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Abstract

The recent financial crisis has raised numerous questions about the accuracy of

value-at-risk (VaR) as a tool to quantify extreme losses. In this paper we present

empirical evidence from assessing the out-of-sample performance and robustness

of VaR before and during the recent financial crisis with respect to the choice of

sampling window, return distributional assumptions and stochastic properties of

the underlying financial assets. Moreover we develop a new data driven approach

that is based on the principle of optimal combination and that provides robust and

precise VaR forecasts for periods when they are needed most, such as the recent

financial crisis.
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1 Introduction

The current worldwide financial crisis has revealed major deficiencies in the existent fi-

nancial risk measures.1 Although considerable progress has been made over the last

decade to quantify financial risks by means of elaborate econometric tools, there is little

evidence on their performance during turbulent times similar to the recent financial cri-

sis. In general, risk models are based on a set of assumptions which may be more or less

carefully validated most of the time, but may contribute to an increase in systemic risk if

the model assumptions fail to be true for other (out-of-sample) time periods. Although

comparative studies on the performance of the risk models used in practice or proposed

in academic journals are not new, a systematic analysis their limitations such that users

are able to assess the model risk of using different approaches is still missing.

In this paper we provide evidence on some dimensions of the riskiness of risk models. The

focus of our interest lies on the Value at Risk (VaR) as a major tool to assess financial-

market risks. As pointed out by Jorion (2007) in the preface of the latest edition of his

monograph on the Value at Risk, the VaR methodology was developed as a response to

the financial disasters of the early 1990s. In particular, following the 1995 amendment

of the Basel accord, whereby banks are allowed to use their own internal models, the

search for the ”best” VaR approach has become of practical importance for quantita-

tive risk management. Initially developed to assess market risks, the ”VaR is now being

used to control and manage risk actively, well beyond derivatives” (Jorion (2007), p.vii)

including credit risk and operational risk. Yet, experience with the performance of the

VaR methodology in rough times was missing until the subprime crisis started to shake

the world financial markets. Obviously the problem of lack of empirical experience is

most severe for portfolios consisting of new financial products, for which by definition the

number of observations is limited.

1For example, JP Chase reported 5, Credit Suisse 7 and UBS 16 exceedances based on one-day-ahead
VaR forecasts in the 3rd quarter of 2007, which requires a maximum of 0.63 exceedances for a probability
level of 1% (Jorion (2009)).
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The Basel rules require that risk models are to be estimated on historical data sam-

pled over a period of at least 250 trading days. No explicit rules are given on how the

sampling period should be chosen. However, the choice of the sampling period strongly

affects the mean squared prediction error of econometric estimators in the presence of

structural breaks. It is well established that post-break sampling periods are suboptimal

in terms of out-of-sample forecasting performance for mean predictions. As shown by

Pesaran and Timmermann (2007) for the linear model, pre-break information creates a

bias in prediction but improves the efficiency of estimates, so that the optimal sampling

window generally includes also pre-break information. This argument is likely to be even

more valid for VaR predictions. By definition small sampling windows are less likely to

capture extreme outcomes, such that the valuable information on the tails of the return

distribution is missing.

Driven by the suspicion that the VaR could potentially embody high model risk, we

provide here what Summers (1991) calls some ”successful pieces of pragmatic empirical

work”. We show for a fairly large range of assets, how unstable VaR estimates are, not

only with respect to the pure choice of the risk model, but also concerning the choice of

the underlying econometric model and the choice of the appropriate sampling period. In

particular, we show that VaR estimates generate too many exceedances if the sampling

period is too short and that the inclusion of sample information from previous crises is

absolutely necessary.

Many of the earlier studies on alternative econometric approaches to estimate the VaR

perform horse races. They differ in many dimensions related to the choice of the models

under investigation, the assets or portfolios analyzed, evaluation criteria and sample size.

Kuester et al. (2006) consider the out-of-sample performance of GARCH based mod-

els using the test of unconditional and conditional coverage proposed by Christoffersen

(1998) as well as a dynamic quantile test. For their horse race they use the daily data

of NASDAQ Composite Index for a period of more than 30 years, but they restrict their
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analysis to a rolling sampling window of size T=1000 days for each estimate, correspond-

ing to roughly four years of trading.

McAleer and da Veiga (2008) concentrate on VaR predictions of an equally weighted

portfolio containing S&P500, FTSE100, CAC40 and SMI with a rolling window of T =

2000 days, where the variance of the portfolio is computed from estimates of different

multivariate GARCH models. Besides the number of exceedances, their benchmark cri-

teria for model comparison is the mean daily capital charge implied by each model.

The question whether information on intraday variation in returns is informative for VaR

estimation is taken up in Giot and Laurent (2004), who compare one-day-ahead forecasts

of VaR’s based on a long memory skewed Student model for the realized volatility es-

timates with those from a skewed Student APARCH on daily returns and the standard

RiskMetrics approach. Their comparison is based on two exchange rates (YEN-USD

and DEM-USD) and two stock indices (S&P500, CAC40). They explicitly distinguish

between the forecasting performance of VaR of long and short positions. Unfortunately,

the authors use different sample sizes and sample periods, so that their empirical findings

cannot be compared across assets.

Most of the horse races are applied to popular assets (large-cap stock, major indices

or currencies) and data stemming from calm periods or developed markets. A notable

exception is Gençay and Selçuk (2004) who look at daily stock price indices from eight

different emerging markets. They argue that emerging market economies differ fundamen-

tally from developed economies with respect to changes in the dynamics of the economy.

The relative performance of different approaches compared in their study depends among

others on the quantile of interest and the tail of the distribution.

Very typical for the last fraction of horse races reported in the academic literature is

the concentration on one day forecasting horizons although Basel II requires backtesting
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for a horizon of ten trading days. Thus potential misspecification of the dynamics of the

risk models is likely to play a larger role, when it comes to forecast over a ten day horizon.

In this paper we present a horse race in a different, but very simple dimension. We pro-

vide a list of stylized facts on how well the VaR worked in various time periods, especially

before and during the recent financial crisis, for different securities and popular models.

In the spirit of a meta study we summarize systematic patterns of VaR predictions based

on different model specifications and estimation windows. The goal of this exercise is to

provide more insights into the applicability of these approaches in different world settings.

We show that the performance of standard VaR estimates differs among types of stocks

(with small, middle and large market capitalization), subject to the choice of volatility

model or distributional assumption.

We provide empirical evidence that using a sampling window of the last two years of

data is sufficient to asses the downward risks before the crisis, while during the crisis the

estimation window should incorporate also information on past extreme events (e.g. the

market crash from 1987) in order to improve the accuracy of the standard VaR methods.

Particulary, VaR estimates computed from General Extreme Value (GEV) distributed

residuals, standardized by GARCH conditional volatilities estimated on windows start-

ing before the crash of 1987, generate during the current crisis independent failure rates,

which according to the Basel II rules are situated in the ”green zone”.

As a result of the performance variability of standard VaR estimates with respect to the

model choice, distributional assumptions or the choice of estimation windows, we pro-

pose two new procedures of estimating financial losses based on the principle of optimal

forecast combinations, which already has been applied to improve the accuracy of mean

forecasts (Timmermann (2005)). Giacomini and Komunjer (2005) make reference to this

principle and empirically apply it to VaR estimates in the context of deriving encom-

passing tests for comparing conditional quantile forecasts. Different from their study, we
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directly apply the optimal combination procedure to improve the accuracy of individual

standard VaR estimates, according to the Basel II rules and to the independence principle.

The first procedure finds the optimal combination by minimizing the conditional coverage

tests on the failure rates stemming from the VaR combinations. The second procedure

minimizes the distance between population and empirical quantiles, by means of quantile

regression approaches. We show that optimal combinations of VaR estimates improve

the performance of stand-alone estimates during the periods when they are needed most,

such as the recent financial crisis.

The outline of the paper is as follows: Section 2 introduces the standard VaR approaches

and outlines the set-up of the meta study, whose results are presented in Section 3. Sec-

tion 4 describes theoretically the new procedures of optimally combining VaR estimates

and reports their empirical results. Finally, Section 5 summarizes the main results and

concludes the paper.

2 Set-Up of the Meta Study

The Value at Risk is defined to be the worst possible loss from an investment over a target

horizon and for a given probability level (Crouhy et al., 2001). We focus in this paper on

estimating the VaR at time t for a long position over time horizon h with probability p

(V aRt(p, h)), which is formally defined to be given by:

p = Pr [∆Vt+h(h) ≤ V aRt(p, h)] = F (V aRt(p, h)),

where ∆Vt+h(h) is the change in the value of a long position Vt from t to t + h and

F (x) is the cumulative distribution function (cdf) of ∆Vt+h(h). Furthermore, given that

∆Vt+h(h) can be defined as a location scale process conditional on an information set Ft:

∆Vt+h(h) = E [∆Vt+h(h)|Ft] + εt+h = µt+h|t + σt+h|tzt+h, (2.1)
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where µt+h|t is the expected change in the value Vt from t to t + h given the information

set up to t, εt+h is the error term (shock, surprise) and zt has a zero-location, unit-scale

probability density fZ(·), we can then derive the VaR conditional on the information set

Ft to be:

V aRt+h|t(p) = µt+h|t + Qp(Z)σt+h|t, (2.2)

where Qp(Z) is the p-th quantile of zt.

