σ
2
v ∼ N(δht−1, σ

2
v), and ht ⊥ yt, (8)

λt|G
iid∼ G, (9)

G|G0, α ∼ DP(G0, α), (10)

G0(λ
2
t ) ≡ Γ(v0/2, s0/2). (11)

3 Bayesian Inference

The inherent difficulty with all stochastic volatility models, regardless of the innovations

being modeled parametrically or nonparametrically, is the intractability of the SV’s likelihood

function. Because the log-volatility process ht enters though the variance of yt, the SV

model’s likelihood function does not have an analytical solution. Bayesian estimation of the

SV model bridges this problem by augmenting the model’s unknown parameters with the

latent volatilities and designing a hybrid Markov chain Monte Carlo algorithm (Tanner and

Wong, 1987) to sample from the joint posterior distribution, π(ψ, h|y), where ψ = (δ, σv)
′,

h = (h1, . . . , hn)′ and y = (y1, . . . , yn)′ (see Jacquier et al. (1994); Kim et al. (1998); and

Chib et al. (2002)).

In the context of the SV-DPM models the additional unknown mixture parameters φ =

(φ1, . . . , φn)′, where φt = (ηt, λ
2
t ) for the SV-DPM and φt = λ2

t for SV-DPM-λ, can be

augmented with ψ and h and included in the MCMC sampler of the posterior π(ψ, h, φ|y).

Since the likelihood function of SV models is intractable and because we do not know the

number of mixtures of the nonparametric distribution nor their values, we are precluded from

directly sampling from π(ψ, h, φ|y). Instead, we judiciously break up the augmented posterior

distribution into tractable blocks of conditional posterior distributions and design a stylized

MCMC sampler for each block. The accuracy of the sampler and its computational costs

are dependent on how the blocks of the unknowns are selected, on the level of dependency
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between the conditional distributions and random variables, and on the type of sampling

algorithm used.

The blocking scheme we design for the SV-DPM models consists of iteratively sampling

through the following conditional distributions:

1. π(ψ|h),

2. π(h|y, ψ, φ),

3. π(φ|y, h),

4. π(α|φ).

(5.) π(µ|y, h, φ)

Step (5.) is only required with SV-DPM-λ model. One full iteration through each conditional

distributions denotes a sweep of the MCMC sampler.

3.1 Parameter sampler

Conditional on knowing the value of h sampling from π(ψ|h) in Step 1 is straight forward.

Assume the priors for δ and σ2
v are independent, in other words, π(ψ) = π(δ)π(σ2

v), where the

marginal prior distributions are π(δ) ∝ N(µδ, σ
2
δ )I|δ|<1, a normal truncated to the stationary

region of δ’s parameter space, and π(σ2
v) ∼ Inv-Γ(vσ/2, sσ/2). Under this prior for ψ, draws

from δ, σ2
v |h are made by sequentially sampling from the conditional marginal distributions,

δ|h, σ2
v ∼ N(δ̂, σ̂2

v)I(|δ| < 1), where:

δ̂ = σ̂2
δ

(∑n
t=2 ht−1ht

σ2
v

+
µδ

σ2
δ

)
, σ̂2

δ =
σ2

vσ
2
δ

σ2
δ

∑n
t=2 h2

t−1 + σ2
v

,

and σ2
v |h, δ ∼ Inv-Γ((n−1+vσ)/2, [sσ +

∑n
t=2(ht−δht−1)

2]/2). If a draw from δ|h, σ2
v results

in a realization outside the stationary set, the draw of δ is discarded and sampling continues

until a value from within the parameter space is obtained.

To perform Step 5 for the SV-DPM-λ model we assume π(µ) ∼ N(m, τ). Conditional on

φ and h, we can rewrite the return equation as

yt exp{−ht/2}λt = µ exp{−ht/2}λt + zt, zt ∼ NID(0, 1).

Given the conjugate nature of π(µ), draws of µ are made from N(µ̄, τ̄) where:

µ̄ =
m/τ +

∑
t yt exp{−ht}λ2

t

1/τ +
∑

t exp{−ht}λ2
t

, τ̄ =

(
1/τ +

∑
t

exp{−ht}λ2
t

)−1

.

7



3.2 Latent volatility sampler

Drawing the latent volatilities is difficult and has attracted the attention of the profession

(see Jacquier et al. (1994); Pitt & Shephard (1997); Kim et al. (1998); Chib et al. (2002),

and Fleming & Kirby (2003)). One option for drawing the volatilities of the SV-DPM model

is to apply a element-by-element volatility sampler. Conditional on φ, the entire suite of

existing element-by-element samplers by Geweke (1994), Pitt & Shephard (1997), Kim et al.

(1998), and Jacquier et al. (2004) can be directly applied to ỹt ≡ λt(yt−ηt) for the SV-DPM

model and ỹt ≡ λt(yt − µ) for SV-DPM-λ.

Element-by-element samplers, however, are known to be very inefficient and require

throwing away a large number of initial draws of h to reduce dependency on the starting

values. Highly persistent hts also leads to strong correlation between the sampled volatilities.

As a result, a large number of sweeps must be carried out. This becomes very taxing for the

SV-DPM models since each additional sweep also requires sampling from φ|y, h.

Ideally one would like to sample from h|y, ψ, φ in a single draw (see Kim et al. (1998);

and Chib et al. (2002)). This approach eliminates the correlation between the drawn hs, but

requires approximating the log chi-square distribution of log(yt − ηt)
2 + log λ2

t with a finite

order mixture of normals. While the approximating mixtures order, weights, means and

variances are known a priori, each observations cluster assignment is not. Because we are

already modeling the unconditional return distribution nonparametrically we believe adding

another layer of complexity with another mixture of normals takes away from the DPM prior

flexibility to model the unconditional return distribution.

Fortunately, less correlated draws of the volatilities can be found by sampling random

length blocks of volatilities instead of the entire vector (see Pitt & Shephard (1997); Elerian

et al. (2001) and Fleming & Kirby (2003)). Our random length block sampler divides h

into blocks of subvectors {h(t,τ)}, where h(t,τ) = (ht, ht+1, . . . , hτ )
′, 1 ≤ t ≤ τ ≤ n, and the

length of the subvector lt = τ − t + 1 is randomly drawn from a Poisson distribution with

hyperparameter λh = 3; i.e., E[lt] = 4.5 By letting the length be random we ensure that

with each sweep different subblocks of h are sampled. Thus, helping to reduce the degree of

dependency that exists if lt were fixed. By lowering the level of correlation in the draws of

the h(t,τ), we reduce the number of sweeps needed to produce reliable estimates of the model

parameters.

