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Abstract

We propose a new rank-based goodness-of-fit test for copulas. It uses the information

matrix equality and so relates to the White (1982) specification test. The test avoids

parametric specification of marginal distributions, it does not involve kernel weighting,

bandwidth selection or any other strategic choices, it is asymptotically pivotal with a

standard distribution and simple to compute compared to available alternatives. The

finite-sample size of this type of tests is known to deviate from their nominal size based

on asymptotic critical values, and bootstrapping critical values could be a preferred

alternative. A power study shows that, in a bivariate setting, the test has reasonable

properties compared to its competitors. We conclude with an application in which we

apply the test to two stock indices.
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1 Introduction

Copulas are functions that allow modeling dependence between random variables separately

from their marginal distributions. Consider two continuous random variables X1 and X2 with

cdf’s F1(x1) and F2(x2) and pdf’s f1(x1) and f2(x2), respectively. Suppose the joint cdf of

(X1, X2) is H(x1, x2) and the joint pdf is h(x1, x2). A copula is a function C(u, v) such that

H(x1, x2) = C (F1(x1), F2(x2)) or, in densities if they exist, h(x1, x2) = c (F1(x1), F2(x2)) f1(x1)f2(x2).

[For notational simplicity we will often write H = C(F1, F2) and h = c(F1, F2)f1f2]. The

marginal densities f1 and f2 are now “extracted” from the joint density and the copula den-

sity c captures the dependence between X1 and X2. Sklar (1959) showed that given H, F1

and F2 of continuous variables, there exists a unique C. So, given F1 and F2, the choice when

constructing a joint distribution is which copula C to use.

Let Cθ denote the chosen copula family with dependence parameter(s) θ. Numerous papers

have used different copula families in applications from finance (e.g., Patton, 2006; Breymann

et al., 2003), from risk management (e.g., Embrechts et al., 2003, 2002) and from health and

labor economics (Smith, 2003; Cameron et al., 2004). Theoretical results on parametric and

semiparametric estimation of copula-based models are contained in Genest et al. (1995); Joe

(2005); Chen and Fan (2006b); Prokhorov and Schmidt (2009); among others. But the issue

of copula specification testing – clearly relevant in any copula-based application – has not

received as much attention in the literature as the estimation problem.

A copula family is correctly specified if, for some θo, Cθo(F1, F2) = H. In this paper,

we wish to construct a goodness of fit test for copulas using this definition. It would be

desirable if such a goodness of fit test did not involve parametric specification of the marginal

distributions because if it does, it essentially tests a joint hypothesis of correct copula and

marginal specifications. It is also desirable that this test be applicable to any copula family

without requiring any strategic choices and arbitrary parameters, e.g., the choice of a kernel

and a bandwidth. Genest et al. (2009) call tests that have these desirable properties “blanket”

goodness of fit tests.

There exist a number of copula goodness-of-fit tests (see Genest et al., 2009; Berg, 2009,

for recent surveys). However, only a few are “blanket”. For example, Klugman and Parsa
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(1999) propose tests that involve ad hoc categorization of the data; Fermanian (2005) and

Scaillet (2007) propose tests that are based on kernels, weight functions and use the associ-

ated smoothing parameters; Panchenko (2005) proposes a test based on a V-statistic, whose

asymptotic distribution is unknown and depends on the choice of bandwidth; Prokhorov and

Schmidt (2009) propose a conditional moment test for whether the copula-based score func-

tion has zero mean, which depends on parametric marginals and does not distinguish between

the correct copula and any other copula that has a zero mean score function. All these tests

do not qualify as “blanket”.

Genest et al. (2009) report five testing procedures that qualify as “blanket” tests. These

tests are based on empirical copula and on Kendall’s and Rosenblat’s probability integral

transformation of the data as in, e.g., Dobrić and Schmid (2007); Breymann et al. (2003);

Genest et al. (2006); Genest and Rémillard (2008). Recently Mesfioui et al. (2009) proposed

one more “blanket” test based on a sample equivalent of Spearman’s dependence function.

All of these tests are substantially more difficult computationally than the “blanket” test we

propose. Moreover, unlike our test, these tests are not asymptotically pivotal and require a

procedure such as parametric bootstrap to obtain approximate p-values.

The test we propose is based on the information matrix equality which equates the copula

Hessian and the outer-product of copula score. In essence this is the White (1982) specification

test adapted to the first-step nonparametric estimation of marginal distributions. The first

stage affects the asymptotic variance of the estimated Hessian and estimated outer-product

in a nontrivial way. In Section 3 we show that our test statistic asymptotically has a χ2

distribution and in the Appendix we provide the necessary adjustments for the first-stage

rank estimation. Section 2 sets the stage by discussing the connection between copulas and

the information matrix equality. In Section 4, we conduct a power study of the new test. As

an illustration, Section 5 tests the goodness-of-fit of the Gaussian copula in a model with two

stock indices. Section 6 concludes.
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2 Copulas and Information Matrix Equivalence

Consider an N -dimensional copula C(u1, . . . , uN) and N univariate marginals Fn(xn), n =

1, . . . , N . Then, by Sklar’s theorem, the joint distribution of (X1, . . . , XN) is given by

H(x1, . . . , xN) = C(F1(x1), . . . , FN(xN)).