According to the Basel II rules, financial institutions are required to hold capital (the

Value at Risk) that is sufficient to cover losses on the trading book over a ten days hold-

ing period for 99% of the times (h = 10 and p = 0.01). Interestingly, the horse races

presented in academic journals usually refer to a one day forecasting horizon. However,

the choice of the forecasting horizon may seriously bias the results if the dynamics of the

underlying econometric model is misspecified. Early empirical evidence is provided by

Christoffersen and Diebold (2000), who show that volatility forecast ability varies with

horizons and asset classes.

Furthermore, the rules of Basel Committee (1996) allow the financial institutions to

freely choose the model specification for estimating µt+h|t, σt+h|t and fZ(·) as long as the

resulting VaR measures have a good predictive performance according to some backtesting

rules. These rules imply the computation of a hit sequence, defined by:

Ht+h = 1l (∆Vt+h(h) < V̂ aRt+h|t(p)) t = T + 1, T + 2, . . . T + S, (2.3)

which follows a binomial distribution with parameter p.

The rules imposed by Basel Committee (1996) for assessing the performance of the inter-

nal models are designed only for holding periods of one day (h = 1) and imply testing the

null hypothesis H0 : E[Ht] = p, known in the literature as the unconditional coverage test

(Christoffersen (2003)). Based on the results of this test and accounting for the Type
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I error rate, the Basel Committee (1996) came with further regulations regarding the

failure rate acceptance for a bank before being penalized: banks with failure rates in the

95% quantile of the Bernoulli distribution with parameters p and S are not penalized and

are said to be in the ”green zone”; banks with failure rates between the 95% and 99%

quantiles lie in the ”yellow zone” and are progressively penalized; and banks with failure

rates outside the 99% quantile are automatically penalized and are classified as being in

the ”red zone”.

Furthermore, Christoffersen (1998) develops an approach which tests the degree of ”clus-

tering” within the hit sequence as a result of time variation in the data. This approach,

known in the literature as theindependence test, exploits the martingale property of Ht+h

and has as null hypothesis the statement that the probability of incurring a failure in time

t + 1 is independent of incurring a failure in time t. One can assess the ability of a VaR

model to provide the correct conditional coverage probability by testing simultaneously

the two null hypotheses from the unconditional coverage and independence tests.

Our meta-study is designed to assess the quality of standard VaR estimates at differ-

ent dimensions: asset choice, model choice, distributional assumption and estimation

window, during the recent financial crisis. Given that the evaluation period implies a

series of negative extreme events, we find proper to focus on assessing the performance

of standard VaR estimates at p = 0.01, which is in line with the Basel II requirements.

Regarding the asset choice, we consider three indices built on 30 randomly chosen stocks

from the Dow Jones U.S. Small, Middle and respectively Large cap-indices2. In this way,

we aim at verifying the stability of standard VaR methods with respect to the degree

of capitalization of the underlying asset before and during the recent financial crisis and

2The small cap index contain the stocks with the following symbols: AGL, AIR, AMR, ASH, BDN,
BEZ, BIG, BIO, BRE, BXS, CBRL, CBT, COO, CTX, CW, DLX, ESL, GAS, HXL, ITG, LIZ, LPX,
MDP, NEU, PBY, PCH, PPD, RLI, TXI, UNS; the mid cap index contains: ACV, ADSK, AMD, BCR,
BDK, BMS, CBE, CCK, CEG, CSC, DBD, DOV, DTE, EK, DPL, GMGMQ, GR, GWW, HOT, MAS,
MDC, MWV, NAV, NI, ROST, RSH, SWK, UNM, VFC, WEC; and the large cap index contains: ABT,
ADBE, AMAT, APC, APD, AVP, BAC, BEN, BK, CA, CL, D, DD, EMR, FPL, ITW, JCI, JPM, LOW,
MMM, MRK, OXY, PCAR, PEP, PFE, SO, SYY, TGT, WFT, XOM
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thus complementing the results of previous evaluation researches done only on popular

large-cap stocks, or major indices.

For our evaluation purposes, we divide the ”out-of sample” period in three subperiods

around the beginning of the sub-prime crisis: (1) the period before the crisis starting on

January 1st up to July 17th, 2007. July 17th, 2007 represents in our study the beginning

of the current financial crisis: on this day the FED signaled the first troubles on the

subprime loan markets and announced their support and supervision to the subprime

mortgage lenders. We consider this first evaluation period to be a calm one, representa-

tive for the years prior to the financial crisis; (2) the crisis period starting on July 18th,

2007 up to July 2nd, 2009 (the end of our sampling window); and (3) the crash period,

which starts in September 2008, when the crisis hits the financial markets following the

bankruptcy of Lehman Brothers on September 15th. Starting with this date, major stock

markets all over the world experience the largest decline since the black Monday crash on

October 19th, 1987. By dividing the whole evaluation period in these three subperiods,

we intend to check the robustness of standard VaR estimates across different financial

settings and outline which methods perform ”best” during calm periods as opposed to

turbulent ones.

Regarding the model choice, we focus mainly on fully parametric location scale models for

µt+1|t and σt+1|t, which account for the empirical properties of financial returns: volatility

clustering, serial dependence, fat-tailed distributions, etc. and parametrical distributional

assumptions such as normal or Student-t distribution or semi-parametric approaches such

as extreme value theory (EVT) for the standardized residuals. This leads to the following

model specifications:

1. ARMA(1,0) for the conditional mean µt+1|t and GARCH(1,1) for the conditional

variance σ2
t+1|t (Bollerslev (1986)):

µt+1|t = c + φrt, (2.4)
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where rt is the log-return from t− 1 to t of holding a stock and

σ2
t+1|t = ω + α1ε

2
t + β1σ

2
t , ω, α, β > 0, α + β < 1, (2.5)

where εt = rt − µt|t−1. We further consider normal, Student-t and EVT functional

forms for the probability density function of the standardized residuals. To esti-

mate the EVT quantiles, we adapt the maximum likelihood procedure developed by

Roncalli (2001) to the peak over the threshold (POT) approach. Given that there

is no straightforward method of choosing the optimal threshold level, we follow the

results of McNeil and Frey (2000), who find that a threshold of approximatively

10% minimizes the MSE of estimated Qp(Z), and choose a threshold of 9% from

the largest losses, which assures in our case the stability of quantile estimates for

all types of stocks and sampling windows.

2. RiskMetrics for the conditional covariance with µt+1|t = 0,

σ2
t+1|t = (1− λ)ε2

t + λσ2
t , 0 < λ < 1. (2.6)

This approach, introduced by JP Morgan in 1995, aims at describing the conditional

variance as an exponentially weighted moving average and is mostly applied in

practice for a fix parameter λ = 0.94. In this case we apply the normal and Student-

t with 7 degrees of freedom distribution on the standardized residuals. Along with

this approach (RM-fix ), we also proceed at estimating the parameter λ based on

the underlying data (RM-est), assumed to be normal or Student-t distributed, for

which we proceed at estimating the degrees of freedom.

3. ARMA(1,0) for the conditional mean µt+1|t and FIGARCH(1,d,0) for the condi-

tional variance σ2
t+1|t (Baillie et al., 1996), which accounts for the long memory

property of financial volatilities:

(1− L)dε2
t+1 = ω + νt+1 − βνt, 0 < d < 1, νt ≡ ε2

t − σ2
t , 0 < β < 1 (2.7)
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In this case, we apply the normal and Student-t distribution on the standardized

residuals.

Subject to this dimension, we aim at assessing the model risk component in estimating fi-

nancial risks based on standard approaches. By choosing different degrees of parametriza-

tion and tail distributional assumptions, we aim at outlining the approaches, which are

most appropriate to forecast the risk of a certain type of stock in calm vis-á-vis turbulent

periods. This analysis will allow us to identify the trade-off between the estimation risk

and model misspecification risk involved in estimating VaR: while the RM-fix approach

involves no estimation risk, its simple and fixed structure might face difficulties in cor-

rectly capturing the dynamics of conditional volatilities (e.g. long memory), and remains

inflexible to recent informational content, which could be relevant for forecasting future

risks. Contrary to the RM-fix approach, the ARMA-FIGARCH model easily adapts to

the new information arrivals, but might significantly suffer from estimation risk, given

that the precision of the degrees of fractional integration estimator increases with the

window size of the underlying data.