Because the desired density:

π
(
h(t,τ) |y, ht−1, hτ+1, ψ, φ

)
∝ f

(
y

∣∣h(t,τ), φ, ψ
)
π

(
h(t,τ)

∣∣ ht−1, hτ+1, ψ
)
,

does not come from a standard distribution, we design a Metropolis-Hastings (MH) sampler

for the above target density where we extend the sampler of Fleming & Kirby (2003) to

5λh was selected to minimize the numerical inefficiency values of the model parameters based on several
trial runs.
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include the return data, y. Fleming & Kirby (2003) show that if the log-volatility process is

approximated by the random walk ht = ht−1 +σvvt then a reasonable proposal for the target

distribution is:

h(t,τ)|ht−1, hτ+1, σ
2
v ∼ N

(
m(t,τ), Σ(t,τ)

)
, (12)

where the lt × 1 vector m(t,τ) = (mt, . . . ,mτ )
′, and lt × lt covariance matrix Σ(t,τ) ={

σ
(t)
i,j

}
i,j=t,...,τ

, are defined by their elements:

mt+i =
(lt − i)ht−1 + (i + 1)hτ+1

lt + 1
, i = 0, . . . , lt − 1, (13)

σ
(t)
i,j = σ2

v

min(i, j)(1 + lt) − ij

lt + 1
, i = 1, . . . , lt, and, j = 1, . . . , lt. (14)

The inverse of the covariance matrix to the proposal distribution has the convenient tridi-

agonal form:

Σ−1
(t,τ) =


2/σ2

v −1/σ2
v 0 . . .

−1/σ2
v 2/σ2

v −1/σ2
v

. . .

0 −1/σ2
v 2/σ2

v
. . .

...
. . . . . . . . .

 (15)

making evaluation of the proposal density’s quadratic term (h(t,τ)−m(t,τ))
′Σ−1

(t,τ)(h(t,τ)−m(t,τ))

quick and easy.

Since the proposal distribution in Equation (12) ignores the information found in the

return vector, y(t,τ) = (yt, . . . , yτ )
′, a better proposal distribution would be one that incorpo-

rates this data. Such a distribution would help the MH sampler converge more quickly and

result in a better mixture of draws from the latent volatility’s target distribution.

Once again the desired target density is:

π(h(t,τ)|y(t,τ), ht−1, hτ+1, ψ, φ) ∝ f(y(t,τ)|h(t,τ), φ)π(h(t,τ)|ht−1, hτ+1, ψ),

≈ f(y(t,τ)|h(t,τ), φ(t,τ)) fN

(
h(t,τ)

∣∣m(t,τ), Σ(t,τ)

)
, (16)

where the random walk approximation of Fleming & Kirby (2003) has been applied to

π(h(t,τ)|ht−1, hτ+1, ψ). The likelihood function:

f(y(t,τ)|h(t,τ), φ(t,τ)) ∝ exp
{
−0.5

(
ι′h(t,τ) + ỹ2′

(t,τ) exp{−h(t,τ)}
)}

, (17)

with ι being a lt×1 vector of ones, ỹ2
(t,τ) = (ỹ2

t , . . . , ỹ
2
τ )

′, and exp{−h(t,τ)} = (exp{−ht}, . . . , exp{−hτ})′.
Replacing the exp{−h(t,τ)} vector in Equation (17) with its first-order, Taylor series ap-

proximation, exp{−h(t,τ)} ≈ D(t,τ)(ι + m(t,τ) − h(t,τ)), where the lt × lt diagonal matrix

D(t,τ) = diag{exp(−m(t,τ))}, results in:

exp
{
−0.5

(
ι′h(t,τ) + ỹ2′

(t,τ) exp{−h(t,τ)}
)}

≤ exp
{
−0.5

(
ι′ − ỹ2′

(t,τ)D(t,τ)

)
h(t,τ)

}
. (18)
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Substituting the righthand side of Equation (18) for the f(y(t,τ)|h(t,τ), φ(t,τ)) term in Equation

(16) and collecting terms in the quadratic form of h(t,τ) leads to our MH sampler’s fat-tailed

proposal density:

fSt(h(t,τ)|ζ(t,τ), Σ(t,τ), ν) ∝
[
1 + (h(t,τ) − ζ(t,τ))

′Σ−1
(t,τ)(h(t,τ) − ζ(t,τ))/ν

]−(lt+ν)/2

(19)

where fSt(h(t,τ)|ζ(t,τ), Σ(t,τ), ν) is the density of a lt-variate Student-t distribution with mean,

ζ(t,τ) = m(t,τ) − 0.5Σ(t,τ)(ι−D(t,τ)ỹ
2
(t,τ)), covariance, Σ(t,τ)ν/(ν − 2), and ν degrees of freedom

(in the empirical example of Section 5 we set ν equal to 10). For the endpoints h1 and hn,

we generate h0 and hn+1 according to the volatility dynamics and use the same proposal

density.

Given the previous sweeps MCMC draw of h(t,τ), the candidate draw, ĥ(t,τ) ∼ St(ζ(t,τ), Σ(t,τ), ν),

will be accepted as a realization from the target distribution with MH probability:

min

{
f(y(t,τ)|φ(t,τ), ĥ(t,τ)) π(ĥ(t,τ)|ht−1, hτ+1, ψ)

f(y(t,τ)|φ(t,τ), h(t,τ)) π(h(t,τ)|ht−1, hτ+1, ψ)

fSt(h(t,τ)|ζ(t,τ), Σ(t,τ), ν)

fSt(ĥ(t,τ)|ζ(t,τ), Σ(t,τ), ν)
, 1

}
,

where f(y(t,τ)|φ(t,τ), h(t,τ)) =
∏τ

j=t fN(yj|ηj, λ
−2
j exp{hj}) and:

π(h(t,τ)|ht−1, hτ+1, ψ) =
τ+1∏
j=t

exp

{
−(hj − δhj−1)

2

2σ2
v

}
.