Assume Fn is continuous, n = 1, . . . , N , so C(u1, . . . , un) is unique. Assume further that the

copula density exists, then the joint density of (X1, . . . , XN) is

h(x1, . . . , xN) =
∂NC(u1, . . . , uN)

∂u1 . . . ∂uN

∣∣∣∣
un=Fn(xn),n=1,...,N

N∏
n=1

fn(xn)

= c(F1(x1), . . . , FN(xN))
N∏
n=1

fn(xn),

where c(u1, . . . , uN) is the copula density.

We are interested in goodness-of-fit testing of parametric copula families, so our copulas

are parametric. For example, the N -variate Gaussian copula with N(N−1)
2

parameters can be

written as follows

ΦN(Φ−1(u1), . . . ,Φ
−1(uN);R),

where ΦN is the joint distribution function of N standard normal covariates with a given

correlation matrix R and Φ−1 is the inverse of the standard normal cdf. For Gaussian copulas,

the copula parameters are the distinct elements of R. (See Nelsen, 2006; Joe, 1997, for

examples of other copula families).

Let subscript θ denote the dependence parameter vector of a copula function and let p

denote its dimension. It is well known that if there exists a value θo such that H(x1, . . . , xN) =

Cθo(F1(x1), . . . , FN(x)) then we have a correctly specified likelihood model and, under regular-

ity conditions, the MLE is consistent for θo. Moreover, in this case White’s (1982) information

matrix equivalence theorem holds: the Fisher information matrix can be equivalently calcu-

lated as minus the expected Hessian or as the expected outer product of the score function.

We wish to apply the information matrix equivalence theorem to copulas. Assume that the

copula-based likelihood is three times continuously differentiable and the relevant expectations
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exist. Differentiability three times is required since, aside from the Hessian used in calculating

the statistics, there is also an asymptotic variance expression involving the third derivative

of the log-copula density. Let H(θ) denote the expected Hessian matrix of ln cθ and let C(θ)

denote the expected outer product of the corresponding score function [not to confuse with

copula C]. Then,

H(θ) = E∇2
θ ln cθ(F1(x1), . . . , FN(xN))

C(θ) = E∇θ ln cθ(F1(x1), . . . , FN(xN))∇′θ ln cθ(F1(x1), . . . , FN(xN)),

where “∇θ” denotes derivatives with respect to θ and expectations are with respect to the

true distribution H.

White’s (1982) information matrix equivalence theorem essentially says that, under correct

copula specification,

−H(θo) = C(θo).

Our copula misspecification test uses this equality. Specifically, we will test

H0 : H(θo) + C(θo) = 0 against H1 : H(θo) + C(θo) 6= 0 (1)

3 Test

In practice, θo is not observed. Moreover, the matrices H(θ) and C(θ) contain the marginals

Fn which are usually unknown. However, these quantities are easily estimated. In particular,

it is common to use the empirical distribution function F̂n in place of Fn, a consistent estimate

θ̂ in place of θo, the sample averages H̄ and C̄ in place of the expectations H and C.

Given T observations (x1, . . . , xN), the empirical distribution function is given by

F̂n(s) = T−1
T∑
t=1

I{xnt ≤ s},

where I{·} is the indicator function and s takes values in the observed set of xn. Then, θ̂ –

a consistent estimator of θo sometimes called the Canonical Maximum Likelihood estimator
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(CMLE) – is the solution to

max
θ

T∑
t=1

ln cθ(F̂1(x1t), . . . , F̂N(xNt)).

The following new notation is used for the sample counterparts:

Ĥt(θ) = ∇2
θ ln cθ(F̂1(x1t), . . . , F̂N(xNt)),

Ĉt(θ) = ∇θ ln cθ(F̂1(x1t), . . . , F̂N(xNt))∇′θ ln cθ(F̂1(x1t), . . . , F̂N(xNt)).

Then, the sample equivalents of H(θ) and C(θ) for arbitrary θ are

H̄(θ) = T−1
T∑
t=1

Ĥt(θ),

C̄(θ) = T−1
T∑
t=1

Ĉt(θ).