Another important dimension we focus on in our meta-study is the size of the estima-

tion window. Contrary to other studies, which apply a rolling window in the forecasting

procedure, we use the augmented sampling window approach, which is able to preserve

the valuable information issued by past extreme shocks, regardless of how far we move

forward with the forecasting window. This strategy is particulary useful in forecasting

extreme losses, by incorporating in all in-sample windows the shock of the market crash

from 1987, which seems to be the most sever extreme event on the stock markets until

today. Through this strategy we aim at identifying the extreme events from the past,

which contain valuable information in order to forecast losses from the current crisis. For

this purpose, we consider four strategies of choosing the starting date of the augmented

windows: January 1st, 1987, for which all in-sample data include the Black Monday effect

from October 19th, 1987; January 1st, 1996, for which the in-sample windows include the

dot-com bubble crash from March up to October, 2002 and the terrorist events from
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September 11th, 2001; January 1st, 2001, which includes just the September 11th, 2001

event; and January 1st, 2005, for which the in-sample windows contain no exceptional

extreme event and represent the standard estimation windows (last two years of data)

used in practice before the beginning of the recent financial crisis.

Alternatively to the fully parametric models described above, we consider one nonpara-

metric approach of estimating VaR, namely the Historical Simulation (HS), which is very

popular among practitioners and consists in estimating VaR simply by the sample quan-

tile of a rolling window of historical data. In the HS estimation, the size of the sampling

window plays an important role for the accuracy of VaR estimates, and is mostly set to

be between 250 and 750 observations (Jorion (2007)). Although very easy to implement,

this approach ignores the conditional dependencies among returns as well as the relevant

information on extreme past events, which situate outside the sampling window. Sub-

ject to these drawbacks, we also implement the filtered HS method (FHS) proposed by

Barone-Adesi et al. (1999), which applies the HS approach on residuals standardized by

the parametric ARMA-GARCH method. Furthermore, we implement the HS method on

rolling windows of 250, 500, 750 and 1000 historical observations, but also on augmented

windows starting in 1987, 1996, 2001 and respectively 2005. The FHS estimation is ap-

plied only on augmented windows.

The dimensions described so far lead to a meta-study which comprises 120 forecasts

given by three indexes (small-, middle-, large-cap), three parametric model specifications

(RM-fix, RM-est, ARMA-FIGARCH) with two distributional assumptions (normal and

Student-t), one parametric model (ARMA-GARCH) with three distributional assump-

tions (normal, Student-t and EVT), four strategies of choosing the in-sample windows

(starting in 1987, 1996, 2001 and respectively 2005) and two nonparametric models based

on rolling (HS) and augmented (HS, FHS) sampling windows of sizes 250, 500, 750 and

1000 and respectively starting in 1987, 1996, 2001 and 2005. Furthermore, we apply the

unconditional and conditional coverage tests described above to evaluate the VaR esti-
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mates on horizons of one day. It remains for further research to carry out this meta-study

on estimates for longer horizons, such as ten days.

3 Meta Study Results

In this section we present the results of evaluating the VaR estimators by means of

backtesting before and during the current financial crisis. Tables 1, 2 and 3 report the

percentage rate of violations as well as results related to unconditional and conditional

coverage tests for the periods under consideration.

Table 1 reports the VaR failure rates prior to the recent sub-prime crisis, from January

1st up to July 17th, 2007. All in all, the standard VaR approaches seem to perform well

during this calm period. While the normal distribution produces most of the ”yellow

zone”-type violations, applying a fat-tailed distributional assumption characteristic to

financial returns such as Student-t, improves the overall unconditional performance of

VaR. In support of the results from previous horse races (e.g. Kuester et al., 2006),

our study provides evidence on the frailty of the RiskMetrics estimated on normal dis-

tributed returns. However, its performance significantly improves when applied together

with the Student-t distribution assumption. Nevertheless, during this calm period, the

ARMA-GARCH approach generally suffices to capture the data dynamics and produces

independent sequences of violations.

Table 1 also provides insights into the performance of the VaR estimators with respect

to different sampling windows. Sample size plays no significant role in the presence of

the normal and Student-t distribution, but it definitively affects the precision of VaR

estimates based on EVT distributional assumption: incorporating in the sampling win-

dow major past extreme events, such as the ones from 1987 and 1996, leads to better

EVT quantile estimates, which enhance the ability of VAR measure to correctly forecast

potential losses.
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Contrary to the calm period, standard VAR estimators perform generally poorly during

the recent financial crisis (Table 2). Estimators using the normality assumption exhibit

the worst performance and yield only time dependent ”red zone”-type violations. The

only exception shows the portfolio of large-cap stocks, for which the ARMA-FIGARCH

approach seems to correctly capture the time dependence among the extreme losses. The

poor performance of the normal distribution is explained by its inadequacy in consistently

estimating the tail behavior of returns facing numerous extreme negative shocks during

periods of crisis and crashes (e.g. September 2008). A slightly better performance than

the normal, exhibits the Student-t distribution, which in the absence of estimation noise

(fixed degrees of freedom), delivers less, but still disputable number of violations in the

”yellow zone” for small- and large- cap stocks.

During the crisis period, the EVT approach estimated on historical samples which in-

corporate information from previous crisis, has the best performance and results in all

failure rates being independent and in the ”green zone”. Although not new (e.g. Kuester

et al., 2006), this result highlights the fact that by simply implementing EVT-based VaR

estimates, the financial institutions could have better handled the extreme market risks

provoked by the recent financial crisis. This finding attenuates some of recent opinions,

which state that the VaR is a faulty measure during hard times. Our results show that

this is the case if VaR is built on standard approaches such as normal, but it becomes

a sound method simply by implementing the EVT approach on large and informative

historical samples.

As already seen, the sampling window plays an important role in correctly forecast-

ing losses during crisis times. A further important role is played by the degree of

parametrization of the underlying models: the ARMA-FIGARCH approach in the pres-

ence of Student-t distribution and estimated on samples from 1996 or 2001 outperforms

other models for all type of stocks.
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Table 1: Backtest results for the calm period. Percentage rate of violations for VaR at p = 1% for the
period from January 1st, 2007 to July 17th, 2007 (total of 143 days). ∗∗ refers to p-values of conditional
coverage test smaller than 0.05, ∗ to p-values between and 0.05 and 0.10 and no mark refers to p-values
larger than 0.10. Bold type entries are in the ”red zone”, italic type entries are in the ”yellow zone”
and no typeface entries are in the ”green zone”.

Distribution ND TD EVT

Stock Start ARMA- RM- RM- ARMA- ARMA- RM- RM- ARMA- ARMA-

Type date GARCH est fix FIGARCH GARCH est fix FIGARCH GARCH

small

1987 2.79 2.79 2.79 2.09 2.09 2.09 2.09 2.09 0.69

1996 2.79 2.79 2.79 2.09 2.09 2.09 2.09 2.09 0.69

2001 2.09 2.09 2.79 2.09 2.09 2.09 2.09 2.09 0.69

2005 2.09 2.09 2.79 2.09 2.09 2.09 2.09 2.09 2.09

middle

1987 2.09** 2.79** 2.79** 3.49** 1.39 1.39 2.09 1.39 0.69

1996 1.39 2.79** 2.79** 1.39 1.39 2.09** 2.09** 1.39 0.69

2001 2.09** 2.79** 2.79** 2.79** 1.39 2.79** 2.09** 2.09** 1.39

2005 2.79** 3.49** 2.79** 2.09 1.39 2.79** 2.09** 1.39 1.39

large

1987 2.09 3.49* 3.49* 3.49* 2.09 2.09 2.09 2.79 0.69

1996 2.79 3.49* 3.49* 2.79 2.09 2.79 2.09 2.09 0.69

2001 2.79 3.49* 3.49* 2.09 2.09 2.79 2.09 2.09 1.39

2005 3.49* 4.19** 3.49* 2.79 2.79 2.09 2.09 2.79 2.09

Table 3 reports the backtest results for the third period, which we call ”crash period”.

Although in general better, these results emphasize the findings from the crisis period:

regardless the asset type, higher parametrization increases the performance of most of the

VaR estimates, including here of the ones built on the normal distributional assumption.

The Student-t distribution plays an important role in enhancing the performance of

VaR measures, especially of the ones which involve little estimation noise, such as the

fixed-parameter RiskMetrics approach. However, similar to the crisis period, this popular

method manages to correctly forecast the losses only for small- and large-cap stocks. Nev-

ertheless, the EVT approch estimated on large historical samples clearly outperforms all

other methods by generating ”green-zone” independent violations for all types of stocks.
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By comparing the results of tables 2 and 3, we notice that during the crash time there

are more VaR estimates, which perform well according to the Basel II rules compared to

the overall crisis period. A substantial improvement brings the Student-t distribution,

which seems to quickly assimilate and exploit the informational content related to extreme

events preceding the crash period.

Table 2: Backtest results for the crisis period. Percentage rate of violations for VaR at p = 1% for the
period from July 18th, 2007 to July 2nd, 2009 (total of 510 days). ∗∗ refers to p-values of conditional
coverage test smaller than 0.05, ∗ to p-values between and 0.05 and 0.10 and no mark refers to p-values
larger than 0.10. Bold type entries are in the ”red zone”, italic type entries are in the ”yellow zone”
and no typeface entries are in the ”green zone”.