3.3 DPM sampler

Although the the SV-DPM model in (6) implies an infinite number of clusters, for a finite

dataset each sweep of the Gibbs sampler will divide the data into a finite set of clusters.

Conditional on a draw of ψ and h, sampling from the posterior distribution φ|y, h is done

through a variant of West et al. (1994) and MacEachern & Müller (1998) Gibb samplers. To

improve the efficiency of sampling from φ|y, h, West et al. (1994) and MacEachern & Müller

(1998) appeal to draws from the equivalent distribution θ, s|y, h, where θ = (θ1, . . . , θk)
′,

k ≤ n, contains the unique elements from the vector φ. The n-length vector s contains the

indicator variables st, t = 1, . . . , n, where st = j when φt = θj, j = 1, . . . , k. Together, θ

and s completely identify φ. In the following θ(t) denotes the unique elements of φ when the

element φt is deleted. The number of clusters in θ(t) is indexed from j = 1 to K(t).

To describe the sampler for θ, s|y, h we rewrite Equation (1), the compound return equa-

tion, as:

y∗
t = ηt exp{−ht/2} + λ−1

t εt, εt
iid∼ N(0, 1), (20)

where y∗
t ≡ yt exp{−ht/2}. Draws are now made from θ, s|y∗ with the following two step

procedure:

10



Step 1. Sample s and k by drawing φt = (ηt, λ
2
t ) for t = 1, . . . , n from:

φt|y∗
t , θ

(t), s(t) ∼ c
α

α + n − 1
g(y∗

t ) G(dφt|y∗
t )

+
c

α + n − 1

K(t)∑
j=1

n
(t)
j f(y∗

t |θj) δθj
(dφt), (21)

setting st = j when φt = θj, or st = k + 1 and k = k + 1 when φt is drawn from

G(dφt|y∗
t ).

Step 2. Given the s and k from Step 1, discard φ and sample θj = (ηj, λ
2
j), j = 1, . . . , k

from:

θj|{y∗
t : st = j} ∝

∏
t:st=j

fN

(
y∗

t |ηj exp{−ht/2}, λ−2
j

)
G0(dθj). (22)

In Step 1 the probability of st equaling the jth cluster is proportional to n
(t)
j , the number

of other times the jth cluster occurs after dropping φt, times the likelihood y∗
t belongs to the

jth cluster, f(y∗
t |θj) ≡ fN(y∗

t |ηj exp{−ht/2}, λ−2
j ). On the other hand, the probability of st

being assigned to a new cluster is proportional to the predictive density:

g(y∗
t ) ≡

∫
f(y∗

t |φt) G0(dφt) dφt,

=

∫
1√

2π exp{ht}λ−2
t

exp

{
−(y∗

t − ηt exp{−ht/2})2

2λ−2
t

}
G0(dφt) dφt,

= fSt (y∗
t |m exp{−ht/2}, (exp{ht} + τ)s0/(τv0), v0) ,

= fSt(yt|m, (1 + τ exp{ht})s0/(τv0), v0), (23)

where fSt(.|m, s, v) denotes the probability density function of a Student-t distribution with

mean m, variance vs/(v − 2), and v degrees of freedom. If a new cluster is drawn, φt equals

the new cluster parameter θk+1 sampled from the posterior distribution:

G(dφt|y∗
t ) ≡

f(y∗
t |φt) G0(dφt)

g(y∗
t )

.

By the conjugate nature of the normal-gamma prior, G0, and the normality of the likelihood

function, f(y∗
t |φt), G(dφt|y∗

t ), equals the normal-gamma distribution:

λ2
t |y∗

t ∼ Γ(v/2, st/2), (24)

ηt|y∗
t , λ

2
t ∼ N

(
µt, (τ tλ

2
t )

−1
)
, (25)

where v = v0+1, st = s0+(µt−y∗
t )

2 exp{−ht}+(µt−m)2τ , with µt = τ−1
t (τm + y∗

t exp{−ht/2})
and τ t = τ + exp{−ht}.

11



Step 2 consists of generating a new draw of φ, conditional on the s and k sampled in Step

1, by sampling the unique mixture parameters, θj, j = 1, . . . , k, from the linear regression

model:

y∗
t |st, ηj, λ

2
j ∼ N(ηj exp{−ht/2}, λ−1

j ), (26)

where t ∈ {t′ : st′ = j}, and the prior of ηj and λ2
j is distributed according to the base

distribution, G0. Conjugacy between the normal-gamma base distribution, G0, and the

likelihood function in Equation (26) leads to the posterior distribution θj|y∗, s, k being the

normal-gamma distribution:

λ2
j |y∗, s, k ∼ Γ(vj/2, sj/2), (27)

ηj|y∗, s, k, λ2
j ∼ N

(
µj, (τ jλ

2
j)

−1
)
, (28)

where vj = v0 + nj, sj = s0 + sj + (µj − bj)
2
∑

t:st=j exp{−ht} + (µj − m)2τ , and µj =

τ−1
j

(
τm + bj

∑
t:st=j exp{−ht}

)
, with τ j = τ +

∑
t:st=j exp{−ht}, and bj being the ordinary

least square estimate from regressing y∗
t on exp{−ht/2} over the set of observations {t :

st = j}. Lastly, sj =
∑

t:st=j (y∗
t − bj exp{−ht/2})2; i.e., the sum of squares errors from the

regression over the same set of observations where st = j.

3.4 DPM-λ Sampler

For the SV-DPM-λ model draws of φ are again made from θ, s|y but with θ = (λ2
1, . . . , λ

2
k).

The two step DPM-λ sampler involves:

Step 1. Sampling s and k by drawing λ2
t for t = 1, . . . , n from:

λt|yt, λ
(t), s(t) ∼ c

α

α + n − 1
g(yt) G(dλ2

t |yt)

+
c

α + n − 1

K(t)∑
j=1

n
(t)
j f(yt|µ, exp{ht}λ−2

j ) δλ2
j
(dλ2

t ), (29)

where g(yt) = fSt(yt|µ, exp{ht}v0/s0, v0), and G(dλt|yt) is the distribution Γ(v̄/2, s̄t/2)

with v̄ = v0 + 1 and s̄t = s0 + (yt − µ)2/ exp{ht}.