Distribution ND TD EVT

Stock Start ARMA- RM- RM- ARMA- ARMA- RM- RM- ARMA- ARMA-

Type date GARCH est fix FIGARCH GARCH est fix FIGARCH GARCH

small

1987 2.94** 2.54** 2.54** 3.13** 2.35** 1.96 1.76 1.96 0.39

1996 3.13** 2.54** 2.54** 3.13** 2.54** 1.96 1.76 2.15* 1.17

2001 3.33** 2.54** 2.54** 2.15** 2.94** 2.15 1.76 1.56 1.56

2005 2.94** 2.35** 2.54** 3.13** 2.74** 2.35 1.76 1.56 2.74**

middle

1987 3.52** 2.74** 2.74** 3.52** 2.54** 2.15* 2.15* 2.15* 1.17

1996 3.52** 2.74** 2.74** 2.94** 2.54** 2.15* 2.15* 1.96 1.37

2001 3.52** 2.74** 2.74** 2.54** 2.74** 2.35** 2.15* 2.15* 1.96

2005 4.11** 2.54** 2.74** 3.13** 2.74** 2.35** 2.15* 1.96 1.96

large

1987 3.72** 3.13** 2.74** 3.72 1.96 1.96 1.76 2.15* 0.98

1996 3.72** 3.13** 2.74** 2.74 1.96 1.96 1.76 1.76 0.98

2001 4.11** 3.13** 2.74** 2.74** 2.35* 2.15 1.76 1.76 1.17

2005 4.51** 9.21** 2.74** 5.68** 2.35* 2.15 1.76 3.13** 1.17

Contrary to the estimates from the beginning of the crisis, whose performance could

only be enhanced by accounting for very old shocks (e.g. Black Monday), the sampling

windows used to estimate the risk models during the crash period incorporate already

sufficient relevant information on extreme events from the crisis period. This result con-

firms the fact that including information from previous crisis enhances the performance of

VaR estimates, especially of the ones based on distribution assumptions, which properly
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exploit this type of information (Student-t or EVT).

Table 3: Backtest results for the crash period. Percentage rate of violations for VaR at p = 1%
for the period from September 1st, 2008 to July 2nd, 2009 (total of 129 days). ∗∗ refers to p-values
of conditional coverage test smaller than 0.05, ∗ to p-values between and 0.05 and 0.10 and no mark
refers to p-values larger than 0.10. Bold type entries are in the ”red zone”, italic type entries are in the
”yellow zone” and no typeface entries are in the ”green zone”.

Distribution ND TD EVT

Stock Start ARMA- RM- RM- ARMA- ARMA- RM- RM- ARMA- ARMA-

Type date GARCH est fix FIGARCH GARCH est fix FIGARCH GARCH

small

1987 3.22** 2.76* 2.76* 2.76* 2.30 2.30 1.84 2.30 0.00

1996 3.22** 2.76* 2.76* 3.22** 2.30 2.30 1.84 2.30 0.92

2001 3.22** 2.76* 2.76* 1.84 3.22** 2.76* 1.84 1.38 1.84

2005 3.22** 2.76* 2.76* 3.68** 3.22** 2.76* 1.84 0.92 3.22**

middle

1987 3.68** 2.30 2.30 3.68** 2.76* 2.30 2.30 1.84 1.38

1996 3.68** 2.30 2.30 2.76* 2.76* 2.30 2.30 1.84 1.38

2001 3.68** 2.30 2.30 2.30 2.76 2.30 2.30 1.38 1.84

2005 3.68** 2.30 2.30 2.30 2.30 2.30 2.30 1.38 1.84

large

1987 4.60** 2.76* 2.76* 4.60** 1.38 2.30 1.38 1.84 0.92

1996 4.60** 2.76* 2.76* 2.76* 1.38 1.84 1.38 1.84 0.92

2001 4.60** 2.76* 2.76* 2.30 2.30 1.84 1.38 1.84 0.92

2005 4.60** 12.90** 2.76* 6.45** 1.38 1.84 1.38 2.76* 0.92

The main finding of the analysis so far is that standard VaR methods perform totally

differently from calm to crisis periods. While in calm periods, VaR estimates based on

normal distributional assumptions and parsimonious models estimated on recent windows

of data are appropriate to forecast the potential losses, this is not the case for turbulent

times. In these cases highly-parameterized methods estimated on larger samples perform

well for all type of stocks. Finally, large sampling windows, incorporating valuable in-

formation on past shocks and properly exploited by suitable distributional assumptions

(Student-t with estimated degrees of freedom and EVT) deliver better quantile estimates

and thus better VaR forecasts. When the normal or fixed-degrees of freedom Student-t

distribution are applied, which provide fixed quantile estimates, the sampling window

plays a minimal role (it affects only the estimation of conditional mean and volatilities)
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and thus fails to properly forecast potential losses during turbulent times.

Tables A.9, A.10 and A.11 in the Appendix report the results from backtesting non-

parametric VaR estimates during the three periods. In the calm period, the HS method

always generates independent ”green zone”-type violations, regardless the sampling strat-

egy. This result justifies once again the popularity of this method among practitioners.

Prior filtering the data brings no additional gains (last column of Table A.9) to the VaR

estimates. However, the standard HS methods fail entirely to forecast future losses and

to capture their characteristic time-dependence during turbulent periods. In this context,

their performance is substantially improved by the ARMA-GARCH filtration especially

during the crash time, when regardless of the asset type, the FHS method applied on

short windows generate ”green zone” independent hits. This confirms once again the

good performance of highly-parameterized models during turbulent periods. However,

the nonparametric methods built on short window samples have by construction a good

performance during the crash time. Because they are sample quantiles of historical win-

dows, the nonparametric VaR estimates are better when estimated on shorter windows,

which incorporate mainly information from the past year of crisis, than on longer hori-

zons, which contain also information from the calm period preceding the crisis.

Tables 4 and 5 summarize our findings in terms of meta regressions. Using OLS regres-

sions, we quantify the impact that different model specifications and implementations

have on the violation rate (Table 4) and on the p-value of conditional coverage tests

(Table 5). Distributional choice always matters regardless of the evaluation period, but

differently in sign from calm to crisis times: while less parametrization seems to be appro-

priate for forecasting financial risks during calm periods (column 1), choosing the EVT

and Student-t over the normal or HS significantly increase the probability of correct

coverage during turbulent times (columns 2 and 3).
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Table 4: Results of OLS Meta Regressions. Dependent variable: Percentage number of violations.
Explanatory variables: Market Cap, which equals 0, if the underlying asset is the small-cap index; 1 if
middle-cap index; and 2 if large-cap index; Model, which equals 0, if there is no parametric model in
the VaR estimation; 1, if the model is RM-fix; 2, if RM-est.; 3, if ARMA-GARCH; and 4 if ARMA-
FIGARCH; Distr., which equals 0, if the underlying distribution is HS; 1 if FHS; 2 if normal distribution;
3 if Student-t distribution; and 4, if EVT; Years, which equals 0, if the estimation sample starts in 2005;
1, if the estimation sample starts in 2001; 2, if the estimation sample starts in 1996; 3, if the estimation
sample starts in 1987. *** significant at 1%; ** at 5%; * at 10%. Total number of observations: 120.

Variables Calm Period Crisis Period Crash Period

Constant 1.549*** 5.747*** 8.647***

Market Cap 0.263*** 0.084 -0.023

Model 0.046 -0.287*** -0.735***

Distr. 0.129** -1.003*** -1.707***

Years -0.061 0.024 0.181

Adj.R2 0.083 0.452 0.479

Interestingly, the model choice does not matter for the calm evaluation period, but it

contributes to better results for the crisis and the crash period. The results on the re-

gressor Model, which indicates the parametric richness of the underlying model, show

that higher model parametrization decreases the number of violations during turbulent

times and this effect intensifies during the crash periods. Although they suffer from a

large estimation risk, they outperform the low parameterized models, which slowly adapt

to extreme information arrival.

Contrary to the model choice, the asset choice does matter for the calm evaluation period,

but it has no contribution during turbulent times. Investing in large-cap stocks may lead

to higher violation rates during calm periods, but this effect totally disappears in difficult

times. Although not significant, the negative sign on the regressor Market Cap in column

3 of Table 4 indicates to a certain degree that during very turbulent times, investing in

small cap stocks might have been less risky than investing in portfolios of large cap stocks.3

3In a pervious analysis for single stocks rather than portfolios this effect turned out to be even more
pronounced.
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Regardless of the evaluation period, the impact of the sampling window on the percentage

rate of violations is not significant at 5% level. However, this result should be carefully

discussed: while the nonparametric methods (e.g. FHS) manage to generate ”green

zone”-type violations based on short samples only for certain type of stocks, the EVT

distribution estimated on larger historical datasets correctly forecast the risk for all types

of stocks.