Step 2. Given s and k from Step 1, sample λ2
j for j = 1, . . . , k, from:

λ2
j |{yt : st = j} ∝

∏
t:sj=j

fN(yt|µ, exp{ht}λ−2
j )G0(dλj) (30)

which is the Γ(v̄j/2, s̄j/2) distribution with v̄j = v0 + nj and s̄j = s0 +
∑

t:st=j(yt −
µ)2/ exp{ht}.
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3.5 α Sampler

The DPM precision parameter α is sampled for both both models with the two step algorithm

of Escobar & West (1995). Since y is conditionally independent of α when the mixture order,

k, parameter vector, φ, and state indicator vector, s, are all known, and because φ is also

conditionally independent of α when both k and s are known, the posterior of α is only

dependent on k; i.e., π(α|φ) = π(α|k) ∝ π(α)f(k|α). Assuming the gamma distribution,

Γ(a, b), where a > 0 and b > 0, is the prior for α, exact draws from π(α|k) are made by first

sampling the random variable ξ from π(ξ|α, k) ∼ Beta(α + 1, n), and secondly, sampling

α from the mixture π(α|ξ, k) ∼ πξΓ(a + k, b − ln ξ) + (1 − πξ)Γ(a + k − 1, b − ln ξ), where

πξ/(1 − πξ) = (a + k − 1)/[n(b − ln ξ)].

4 Features of the SV-DPM Model

After an initial burn-in phase, our MCMC algorithm for the SV-DPM model produces a set

of draws, {ψ(r), h(r), θ(r), s(r), α(r)}R
r=1, from the desired posterior density, π(ψ, h, θ, s, α|y).

Given these draws we can produce simulation consistent estimates of posterior quantities.

For example, the posterior mean of the AR parameter for volatility is E[δ|y] ≈ R−1
∑R

r=1 δ(r)

where this approximation can be made more precise by increasing the number of draws, R.6

In a similar way various quantities of the predictive density and likelihood can be estimated.

4.1 Predictive density and likelihood

The key quantity of interest in density estimation is the predictive density. Gelfand &

Mukhopadhyay (1995) discuss this and more generally the estimation of linear functionals

for DPM models. Drawing on their findings, the in-sample predictive posterior density for

the SV-DPM model equals:

f(Yt|y) =

∫
f(Yt|θ, ht, α) π(θ, ht, α|y) dθ dht dα, (31)

≈ 1

R

R∑
r=1

f
(
Yt|θ(r), h

(r)
t , α(r)

)
, (32)

where Yt, t = 1, . . . , n, is the unobserved random return at time t, θ(r), h
(r)
t and α(r) are the

rth draw from the posterior simulator.7 The conditional posterior density in Equation (32)

equals:

f
(
Yt

∣∣∣θ(r), h
(r)
t , α(r)

)
=

α(r)

α(r) + n
g

(
Yt|h(r)

t

)
+

k(r)∑
j=1

n
(r)
j

α(r) + n
fN

(
Yt

∣∣∣θ(r)
j , h

(r)
t

)
. (33)

6For a full treatment on MCMC methods see Robert & Casella (1999).
7To minimize notation we have omitted conditioning on n1, ..., nk which is the number of observations in

each cluster.
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For the SV-DPM model g(Yt|h(r)
t ) = fSt(Yt|m, (1+τ exp{h(r)

t })s0/(τv0), v0), and fN(Yt|θ(r)
j , h

(r)
t ) =

fN(Yt|η(r)
j , λ

−2(r)
j exp{h(r)

t }). In the SV-DPM-λ model g(Yt|h(r)
t ) = fSt(Yt|µ, exp{h(r)

t }v0/s0, v0),

and fN(Yt|θ(r)
j , h

(r)
t ) = fN(yt|µ(r), λ

−2(r)
j exp{h(r)

t }).
Equation (33) shows the flexiblility of modeling the SV return innovation distribution

with the nonparametric DPM prior. In our semiparametric SV model the conditional pre-

dictive density is a weighted mixture of normals and Student-t densities, enabling it to fit

multi-modal distributions, negatively or positively skewness distributions, and other non-

Gaussian type behavior like fat tails.

Except for the additional structure of the stochastic volatility process, the one-step-ahead,

out-of-sample predictive density for the SV-DPM model is the same as the predictive density

of Escobar & West (1995), p. 580. The SV-DPM model’s one-step-ahead predictive return

density is:

f(Yn+1|y) =

∫
f(Yn+1|θ, hn+1, α) π(θ, hn+1, α|y) dθ dhn+1 dα, (34)

≈ 1

R

R∑
r=1

f
(
Yn+1

∣∣∣θ(r), h
(r)
n+1, α

(r)
)

, (35)

where the conditional density:

f
(
Yn+1|θ(r), h

(r)
n+1, α

(r)
)

=
α(r)

α(r) + n
g

(
Yn+1|h(n)

n+1

)
+

k(r)∑
j=1

n
(r)
j

α(r) + n
fN

(
Yn+1

∣∣∣θ(r)
j , h

(r)
n+1

)
, (36)

has the same form as Equation (33) but h
(r)
n+1 is a draw from N

(
δ(r)h

(r)
n , σ

2(r)
v

)
.

The SV-DPM models time t one-step-ahead predictive likelihood equals Equation (35)

evaluated at the observed return yt with {θ(r), h
(r)
t , α(r)} representing the draws from a full

MCMC draw on the posterior θ, ht, α|y1, . . . , yt−1.

4.2 Conditional Moments

Using Equation (32) in-sample moments of the equity return can be computed. For instance,

the first and second moments of the SV-DPM models return can be approximated as:

E[Yt|y] ≈ 1

R

R∑
r=1

 α(r)

α(r) + n
m +

k(r)∑
r=1

n
(r)
i

α(r) + n
η

(r)
i

 , (37)

E[Y 2
t |y] ≈ 1

R

R∑
r=1

 α(r)

α(r) + n


(
1 + τ exp{h(r)

t }
)

s0

τ(v0 − 2)
+ m2


+

k(r)∑
i=1

n
(r)
i

α(r) + n

[
η

2(r)
i + λ

−2(r)
i exp{h(r)

t }
] , (38)
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and the returns posterior conditional variance equals Var(Yt|y) ≡ E[Y 2
t |y] − E[Yt|y]2.

4.3 Label switching

Mixture models in general suffer from what is referred to as “label switching”; a short-coming

where the mixture parameters are unidentified. In Equation (33), the conditional density is

symmetrical over the k clusters, in other words, it will equal the same value regardless of

the particular permutation of the mixture parameters, {ng(j), ηg(j), λg(j)}j=1,...,k, where g(j)

is the permutation function of k elements. As a result the mixture parameters of the jth

cluster in one sweep of the sampler may be assigned a different cluster label, g(j) 6= j, during

another sweep of the sampler (see Richardson & Green (1997)). The DPM clusters, therefore,

cannot be used to identify time periods where markets are in a particular state such as an

expansionary or recessionary economic state. Since our only purpose for using the DPM is to

model the distribution of εt nonparametrically, label switching will not present a problem in

making inferences concerning the parameters or forecasts of the stochastic volatility model.

For a more detailed discussion of this in the context of finite mixture models see Geweke

(2007) and Frühwirth-Schnatter (2006).

5 Empirical example

In this section we report the results from applying the SV-DPM model to daily stock return

data. More specifically, we apply the SV-DPM and SV-DPM-λ models and the MCMC sam-

pler developed in Section 3 to 6815 compounded daily returns from the Center for Research in

Security Prices (CRSP) value-weighted portfolio index over the trading days January 2, 1980

to December 29, 2006. Figure 1 plots the percentage returns (the return series multiplied

by 100). CRSP portfolio returns average 0.0529 during this time period with a variance of

0.9225. Non-Gaussian behavior is seen in the return processes significantly negative skewness

of -0.9837 and highly elevated kurtosis measure of 22.9538.

In addition to modeling the CRSP returns with the SV-DPM, we also apply a stochastic

volatility model with normal innovations (SV-N):

yt = µ + exp(ht/2)zt, zt ∼ N(0, 1), (39)

ht = γ + δht−1 + σvvt, vt ∼ N(0, 1).

Priors are µ ∼ N(0, 0.1), γ ∼ N(0, 100), δ ∼ N(0, 100)I|δ|<1, and σ2
v ∼ Inv-Γ(10/2, 0.5/2).

We also estimate a stochastic volatility model with Student-t return innovations (SV-t):

yt = µ + exp(ht/2)zt, zt ∼ St(0, (ν − 2)/ν, ν), (40)

ht = γ + δht−1 + σvvt, vt ∼ N(0, 1),

15



where St(0, (ν−2)/ν, ν) is a Student-t density standardized to have variance 1, and ν degrees

of freedom. Priors are the same as in the SV-N model with ν ∼ U(2, 100).

The priors for the SV-DPM and SV-DPM-λ models are chosen to match the parametric

SV models with δ ∼ N(0, 100)I|δ|<1, σ
2
v ∼ Inv-Γ(10/2, 0.5/2). The specific DPM prior is

the base distribution, G0 ∼ N(0, (10λ2
t )

−1) − Γ(10/2, 10/2), and precision parameter prior,

α ∼ Γ(2, 8).

Estimation of the SV-N and SV-t models is carried out with the hybrid Gibbs, Metropolis-

Hastings sampler of Jacquier et al. (2004) except that we use the random block sampler of

Section 3.2 for h. Sampling of the degree of freedom parameter for the SV-t uses a tailored

proposal density based on a quadratic approximation of the conditional posterior density at

its mode.

To eliminate any dependencies on the initial volatilities 1,000 sweeps of the step-by-step

volatility sampler of Kim et al. (1998) is carried out for each model while holding the initial

parameter values constant. 30,000 sweeps of the sampler for the SV-N and SV-t model are

then conducted of which we keep the last 10,000 draws for inference of the two models.

We increase the efficiency of the SV-DPM sampler and reduce the samplers total com-

puting time by respectively taking every tenth draw while running three independent chains

simultaneously (consisting of 110,000 sweeps each) of the SV-DPM model’s sampler. To

reduce the samplers dependency on the starting parameters and volatilities, the first 1000

thinned draws of each chain are discarded, leaving a total of 30,000 thinned draws for in-

ference (10,000 from each chain). Independence between the chains is ensured by using a

different random number generator for each chain. The three random number generators

are the maximally equidistributed combined Tausworthe generator by L’Ecuyer (1999), a

variant of the twisted generalized feedback shift-register algorithm known as the Mersenne

Twister generator by Matsumoto & Nishimura (1998), and a lagged-fibonacci generator by

Ziff (1998). Moreover, a different set of starting values is used with each chain; one is ini-

tialized at δ = 0.9, σ2
v = 0.05 and h = 0, another with δ = 0.95, σ2

v = 0.02 and h = ln y2,

and lastly, δ = 0.1, σ2
v = 0.01 and h = 1/(1 − δ).

Table 1 reports the MCMC sample means and standard deviations for the parameters

of the SV-DPM, SV-t, and SV-N models. We report the observed serial correlation in the

draws of the SV-DPM models parameters with the inefficiency measure:

1 + 2
L∑

τ=1

L − τ

L
ρ(τ),

where ρ(·) is the sample autocorrelation function of the parameter draws, L = 1000 is the

largest lag at which the autocorrelation function is computed. The inefficiency measure

quantifies the loss associated with using correlated draws from the sampler, as opposed

to truely independent draws, in computing the posterior mean. The numerical standard
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error equals the square root of the product between the inefficiency measure and the sample

variance of the draws (Geweke (1992)).

The posterior estimate of the variance of volatility parameter, σ2
v , is the smallest with

the SV-DPM model. The posterior estimate of σ2
v is 0.0103 with a standard deviation of

0.0018. This mean and standard deviation for σ2
v is substantially smaller than the SV-N

models mean of 0.0276 and standard deviation of 0.004. For the SV-N model this is to be

expected, given that the SV-N model requires a larger value of σ2
v in order to capture the

excess kurtosis found in the return data.