Table 5: Results of OLS Meta Regressions. Dependent variable: ln(p-value of conditional coverage
test). Explanatory variables: Market Cap, which equals 0, if the underlying asset is the small-cap
index; 1 if middle-cap index; and 2 if large-cap index; Model, which equals 0, if there is no parametric
model in the VaR estimation; 1, if the model is RM-fix; 2, if RM-est.; 3, if ARMA-GARCH; and 4 if
ARMA-FIGARCH; Distr., which equals 0, if the underlying distribution is HS; 1 if FHS; 2 if normal
distribution; 3 if Student-t distribution; and 4, if EVT; Years, which equals 0, if the estimation sample
starts in 2005; 1, if the estimation sample starts in 2001; 2, if the estimation sample starts in 1996; 3,
if the estimation sample starts in 1987. *** significant at 1%; ** at 5%; * at 10%. Total number of
observations: 120.

Variables Calm Period Crisis Period Crash Period

Constant -0.934*** -31.158*** -28.398***

Market Cap -0.347*** -0.193 0.139

Model 0.135 2.879*** 3.465***

Distr. -0.180 7.555*** 7.025***

Years 0.049 -0.774 -1.175

Adj.R2 0.051 0.390 0.438

The results of Table 5 show that during calm periods, the hits stemming from investing

in small-cap stocks exhibit less dynamical correlation than the ones of other stock types.

This might be explained by the fact that the returns of stocks with less capitalization

show less dynamical dependency than the ones of large cap stocks. Moreover, besides

reducing the number of violations during turbulent periods, richer parametrization also

contributes to the elimination of time dependencies among exceedances. This result

provides more evidence of the importance of using highly parameterized risk models to

forecast losses in the periods when they are needed most, such as the recent financial crisis.
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An interesting result reported by both meta regressions regards the values of the adjusted

R2 before and during the recent financial crisis. Its small value during calm periods indi-

cates that none of the model specification and implementation factors plays a significant

role on improving the VaR performance. However, during turbulent times, these factors

reveal a major explanatory power in the variation of backtest results, which emphasizes

the importance of our analysis carried out so far.

Besides the contribution to the performance of EVT and Student-t distribution during

crisis, further evidence of the importance of using large samples when estimating the tail

of return distribution is given by results from estimating the degrees of freedom (d.f)

of the Student-t distribution throughout the whole evaluation period. As Figure B.1 in

the Appendix shows, the d.f estimated on samples from 1987 or 1996 exhibit a steady

behavior prior to and during the crisis. Their values vary around six, which is typical for

a fat tailed distribution. Estimated on recent data, the d.f. seem to be very volatile and

thus more flexible to the market conditions.

The trade off between using large samples and estimating stable parameters and using

recent samples and estimating parameters which easily adapt to the market conditions

translates into following: financial institutions using stable d.f. specific to fat-tailed dis-

tributions, follow strategies of holding constant and large reserves for a large period.

Contrary, others using distributions with d.f. estimated on recent sample, follow strate-

gies of continuously adapting their reserve requirements according to the market settings

mirrored in the estimated parameters. However, in the latter case the risk that if every-

body follows the same strategy, on the days when the VaR measures signal the need of

larger reserves, the banks face huge liquidity problems.

This last scenario seems to be more realistic in illustrating what happened during the

recent financial crisis. According to our findings, if banks used to apply recent data to

estimate their VaR models, they obtained flexible d.f estimators, which in general adapt
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fast to the new market conditions. Thus, when the crisis started, the estimators also

started to signal higher risks, which require higher reserves. Unfortunately, given the high

correlation among the financial institutions, the signal simultaneously spread and led to

a liquidity trap: banks faced difficulties to borrow from other banks with similar strategy

and thus encountered large losses. Interestingly, the results of our study show that this

effect could have been mitigated by simply using large estimation samples starting in

1996 or earlier together with fat-tailed or extreme value distributional assumptions.

4 Combining VaR Forecasts

As the results from Section 3 show, the performance of individual VaR estimates is in

general instable with respect to model, estimation window or asset choice. Therefore, in

the following we propose two new methods of obtaining more robust VaR out of sample

forecasts, which are based on an adapting mechanism of optimally combining VaR fore-

casts from a given set of estimates based on different models and/or samples.

For expositional reasons, we restrict our attention to the case of combining two VaR pre-

dictions. The generalization to a large set of estimates to be combined is straightforward.

For ex-ante forecasts, the superiority of forecast combinations is not compelling because

they involve additional parameter estimation.

Consider S ′ rolling samples of two alternative conditional VaR predictions for the periods

τ + 1, . . . τ + S ′, respectively, with 0 < τ ≤ T and let a combined VaR prediction for

the out of sample period τ + s, be given by the linear combination of the two one-period

out-of-sample VaR predictions based on models 1 and 2:

V̂ aRτ+s(λτ ) = λτ,0 + λτ,1V̂ aR1
τ+s + λτ,2V̂ aR2

τ+s, s = 1, . . . , S ′ (4.1)

where λτ = (λτ,0, λτ,1, λτ,2)
′ is the vector of loading factors and V̂ aRj

τ+s is the one-period

ahead VaR prediction from model j = {1, 2}.
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For example, let the VaR prediction of model 1 be based on a standard ARMA-GARCH

approach with normally distributed errors and the VaR prediction of model 2 be based

on the pre-filtering method using the same conditional mean and conditional variance

function; then the combined VaR prediction simply uses the linear combinations of the

quantiles of the standard normal, F̂−1
1 (p), and estimated quantile from the distribution

of the standardized residuals, F̂−1
2 (p):

V̂ aRτ+s(λτ ) = λτ,0 +
{
λτ,1 + λτ,2

}
µ̂τ+s|τ+s−1 +

{
λτ,1F̂

−1
1 (p) + λτ,2F̂

−1
2 (p)

}
σ̂τ+s|τ+s−1.

(4.2)

Although Equation (4.1) has a general structure, we opt in this paper for restricting

the loadings of V aRj’s, j = {1, 2}, to sum up to one. In this way we have a more

intuitive and structured interpretation of the results: e.g. a larger absolute loading on

the first forecast than on the other, indicates that the first forecast has a larger impact

in the optimal combination, while the sign indicates the direction. Thus Equation (4.1)

becomes:

V̂ aRτ+s(λτ ) = λτ,0 + λτ,1V̂ aR1
τ+s + (1− λτ,1)V̂ aR2

τ+s, s = 1, . . . , S ′ (4.3)

The role of the constant in the optimization is to correct for the biases in the VaR’s

forecasts, as recommended by Timmermann (2005). Therefore we refrain from setting

any constraint on this parameter.

We choose to combine the VaR estimates from Equation (4.3) optimally: by assessing the

performance of the resulting risk estimator over the evaluation period starting at τ + 1

and ending at τ + S ′ or by sequentially assessing the daily performance of V̂ aRτ+s, at

each s = 1, . . . , S ′.4 The first method, which we call Conditional Coverage Optimization

4Other objective functions based on monetary rather statistical criteria may also be meaningful. For
instance, one may combine two forecasts such that the penalty costs are minimized. This is left for
further research.
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Method (CCOM) consists in finding the optimal combination of VaR predictions, which

maximizes the conditional coverage rate, while the second method, called Conditional

Quantile Optimization Method (CQOM) finds the optimal loadings by minimizing the

distance between the population quantiles and the VaR’s combinations.

In what follows we present the combination methods and their empirical performance on

correctly estimating the failure probability of 1%.

4.1 Conditional Coverage Optimization Method (CCOM)

The CCMO is optimal in the sense that it chooses the weights of the forecast combination

such that the combined forecast implies a sequence of independent hits, with moments

close to the ones of the hit sequence of the true underlying process and thus satisfies

the Basle II criteria. It consists of computing a sequence of S ′ binary exceedance indica-

tors Hτ+s(λτ ) based on the combined estimator V̂ aRτ+s(λτ ) for any arbitrary vector of

weighting parameter:

H(λτ ) = {Hτ+1(λτ ), Hτ+2(λτ ), . . . , Hτ+S′(λτ )}

where Hτ+s(λτ ) is given by

Hτ+s(λτ ) = 1l (rτ+s < V̂ aRτ+s(λτ )), s = 1, 2, . . . S ′.

and V̂ aRτ+s(λτ ) is given in Equation (4.3). The optimal weights λ∗τ = (λ∗τ,0, λ
∗
τ,1) minimize

the conditional coverage test, which has the following two null hypotheses (see Section 2

for a detailed discussion):

1) E[Hτ+s(λ
∗
τ )] = p, which assures the unconditional coverage and

2) E[Hτ+s(λ
∗
τ )|Hτ+s−1(λ

∗
τ )] = E[Hτ+s(λ

∗
τ )|(1 − Hτ+s−1(λ

∗
τ ))] = E[Hτ+s(λ

∗
τ )], which

assures the independence of the hits.
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The main advantage of this method is that it exclusively aims at fulfilling the Basel II

criteria, by minimizing the failure rate. In addition, the optimal combination of VaR’s aim

at eliminating the violation clustering, which, if it is ignored, increases the probability of

having a violation after an occurrence. Estimates of the two parameters λ∗τ,0 and λ∗τ,1, can

be obtained by the Method of Moment approach using the following moment restrictions

resulting from the martingale property of Ht:

1) E[Hτ+s(λ
∗
τ )− p] = 0

2) E[(Hτ+s(λ
∗
τ )− p)Hτ+s−1(λ

∗
τ )] = 0

We can opt for further moments, such as E[(Hτ+s(λ
∗
τ ) − p)V aRj

τ+s] = 0, j = 1, 2 or

E[(Hτ+s(λ
∗
τ )−p)rτ+s−1] = 0 which may increase the efficiency of the estimated parameters

(see Giacomini and Komunjer (2005)). Thus, the MM estimator λ̂∗τ is the solution to the

following minimization problem:

λ̂∗τ = arg min ψ(λτ , Xτ+s)
′ψ(λτ , Xτ+s), (4.4)

where ψ(λτ , Xτ+s) = (ψ1(λτ , Xτ+s), ψ
2(λτ , Xτ+s, ...))

′ with

ψ1(λτ , Xτ+s) =

∑S
′

s=1[Hτ+s(λτ )− p]

S ′
,

ψ2(λτ , Xτ+s) =

∑S
′

s=2[Hτ+s(λτ )− p]Hτ+s−1(λτ )

S ′ − 1
,

and Xτ+s = (V̂ aR1
τ+s, V̂ aR2

τ+s, rτ+s)
′. In the case of further moments, the estimation

given in Equation (4.4) is weighted by V̂ −1, where V̂ is a consistent estimator of the

asymptotic variance V = E[ψ(λτ , Xτ+s)ψ(λτ , Xτ+s)
′].

Although straightforward in principle, the estimation method suffers from a set nu-

merical complications. Since the objective function is non-differentiable and not suffi-

ciently smooth, gradient-based methods may encounter difficulties in finding the global,

rather than the local minimum (Giacomini and Komunjer (2005)). In such cases, we
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use the simulated annealing algorithm, which is more robust to the choice of the ob-

jective function and reaches the global minimum, regardless of the smoothness degree

of the objective function (Goffe et al., 1994). Furthermore, we increase the degree of

smoothness of the function to be minimized in Equation (4.4), by replacing Hτ+s(λτ )

with F (λτ , Xτ+s, hT ) = 1/(1 + exp[(rτ+s − λτ,0 − λτ,1V̂ aR1
τ+s − (1 − λτ,1)V̂ aR2

τ+s)/hT ])

such that, for s → ∞, hT → 0 and sht → ∞,
∑S

′

s=1
F (λτ ,Xτ+s,hT )

S′
p→ E[Hτ+s(λτ )]. The

heteroscedasticity-and autocorrelation-robust estimator of Newey and West (1987) for

the asymptotic variance-covariance matrix V should be applied.

4.2 Conditional Quantile Optimization Method (CQOM)

The second method we propose for optimally combining VaR’s estimators, is based on

the quantile regression approach (Koenker and Basset (1978)) and models the conditional

p-quantile as a linear function of V̂ aRj
τ+s, with j = {1, 2}:

Qp(rτ+s) = λτ,0 + λτ,1V̂ aR1
τ+s + (1− λτ,1)V̂ aR2

τ+s ≡ V̂ aR′
12,τ+sλτ , (4.5)

where V̂ aR12,τ+s = (1, V̂ aR1
τ+s, V̂ aR2

τ+s)
′ and λτ = (λτ,0, λτ,1)

′. In our framework, the

optimal λτ is given by the solution to the following minimization problem:

λ̂τ = arg min
λτ

{ ∑

rτ+s≥V̂ aR′12,τ+sλτ

p|rτ+s − V̂ aR′
12,τ+sλτ |

+
∑

rτ+s<V̂ aR′12,τ+sλτ

(1− p)|rτ+s − V̂ aR′
12,τ+sλτ |

}

The main advantage of the quantile regression approach is that it requires no explicit

distributional assumptions for the return series. Given the difficulties in estimating the

standard errors of quantile regression estimators, we apply the moving block bootstrap

procedure as recommended by Fitzenberger (1997).
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4.3 Empirical Results

In the following we present results from assessing the performance of the two methods

in terms of Basel II and independence criteria. We make the assessment at two different

stages:

(1) First, we estimate one pair of optimal weights for each of the three evaluation

periods and assess the performance of the ex-post optimal VaR combination by

means of the coverage tests described in Section 2. This assessment is similar to

an ”in-sample” evaluation of the fitted model with S ′ = 143, 510, 129 for the first,

second and respectively third evaluation period.

(2) Second, we evaluate the optimal combination of VaR’s in a recursive manner: we

divide the entire evaluation period of T observations (from January 1st, 2007 to

July 2nd, 2009) into an ”in-sample” and an ”out-of-sample” period and re-estimate

the optimal weights at each ”out-of-sample” point with all ”in-sample” available

data. At the end of the ”out-of-sample” period, we assess the quality of the optimal

forecasts by means of coverage tests. The first ”in-sample” period contains the first

τ1 observations, the second ”in-sample” period contains the first τ1 +1 and the last

one contains T − 1 observations. S ′ = T − τ1.

Through these two evaluation exercises, we aim at assessing the ability of optimal combi-

nations to improve the performance within the sample (first assessment), but also out-of-

sample (second assessment) of single VaR estimates. For both stages, we report results

from the crisis and crash period, given that during the calm period almost all mod-

els, with very few exceptions, perform well according to standard criteria (see Table 1).

Moreover, we present here results from combining parametric VaR estimates, while the

assessment of optimal combinations based on individual nonparametric measures is left

for further research. Based on the choice of the combined VaR predictors, we sort the re-

sults in five groups and report them in tables 6 and 7 for each of the optimization method.
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The first group of results (Part A of both tables 6 and 7) present the performance of

optimally combining VaR estimates based on different distributional assumptions, given

a certain pre-filtering method. It illustrates the forecasting power of linear quantile com-

bination, for the same conditional mean and conditional variance specification (see e.g.

Equation (4.2)). More specifically, we combine VaR predictors based on the normal and

Student-t distribution, and we report the results for different pre-filtering methods: from

ARMA-GARCH estimated on sample starting in 1987 to ARMA-FIGARCH estimated on

sample starting in 2005. The results from both tables show that, independent of the pre-

filtering and combination method, optimal combinations between normal and Student-t

distribution quantiles reduce significantly the failure rates and their time dependencies,

with very small differences between the two methods. While the CQOM method (Table

7) delivers only ”green zone”-type violations with all p-values of conditional coverage

tests larger than 0.1, the CCOM method (Table 6) reveals a few exceptions, especially

when combining VaR estimates based on recent data.

Similar good results are obtained when combining two VaR estimates with different con-

ditional mean and conditional variance estimations: Part B and C of both tables 6 and 7

report the results from optimally combining VaR predictors based on the fixed-parameter

RiskMetrics approach, which is widely used in practice, parsimonious and exhibits no es-

timation noise and two other approaches, which are more flexible to the volatility proper-

ties, but involves large estimation risk: ARMA-GARCH (Part B) and ARMA-FIGARCH

(Part C).

Again, combining VaR estimates based on recent data seems to be inadequate in forecast-

ing eventual losses. However, combining estimates based on recent and old data (Part D),

increases the performance of individual estimates in all cases when applying the CQOM

method (Table 7) and with a few exceptions when applying the CCOM method (Table 6).
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So far, we can conclude that although both combination methods perform well ”in-

sample”, the CQOM approach yields the best results. However, of higher interest is

to assess the ability of these methods in providing combinations of VaR which perform

well during ”out-of-sample” periods, especially during the recent financial crisis.

Table 8 reports the backtest results from the second stage assessment. Because our focus

is on forecasting the risks during the crisis and crash period, we choose July 17th, 2008 to

be the end date of the first ”in-sample” period, which marks one year since the beginning

of the financial crisis (τ1 = 250). Thus all in-sample data entail at least one year of crisis

and the out-of-sample period comprises the crash phase.

The results of Table 8 complete the previous results and show that combining VaR es-

timates performs well not just within sample, but also out of sample when forecasting

financial losses. In general the VaR predictors based on both combination methods con-

siderably improve the performance of single estimates and remain robust with respect to

the asset or model choice. They produce in most of the cases independent failure rates,

which are located in the ”green zone”, according to the Basel II regulations.

Finally, the results from the tables above reveal an overall stability of the backtesting

performance of the combining methods according to the Basel II and independence cri-

teria. Further evidence on the robustness of the new methods with respect to the asset

choice or model specification provides the sequence of combination weight estimates for

the ”out-of-sample” evaluation period. For illustration purposes, we plot the sequence

of estimated optimal weights from combining normal and Student-t distribution with

ARMA-GARCH pre-filtration, subject to different sample windows5.