Excess kurtosis is still, however, unaccounted for by the SV-N return process (Bakshi

et al. (1997), Chib et al. (2002)). A better characterization of the kurtosis is found in the

SV-DPM and SV-t models where the distribution of the return process is fit by a fat-tailed

mixture of normals. Mixture models assign volatile time periods to draws from the tail of

the return distribution rather than to a more volatile volatility process. As a result σ2
v in the

SV-t model is smaller in value than in the SV-N model, but slightly larger than the SV-DPM,

with a mean and standard deviation of 0.0154 and 0.0023. In Fig. 2 the posterior densities

of σ2
v are consistent with these observations. Notice the upper tail of the SV-DPM model’s

density for σ2
v barely overlaps with the lower tail of the SV-N model’s density, whereas there

is considerable overlap with the lower tail of the SV-t model.

Dynamic behavior in volatility as captured by the AR-parameter δ is nearly indistinguish-

able between the three SV models. First-order dynamics in the volatility of the SV-DPM

model is precisely estimated at 0.9887 with the tight posterior standard deviation of 0.0026.

This estimate of δ is only slightly smaller than the SV-t estimate of 0.9878, but with the

same posterior standard deviation. The volatility in the SV-N model reverts to its mean at

a slightly faster pace with a posterior estimate of δ equal to 0.9795.

For the daily portfolio return the average SV-DPM mixture order is k = 7.16 and suggests

that the SV-DPM not only captures the daily stock returns leptokurtotic behavior, but its

skewness too. Because of the SV-N models symmetrical Gaussian innovations, it is unable to

account for this asymmetrical behavior. Instead, it compensates for this skewness behavior

by increasing its level of volatility during those periods where volatile is highest.

This increase in the volatility of the SV-N and SV-t model relative to the SV-DPM

model is apparent in Figure 3 where the SV-DPM posterior conditional variance of returns

is plotted in Panel (a) and the SV-DPM models difference from the conditional variances of

the SV-N model are graphed in Panel (b) and the SV-t model in Panel (c). During those

periods where the SV-DPM models conditional daily variance is greater than 2, the SV-N

conditional variance is on the order of 2 to 14 points larger. The conditional variances of the

SV-t model, while still greater than the SV-DPM model, only range from approximately 1

to 4 points larger than the SV-DPM variances.

As for the behavior of skewness, because of their symmetrical distribution neither the
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SV-N nor SV-t model is able to capture the skewness of daily returns. This is borne out

in the one day ahead, out of sample, predictive density plots of Figure 4. The SV-DPM

predictive density is clearly different from the SV-N or SV-t models. For example, the SV-

DPM predictive density is more centered around 0 and exhibits the asymmetry associated

with the negative skewness of returns. In addition, the log-predictive densities plots of

Figure 5 shows the SV-DPM producing fatter tails than either of the SV-N or SV-t model.

5.1 Robustness to DP hyperparameters

Using the same empirical data set of CRSP portfolio returns we estimate the SV-DPM

model under five different prior specifications of π(α) ≡ Γ(a, b) and G0 ≡ N(m, (τλ2
t )

−1) −
Γ(v0/2, s0/2) to test the robustness of the posterior estimates of the SV-DPM model to

different priors. Table 2 reports these robustness findings for the posterior estimates of the

SV-DPM model for the different priors.

To determine the impact the prior of the precision parameter has on the estimates of the

SV-DPM model we evaluate the model under the prior specification:

• Prior 2 : π(α) ∼ Γ(0.1, 20),

where E[α] = 0.005 and Var[α] = 0.00025, and leave the other priors exactly as before. These

hyperparameter values cause the prior distribution for α to be more tightly distributed and

centered closer to zero than did the original prior. As a result the posterior estimate of α

is found to be closer to zero at 0.1217. Since a smaller value for α lowers the probability

of selecting a new cluster from the Polya urn, under Prior 2 the estimate of k is smaller at

4.4465. Though the mixture representation for the distribution of returns now on average

consists of fewer clusters, notice that the posterior estimates of the volatility parameters, δ

and σ2
v , and their standard deviations are nearly the same as under the original prior. The

only difference being the estimate of σ2
v is slightly larger at 0.0112 with a standard deviation

of 0.0019.

In the other four priors we allow the DP prior’s base distribution N(m, (τλ2
t )

−1) −
Γ(v0/2, s0/2) to change in order to explore how sensitive the posterior estimates of the

SV-DPM model are to prior’s mean and spread. The four priors are:

• Prior 3 : G0 ≡ N(0, (5 ∗ λ2)−1) − Γ(10/2, 10/2),
• Prior 4 : G0 ≡ N(0, (15 ∗ λ2)−1) − Γ(10/2, 10/2),
• Prior 5 : G0 ≡ N(0, (10 ∗ λ2)−1) − Γ(5/2, 5/2),
• Prior 6 : G0 ≡ N(0, (10 ∗ λ2)−1) − Γ(15/2, 15/2),

where Prior 3 & 4 change the variance of the mixture mean, η, and Prior 5 & 6 tests

for the robustness to changes in the prior of the mixture variance, λ2. In the posterior

results reported in Table 2 neither of the changes in the hyperparameters to η nor λ2 base
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distribution affect the posterior estimates of the SV-DPM model. Under each of the four

priors the estimates of δ are the same up to the third decimal place at 0.978, and the

estimates of σ2
v are equal out to the second decimal place at 0.01. Subtle differences between

the estimates of α can be found under the different priors, with the posterior estimates α

ranging from 0.4730 under Prior 4 to 0.4881 for the original prior. Similar results are found

for k, where Prior 4 produces an estimate of k = 6.9221, while k = 7.1644 for Prior 1.

5.2 Robustness to number of draws

Because the DPM sampler is a step-by-step algorithm, making 30,000 thinned draws from the

SV-DPM model requires a considerable number of computing cycles. This is understandable

given the level of inefficiency associated with the posterior draws of the SV-DPM model. It

would, however, be preferable if a fewer number of draws could be used in making inference

concerning the SV-DPM model. To determine if this is possible, the SV-DPM model for the

CRSP portfolio return data is reestimated with a MCMC sample of 10,000 thinned draws.