5Similar graphs stemming from other combinations are available from the authors upon request.
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Table 6: Percentage rate of violations based on CCOM, Assessment Stage 1. Percentage rate of
violations at p = 1%. ∗∗ refers to p-values of conditional coverage test smaller than 0.05, ∗ refers to
p-values between and 0.05 and 0.10 and no mark refers to p-values larger than 0.10. Bold entries mark
”red zone”-type violations, italic ones mark ”yellow zone”-type violations and no typeface entries mark
”green zone”-type violations.

Crisis Period Crash Period
XXXXXXXXXXComb.

Stock type Small Middle Large Small Middle Large

Part A (Normal and Student-t distribution)

ARMA-GARCH

1987 0.98 1.56 0.98 0.92 0.92 0.92
1996 0.98 0.98 0.98 0.92 0.92 0.92
2001 2.54* 0.98 0.98 0.92 0.92 0.92
2005 1.76 1.76 0.98 0.92 0.92 0.92

RM-est

1987 0.98 0.98 0.98 0.92 0.92 0.92
1996 0.98 0.98 0.98 0.92 0.92 0.92
2001 0.98 0.98 0.98 0.92 0.92 0.92
2005 0.98 0.98 2.15* 0.92 0.92 1.38

RM-fix

1987 0.98 0.98 0.98 0.92 0.92 0.92
1996 0.98 0.98 0.98 0.92 0.92 0.92
2001 0.98 0.98 0.98 0.92 0.92 0.92
2005 0.98 0.98 0.98 0.92 0.92 0.92

ARMA-FIGARCH

1987 0.98 0.98 0.98 0.92 0.92 0.92
1996 7.25** 0.98 0.98 0.92 0.92 0.92
2001 0.98 0.98 6.47** 0.92 0.92 0.92
2005 2.94** 1.56 1.17 0.92 4.14** 0.92

Part B (ARMA-GARCH and RM-fix)

ND

1987 1.37 0.98 1.37 0.92 0.92 0.92
1996 1.37 0.98 0.98 0.92 0.92 0.92
2001 0.98 1.17 0.98 0.92 4.14** 0.92
2005 1.17 0.98 0.98 0.92 0.92 0.92

T

1987 1.56 0.98 0.98 0.92 0.92 0.92
1996 1.17 1.56 0.98 0.92 0.92 0.92
2001 0.98 0.98 1.17 0.92 0.92 0.92
2005 6.07** 0.98 0.98 0.92 0.92 0.92

Part C (ARMA-FIGARCH and RM-fix)

ND

1987 0.78 0.98 0.98 0.92 0.92 0.92
1996 0.98 0.78 0.98 0.92 1.84 5.99**
2001 0.98 0.98 1.17 2.30 0.92 0.92
2005 1.56 0.98 0.98 0.92 0.92 0.92

T

1987 0.98 0.98 0.98 0.92 0.92 0.92
1996 0.98 1.56 1.56 0.92 0.92 0.92
2001 0.98 0.98 0.98 0.92 0.92 0.92
2005 1.96 6.47** 0.98 0.92 0.92 0.92

Part D (samples starting in 1987 and 2005)

ND
ARMA-GARCH 0.98 1.76 0.98 0.92 0.92 0.92

RM-est 1.17 1.96 0.98 0.92 0.92 0.92
ARMA-FIGARCH 1.17 2.94** 1.96 0.92 0.92 0.92

T
ARMA-GARCH 0.98 1.17 0.98 0.92 0.92 0.92

RMEST 2.74** 0.98 0.98 0.92 0.92 0.92
ARMA-FIGARCH 0.98 0.98 1.56 0.92 0.92 0.92
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Table 7: Percentage rate of violations based on CQOM, Assessment Stage 1. Percentage rate of
violations at p = 1%. ∗∗ refers to p-values of conditional coverage test smaller than 0.05, ∗ refers to
p-values between and 0.05 and 0.10 and no mark refers to p-values larger than 0.10. Bold entries mark
”red zone”-type violations, italic ones mark ”yellow zone”-type violations and no typeface entries mark
”green zone”-type violations.

Crisis Period Crash Period
XXXXXXXXXXComb.

Stock Type Small Middle Large Small Middle Large

Part A (Normal and Student-t distribution)

ARMA-GARCH

1987 0.98 1.17 1.17 0.92 1.38 1.38
1996 1.17 1.17 1.17 0.92 1.84 1.38
2001 1.17 0.98 1.17 1.38 1.38 1.38
2005 1.17 1.17 1.17 1.38 1.38 1.38

RM-est

1987 1.17 1.17 0.98 1.38 1.84 1.38
1996 0.78 1.17 1.17 1.38 1.38 1.38
2001 0.98 0.98 1.17 1.84 0.46 1.38
2005 1.17 1.17 0.98 1.38 1.38 1.38

RM-fix

1987 0.98 1.17 0.98 0.46 1.84 1.38
1996 0.98 1.17 0.98 0.46 1.84 1.38
2001 0.98 1.17 0.98 0.46 1.84 1.38
2005 0.98 1.17 0.98 0.46 1.84 1.38

ARMA-FIGARCH

1987 1.17 1.17 1.17 1.38 1.38 1.38
1996 1.17 1.17 0.98 1.84 0.92 0.92
2001 0.98 1.17 1.17 1.38 1.38 1.38
2005 1.17 0.98 0.98 1.38 0.46 1.38

Part B (ARMA-GARCH and RM-fix)

ND

1987 0.98 0.98 1.17 0.92 1.38 1.84
1996 1.17 0.98 0.98 0.92 1.38 1.38
2001 1.17 0.98 1.17 1.38 1.38 1.38
2005 1.17 1.17 1.17 1.38 1.38 1.38

T

1987 0.98 0.98 1.17 0.92 1.38 1.38
1996 1.17 1.17 1.17 0.92 1.38 1.38
2001 1.17 1.17 0.98 1.38 1.38 1.38
2005 1.17 1.17 0.98 1.38 1.38 1.38

Part C (ARMA-FIGARCH and RM-fix)

ND

1987 1.17 1.17 1.17 0.92 1.38 1.38
1996 1.17 0.78 1.17 0.92 1.38 1.38
2001 0.98 1.17 0.98 1.38 1.38 1.38
2005 1.17 1.17 1.17 0.92 1.38 1.38

T

1987 1.17 1.17 1.17 1.84 1.38 1.38
1996 1.17 1.17 1.17 0.92 0.92 1.38
2001 1.17 1.17 1.17 1.38 1.38 1.38
2005 0.98 1.17 1.17 0.92 1.38 1.38

Part D (samples starting in 1987 and 2005)

ND
ARMA-GARCH 1.37 1.17 1.17 0.92 1.38 1.38

RM-est 0.98 1.17 0.98 0.92 1.38 1.38
ARMA-FIGARCH 1.17 1.17 1.17 1.38 1.84 0.92

T
ARMA-GARCH 1.17 1.17 0.98 0.92 0.92 1.38

RM-est 1.17 0.98 0.98 1.38 1.38 1.38
ARMA-FIGARCH 1.17 1.17 1.17 1.38 1.84 1.38
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Table 8: Percentage rate of violations, Assessment Stage 2. Percentage rate of violations at p =
1%. ∗∗ refers to p-values of conditional coverage test smaller than 0.05, ∗ refers to p-values between
and 0.05 and 0.10 and no mark refers to p-values larger than 0.10. Bold entries mark ”red zone”-
type violations, italic ones mark ”yellow zone”-type violations and no typeface entries mark ”green
zone”-type violations.

CCOM CQOM
XXXXXXXXXXComb.

Stock Type Small Medium Large Small Medium Large

Part A (Normal and Student-t distribution)

ARMA-GARCH

1987 1.60 1.20 0.80 0.40 1.60 1.20
1996 1.20 1.20 2.00 0.40 1.60 2.00
2001 1.60 0.80 2.40 1.20 1.60 2.00
2005 0.40 2.00 1.60 2.80* 1.20 1.20

RM-est

1987 1.60 1.60 0.80 1.20 2.80* 1.20
1996 1.20 1.20 0.80 1.60 1.20 1.60
2001 1.60 1.20 0.40 2.00 1.20 1.60
2005 1.20 1.20 1.20 2.40 1.20 1.60

RM-fix

1987 1.20 1.20 0.40 2.80* 1.20 1.60
1996 1.20 1.20 0.40 2.80* 1.20 1.60
2001 1.20 1.20 0.40 2.80* 1.20 1.60
2005 1.20 1.20 0.40 2.80* 1.20 1.60

ARMA-FIGARCH

1987 1.60 0.40 1.60 1.20 0.80 1.20
1996 2.00 1.20 1.20 2.00 2.00 1.60
2001 1.20 0.80 0.40 0.40 1.20 2.00
2005 0.40 1.20 2.00* 2.40 1.20 1.20

Part B (ARMA-GARCH and RM-fix)

ND

1987 1.60 1.20 1.20 1.20 1.60 1.20
1996 2.00 1.60 1.60 1.60 1.60 1.60
2001 2.00 1.60 1.60 2.00 1.60 1.60
2005 1.20 1.20 1.60 1.20 1.60 2.00