The posterior results of the SV-DPM model from these 10,000 draws are reported in Table

3. The table also includes the results from Table 1 where 30,000 draws were made. Notice

that there is little difference between the posterior means of the parameters. The volatility

parameters, δ and σ2
v , have comparable posterior means and exactly the same standard

deviations. The DP parameters α and k are also very similar.

5.3 Model comparison

The previous large sample analysis highlighted features of the predictive density that the

standard parametric SV models could not account for. In this section we investigate the

forecasting value of the predictive densites of the SV-DPM specifications in a small sample

setting using 755 daily CRSP returns over the period January 3, 2006 to December 31, 2008.

Given the existing results on the good performance of the basic parametric SV models we

focus on the relative value that the new models contribute to density forecasts. To do this

we use the model pooling approach of Geweke & Amisano (2008). This approach recognizes

that none of the models may be the true DGP and advocates a linear prediction pool based

on the log score function (predictive likelihood) from a set of models.

Given a set of predictive densities {f(yt|y1, . . . , yt−1,Mi)}K
i=1 from the set of models

{Mi}K
i=1 consider the combined predictive density of the form:

K∑
i=1

wif(yt|y1, . . . , yt−1,Mi),
K∑

i=1

wi = 1, wi ≥ 0, i = 1, ..., K. (41)

Weights are chosen to maximize the log pooled, predictive score function:

max
wi,i=1,...,K

τ2∑
t=τ1

log

[
K∑

i=1

wif(yt|y1, . . . , yt−1,Mi)

]
, (42)
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where the predictive densities are evaluated at the realized data point yt.

For each of the models we run a MCMC simulation consisting of 11,000 draws of which

the first 1,000 draws are thrown away to obtain 10,000 posterior draws conditional on the

return data up to time period t−1; i.e., y1, ..., yt−1. These draws are then used to estimate the

predictive likelihood f(yt|y1, . . . , yt−1, Mi).
8 For the SV-DPM model the predictive likelihood

is estimated using Equation (35). MCMC draws of this size are carried out for each SV model

and data set y1, . . . , yt−1 where t = τ1, . . . , τ2. Given a history of predictive likelihood values

for each model we can estimate the weights in Equation (42).

The pool of models considered are: SV-DPM; SV-DPM-λ; SV-t and SV-N; i.e., K = 4.

Recall that in the SV-DPM-λ model of Section 2.1 only the return precision parameter λ2
t

is governed by the DP prior and the intercept is assumed to be the unknown constant µ.

Conditional on return data back to January 3, 2006 (t = 1), we compute the log pooled

predictive score function over the period of May 30, 2006 (τ1 = 105) to December 31, 2008

(τ2 = 755).9

Table 4 displays the optimal log score and the weights for the linear pool of models.

Using all four models the log score is −1080.91. The SV-DPM-λ model dominates with a

weight of 0.71 followed by the SV-t model with 0.21. Each of the subsequent table entries

drop one of the models from the pool to assess the deleted models relative importance

towards forecasting as measured by the models contribution to the log score. As long as

the SV-DPM-λ model is in the pool a similar log score is achieved but once this model is

dropped the log score declines by over 8 points. The SV-DPM-λ nests both the SV-N and

the SV-t model. The SV-t models a distinct precision parameter value for each observation,

whereas the SV-DPM-λ models prior leads to a clustering of distinct precision parameter

values that are fewer in number than the sample size.10 The zero or near zero weight and

lack of contribution to the pooled predictive likelihood function by the SV-DPM model is

likely due to the fact that to learn about asymmetry in the return distribution requires more

observations than our data series of 755 returns affords.

6 Conclusion

This paper proposed a new Bayesian, semiparametric, autoregressive, stochastic volatility

model where the conditional return distribution is modeled nonparametrically with an in-

8Because of the large number of predictive likelihoods that are required in the pooled predictive score
function, the number of MCMC draws is smaller than the sampling performed in Section 5. For the largest
series (745 observations) the SV-DPM sampler’s compiled C-code takes just over 6 minutes on a 3 GHz Intel
Xeon quad-core computer running Linux.

9We decrease the computing time involved in calculating the pooled predictive score function by dis-
tributing the calculation of each models 650 predictive likelihoods, f(yt|y1, . . . , yt−1), t = 105, . . . , 755, to
25-30 separate processors each using the same initial values.

10The posterior mean of the number of clusters is 8.
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finite ordered mixture of normal distributions. The unknown number of mixture clusters,

their probability of occurrence, and their mean and variance are flexibly modeled a prior

with a Dirichlet process prior. Conditional on a draw of the log-volatilities, an efficient

MCMC algorithm has been constructed to produce posterior draws of the unknown number

of mixture clusters and the clusters mean and variance. The sampler has been stress tested

against existing parametric stochastic volatility models on real world daily return data. The

semiparametric stochastic volatility model performed well on empirical return data, fitting

both the negative skewness and leptokurtotic properties of returns, while still capturing the

time-varying conditional heteroskedastic dynamics of returns. The semiparametric mod-

els increased flexibility and robustness to non-Gaussian behavior and its superior forecasts

makes it an appealing specification for risk and portfolio managers. The SV-DPM models

can provide improvements in both large and small samples.

Important questions remain to be answered with the Bayesian semiparametric, stochastic

volatility model. For instance, is it possible to attach structural meaning to the mixture

parameters, such as a particular mixture cluster being identified with jumps in returns or to

time periods where the economy is in a particular state of the business cycle? Placing such

structural meaning on the mixture clusters is possible by assigning a prior rank ordering

to the clusters within the Dirichlet process prior. Doing so overcomes the label switching

problem discussed earlier.

Another area of potential research is that of leverage effects. Leverage effects have been

used effectively with symmetrically distributed stochastic volatility models to produce neg-

ative skewness in returns. A natural question one could ask is whether it is possible to

introduce leverage effects into this paper’s semiparametric, stochastic volatility model. If

so, how do leverage effects affect the skewness of the mixture distribution. These and other

interesting questions remain for future research.
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Table 1: Posterior estimates for daily returns of the CRSP value-weighted portfolio from Jan
2, 1980 to Dec 29, 2006 (6815 observations, 30,000 thinned draws from three independent
chains of the SV-DPM sampling algorithm where every tenth draw is retained and the first
1,000 thinned draws from each chain are discarded).

SV-DPM SV-t SV-N

mean stdev ineff mean stdev mean stdev

µ 0.0786 0.0084 0.0793 0.0086
γ -0.0087 0.0023 -0.0106 0.0028
δ 0.9877 0.0026 10.625 0.9878 0.0026 0.9795 0.0037
σ2

v 0.0103 0.0018 72.288 0.0154 0.0023 0.0276 0.0040
ν 9.9149 1.3035
α 0.4881 0.2357 28.474
k 7.1644 2.5996 57.765

ineff is the inefficiency factor.

SV-DPM: yt|φt, ht ∼ N(ηt, λ
−2
t exp(ht)), φt|G ∼ G, G|α,G0 ∼ DP (G0, α)

ht = δht−1 + σvvt, vt ∼ N(0, 1)
SV-t: yt = µ + exp(ht/2)zt, ht = γ + δht−1 + σvvt, zt ∼ tν(0, 1), vt ∼ N(0, 1)
SV-N: yt = µ + exp(ht/2)zt, ht = γ + δht−1 + σvvt, zt ∼ N(0, 1), vt ∼ N(0, 1)
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Table 2: Robust sensitivity analysis of the SV-DPM to different precision parameter and
base distribution priors for daily returns of the value-weighted CRSP portfolio from Jan
2, 1980 to Dec 29, 2006 (6815 observations, 30,000 thinned draws from three independent
chains of the SV-DPM sampling algorithm where every tenth draw is retained and the first
1,000 thinned draws from each chain are discarded).

Prior 2 Prior 3 Prior 4 Prior 5 Prior 6

δ 0.9877 0.9879 0.9877 0.9878 0.9876
(0.0026) (0.0026) (0.0026) (0.0026) (0.0027)

σ2
v 0.0112 0.0103 0.0104 0.0115 0.0100

(0.0019) (0.0017) (0.0018) (0.0019) (0.0023)
α 0.1217 0.4733 0.4730 0.4827 0.4837

(0.0080) (0.2300) (0.2278) (0.2253) (0.2490)
k 4.4465 6.9364 6.9221 7.0739 7.100

(1.3456) (2.4933) (2.4716) (2.3095) (2.9155)

The posterior mean and standard deviation (in parenthesis) are reported.

SV-DPM: yt|φt, ht ∼ N(ηt, λ
−2
t exp(ht)), φt|G ∼ G, G|α,G0 ∼ DP (G0, α)

ht = δht−1 + σvvt, vt ∼ N(0, 1)

Table 3: Robust sensitivity analysis of the SV-DPM to the number of MCMC draws for
daily returns of the value-weighted CRSP portfolio from Jan 2, 1980 to Dec 29, 2006 (6815
observations). T thinned MCMC draws where every tenth draw is retained and the first
1,000 thinned draws are discarded.

T 30,000 10,000
mean stdev ineff mean stdev ineff

δ 0.9877 0.0026 10.625 0.9878 0.0026 15.538
σ2

v 0.0103 0.0018 72.288 0.0102 0.0018 65.403
α 0.4881 0.2357 28.474 0.4961 0.2418 39.304
k 7.1644 2.5996 57.765 7.3002 2.7332 78.165

ineff is the inefficiency factor.

SV-DPM: yt|φt, ht ∼ N(ηt, λ
−2
t exp(ht)), φt|G ∼ G, G|α,G0 ∼ DP (G0, α)

ht = δht−1 + σvvt, vt ∼ N(0, 1)
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Table 4: The optimal pooled log predictive score function maxw f(w) and optimal weight
vector w∗ = arg max f where f(w) ≡

∑
t log[

∑
i wif(yt|y1, . . . , yt−1,Mi)], with t summing

over the weighted combination of each models one-day-ahead predictive likelihoods from
May 30, 2006 (t = 105) to Dec 31, 2008 (t = 755), conditional on return data back to Jan. 3,
2006 (t = 1). The x denotes a SV model being dropped from the predictive pool of models.

log-score w∗
DPM w∗

DPM−λ w∗
SV −t w∗

SV −N

-1080.91 0 0.7061 0.2069 0.0870
-1080.93 0 0.7192 0.2808 x
-1081.06 0 0.7246 x 0.2754
-1089.55 0.1292 x 0.4873 0.3836
-1080.91 x 0.7061 0.2069 0.0870

SV-DPM: yt|ηt, λt, ht ∼ N(ηt, λ
−2
t exp(ht)), (ηt, λ

2
t )

′|G ∼ DP (G0, α),
G0(ηt, λ

2
t ) ≡ N

(
0, (10λ2

t )
−1

)
− Γ(10/2, 10/2), α ∼ Γ(2, 8)

SV-DPM-λ: yt|λt, ht ∼ N(µ, λ−2
t exp(ht)), λt|G ∼ DP (G0, α), G0(λ2

t ) ≡ Γ(10/2, 10/2),
α ∼ Γ(2, 8)

ht = δht−1 + σvvt, vt ∼ N(0, 1)
SV-t: yt = µ + exp(ht/2)zt, ht = γ + δht−1 + σvvt, zt ∼ tν(0, 1), vt ∼ N(0, 1)
SV-N: yt = µ + exp(ht/2)zt, ht = γ + δht−1 + σvvt, zt ∼ N(0, 1), vt ∼ N(0, 1)
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Figure 1: CRSP value-weighted portfolio index returns from Jan. 2, 1980 - Dec. 29, 2006
(n = 6815).
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Figure 2: Posterior density of σ2
v for the SV-DPM (solid line), SV-t (dashed-dot line), and

SV-N (dashed line) model as applied to the value-weighted CRSP portfolio daily return data.
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Figure 3: The SV-DPM posterior variance of returns, Var[Yt|y], for the value-weighted CRSP
index returns (Panel a), and its difference from the SV-N (Panel b) and SV-t (Panel c) model.
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Figure 4: Predictive density, f(Yn+1|y), of the SV-DPM, SV-N, and SV-t model for the
value-weighted CRSP portfolio daily return.
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Figure 5: Log-predictive density, ln f(Yn+1|y), of the SV-DPM, SV-N, and SV-t model for
the value-weighted CRSP portfolio daily return.
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