T

1987 0.80 2.00 1.60 1.20 1.60 1.60
1987 1.60 1.20 2.00 1.20 1.60 1.60
2001 1.60 1.20 2.40 1.60 1.60 2.00
2005 2.40 0.80 2.40 0.80 1.60 1.20

Part C (ARMA-FIGARCH and RM-fix)

ND

1987 1.60 2.00 1.20 1.60 1.60 1.60
1987 1.20 1.60 1.20 1.60 1.20 2.00
2001 1.20 2.00 1.20 0.80 1.20 1.20
2005 2.00 1.20 1.20 0.40 0.80 1.60

T

1987 0.00 0.80 1.20 0.80 0.80 1.20
1987 0.80 0.80 2.00* 0.80 0.80 0.80
2001 2.00 0.80 1.20 0.80 1.20 0.80
2005 1.20 0.40 1.20 0.80 1.60 1.60

Part D (samples starting in 1987 and 2005)

ND
ARMA-GARCH 1.60 1.60 0.40 1.20 0.80 0.80

RM-est 2.00 2.00 2.40 2.00 1.20 1.60
ARMA-FIGARCH 2.40 1.20 1.20 0.40 1.20 2.40

T
ARMA-GARCH 1.60 0.80 0.00 0.80 0.80 1.20

RM-est 1.60 1.20 2.00 2.00 2.00 0.80
ARMA-FIGARCH 2.00 1.20 2.00 0.40 1.20 2.00
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Except for a short inherently volatile phase, starting around the events from September

15th, 2008 (45th observation) and lasting until December 1st, 2008, all sequences of esti-

mates stemming from CQOM (see figures B.2 and B.3), exhibit a stable behavior during

the whole crisis period, which emphasizes the robustness of this new method. The CCOM

weights exhibit a more volatile behavior (see figures B.4 and B.5)), which indicates that

estimators stemming from unconditional-type methods are less robust to market changes

than the ones based on conditional approaches, such as CQOM.

5 Conclusions

In this paper we provide empirical evidence on the riskiness of the VaR. Given its perfor-

mance during the recent financial crisis, we feel that there is more need of taking stock

and communicating its potential shortcomings before adding another VaR approach to

the literature.

Our goal in this paper is to study the robustness of the standard VaR with respect to

different risk factors when applied to forecast losses in periods when it is needed most,

such as the current financial crisis. By means of a meta-study approach, we show that

the performance of VaR estimates differs across type of stocks subject to model choice,

distributional assumptions or the choice of estimation window. Thus we show that popu-

lar VaR measures manage to accurately forecast the risk in calm periods or when applied

to large-cap stocks, but exhibit a relatively low power when applied in crisis times or

to stocks with lower capitalization. Higher parametric approaches (e.g. GARCH) which

account for past shocks (e.g. market crash from 1987) within extreme value distribu-

tional settings lead to accurate loss forecasts according to Basel II rules during the recent

financial crisis.

In order to improve the performance of standard risk measures, we propose a data-driven

methodology of accurately estimating VaR based on the principle of forecast combination.
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The optimal loadings of VaR measures are driven by the maximization of conditional cov-

erage rates (CCOM) or by the minimization of the distance between the population quan-

tiles and the VaR’s combinations (CQOM). Using an empirical example, we show that

optimal combinations of VaR forecasts radically improve the performance of stand-alone

estimates during the recent crisis. All combinations exhibit very good ”out-of-sample”

performance by generating independent exceedances within the limits imposed by Basel

II rules.

Future research should aim at assessing and developing robust risk measures in real time

settings, which are essential in the field of risk management, where investors face the

continuous challenge of taking spontaneous decisions. The new risk measures should be

able to instantaneously incorporate all relevant new information related to the underlying

asset, market conditions, or other economical and financial variables, which affect the

market price risk, such as market liquidity shortages.
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Appendix A: Tables

Table A.9: Backtest results for the calm period: nonparametric methods. Percentage rate of violations
for VaR at p = 1% for the period from January 1st, 2007 to July 17th, 2007 (total of 143 days). ∗∗

refers to p-values of conditional coverage test smaller than 0.05, ∗ to p-values between and 0.05 and
0.10 and no mark refers to p-values larger than 0.10. Bold type entries are in the ”red zone”, italic
type entries are in the ”yellow zone” and no typeface entries are in the ”green zone”.

Stock Number of
HS

Start
HS FHS

Type observations date

small

1000 0.69 1987 0.69 2.09
750 0.69 1996 0.69 2.09
500 0.69 2001 0.69 2.09
250 0.69 2005 0.69 1.39

middle

1000 1.39 1987 0.69 1.39
750 1.39 1996 0.00 1.39
500 1.39 2001 0.00 1.39
250 1.39 2005 1.39 1.39

large

1000 2.09 1987 0.69 2.09
750 2.09 1996 0.69 1.39
500 2.09 2001 0.69 2.09
250 2.09 2005 2.09 2.09

Table A.10: Backtest results for the crisis period: nonparametric methods. Percentage rate of
violations for VaR at p = 1% for the period from July 18th, 2007 to July 2nd, 2009 (total of 510 days).
∗∗ refers to p-values of conditional coverage test smaller than 0.05, ∗ to p-values between and 0.05 and
0.10 and no mark refers to p-values larger than 0.10. Bold type entries are in the ”red zone”, italic
type entries are in the ”yellow zone” and no typeface entries are in the ”green zone”.

Stock Number of
HS

Start
HS FHS

Type observations date

small

1000 2.94** 1987 12.15** 1.76
750 4.90** 1996 10.39** 2.35**
500 5.88** 2001 7.64** 2.54**
250 7.25** 2005 6.86** 1.56

middle

1000 2.54** 1987 7.64** 2.15*
750 3.92** 1996 7.25** 2.35**
500 5.09** 2001 5.49** 2.35**
250 6.47** 2005 5.68** 2.15*

large

1000 3.13** 1987 8.82** 1.76
750 4.51** 1996 8.03** 1.56
500 6.27** 2001 7.25** 1.96
250 6.86** 2005 7.05** 1.96
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Table A.11: Backtest results for the crash period: nonparametric methods. Percentage rate of
violations for VaR at p = 1% for the period from September 1st, 2008 to July 2nd, 2009 (total of 129
days). ∗∗ refers to p-values of conditional coverage test smaller than 0.05, ∗ to p-values between and
0.05 and 0.10 and no mark refers to p-values larger than 0.10. Bold type entries are in the ”red zone”,
italic type entries are in the ”yellow zone” and no typeface entries are in the ”green zone”.

Stock Number of
HS

Start
HS FHS

Type observations date

small

1000 4.14** 1987 19.35** 1.84
750 6.91** 1996 16.59** 1.84
500 8.29** 2001 11.98** 2.76*
250 8.75** 2005 9.21** 1.38

middle

1000 2.76** 1987 13.36** 1.84
750 5.53** 1996 12.44** 2.30
500 7.37** 2001 10.13** 2.30
250 8.29** 2005 8.29** 1.84

large

1000 4.14** 1987 15.23** 1.84
750 5.53** 1996 14.28** 1.38
500 7.83** 2001 12.44** 1.38
250 8.75** 2005 9.67** 0.92

Appendix B: Figures

Figure B.1: Estimated d.f. of t-distribution. Left panel: small cap index, middle: middle cap index,
right: large cap index; dotted lines correspond to d.f estimated on samples starting in 1987, dotted
and dashed lines correspond to d.f estimated on samples starting in 1996, solid lines correspond to d.f
estimated on samples starting in 2001 and dashed lines correspond to d.f estimated on samples starting
in 2005.
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Figure B.2: Estimated λ∗τ,0 through the crisis, CQOM, Part A: ARMA-GARCH. Left panels: small
cap index, middle panels: middle cap index, right panels: large cap index; first row: sampling starting
in 1987, second row: sampling starting in 1996, third row: sampling starting in 2001 and fourth row:
sampling starting in 2005.

Figure B.3: Estimated λ∗τ,1 through the crisis, CQOM, Part A: ARMA-GARCH. Left panels: small
cap index, middle panels: middle cap index, right panels: large cap index; first row: sampling starting
in 1987, second row: sampling starting in 1996, third row: sampling starting in 2001 and fourth row:
sampling starting in 2005.
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Figure B.4: Estimated λ∗τ,0 through the crisis, CCOM, Part A: ARMA-GARCH. Left panels: small
cap index, middle panels: middle cap index, right panels: large cap index; first row: sampling starting
in 1987, second row: sampling starting in 1996, third row: sampling starting in 2001 and fourth row:
sampling starting in 2005.

Figure B.5: Estimated λ∗τ,1 through the crisis, CCOM, Part A: ARMA-GARCH. Left panels: small
cap index, middle panels: middle cap index, right panels: large cap index; first row: sampling starting
in 1987, second row: sampling starting in 1996, third row: sampling starting in 2001 and fourth row:
sampling starting in 2005.
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