The test we propose is based on distinct elements of the testing matrix H̄(θ̂)+C̄(θ̂). Given

that the dimension of θ is p, there are p(p+ 1)/2 such elements. Under correct copula specifi-

cation, these are all zero. So our test is in essence a variant of the likelihood misspecification

test of White (1982). What distinguishes our test is that we deal with a semiparametric

likelihood specification – a parametric copula and nonparametric marginals – while White

(1982) deals with a full but possibly incorrect parametric log-density. Correspondingly, the

elements of the White (1982) testing matrix (he calls them “indicators”) do not contain em-

pirical marginal distributions as arguments and this precludes direct application of his test

statistic in our setting.

White (1982) points out that it is sometimes appropriate to drop some of the indicators

because they are identically zero or represent a linear combination of the others. When p = 1

– the case of bivariate one-parameter copula – this problem does not arise. Whether it arises

in higher dimensional models is a copula-specific question that we do not address in this

paper. Assume that no indicators need be dropped.

Following White (1982), define

dt(θ) = vech(Ht(θ) + Ct(θ))
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and

d̂t(θ) = vech(Ĥt(θ) + Ĉt(θ))

where vech denotes vertical vectorization of the lower triangle of a matrix. Note that, in our

setting, dt(θ) depends on the unknown marginals while d̂t(θ) uses their empirical counterparts

F̂n, n = 1, . . . , N . Define the indicators of interest

D̄θ ≡ D̄(θ) ≡ T−1
T∑
t=1

d̂t(θ).

Let D̄θ̂ = D̄(θ̂) and Dθ = Edt(θ). Also note that, under correct specification, Dθo ≡ Edt(θo) =

0.

What is different in the present setting from White (1982) is that nonparametric estimates

of the marginals are used to construct the joint density. It is well known that the empirical

distribution converges to the true distribution at the rate
√
T so the CMLE estimate θ̂ that

uses empirical distributions F̂n is still
√
T -consistent. The rate of convergence of the CMLE

follows from Proposition 2.1 of Genest et al. (1995), which, along with everything that follows,

is subject to regularity conditions.1

The asymptotic variance matrix of
√
T θ̂ will be affected by the nonparametric estimation

of marginals. Therefore, the asymptotic variance of
√
TD̄θ̂ will also be affected. To derive the

proper adjustments to the variance matrix we use the results on semiparametric estimation

of Newey (1994) and Chen and Fan (2006b). Specifically, Chen and Fan (2006b) derive the

distribution of θ̂ given the empirical estimates F̂n, n = 1, . . . , N . Our setting is complicated

by the fact that the test statistic is a function of both θ̂ and F̂n, n = 1, . . . , N . The main

result is given in the following proposition while the derivation of the asymptotic distribution

is deferred to the Appendix.

1The regularity conditions can be found in many papers on semiparametric copula estimation (see, e.g.,

Genest et al., 1995; Shih and Louis, 1995; Chen and Fan, 2006b,a; Hu, 1998). They include compactness of the

parameter set, smoothness of the marginals, existence and continuity of the relevant log-density derivatives.

Verification of these conditions for commonly used copula families is beyond the scope of this paper. For

many copulas, including those we use, this has been done elsewhere (see, e.g., Hu, 1998, Chapter 5).
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Proposition 1 Under correct copula specification and suitable regularity conditions, the in-

formation matrix test statistic

I = TD̄′
θ̂
V −1θo

D̄θ̂,

where Vθo is given in (3) in Appendix, is distributed asymptotically as χ2
p(p+1)/2.

The test statistic has a similar structure and identical asymptotic distribution to that of

the White (1982) test. Indeed it is a variant of that test adjusted for the first step estimation

of the marginals. It is known that the White (1982) test statistic goes to infinity almost surely

when the Ho does not hold (see, e.g., Golden et al., 2010). So we may expect our test to be

consistent, too, but we do not pursue this point further in this paper.2

In practice, a consistent estimate of Vθo will be used. Under correct copula specification,

such an estimate can be obtained by replacing θo and Fnt in (3) by their consistent estimates

θ̂ and F̂nt.

Unlike available alternatives, this test statistic is simple, easy to compute and has a

standard asymptotically pivotal distribution. It involves no strategic choices such as the

choice of a kernel and associated smoothing parameters or any arbitrary categorization of

the data. Essentially this is White’s information equivalence test with the complication of

a first-step empirical distribution estimation. However, as such, it also inherits a number of

drawbacks. One complication is the need to evaluate the third derivative of the log-copula

density function. Lancaster (1984) and Chesher (1983) show how to construct simplified

versions of the test statistic, which are asymptotically equivalent to White’s original statistic

but do not use the third order derivatives. Probably the simplest form of the test is TR2,

where R2 comes from the regression of a vector of ones on

∇θj ln cθ(F̂1(x1t), . . . , F̂N(xNt)), j = 1, . . . , p

and

∇2
θjθk

ln cθ(F̂1(x1t), . . . , F̂N(xNt))+∇θj ln cθ(F̂1(x1t), . . . , F̂N(xNt))∇θk ln cθ(F̂1(x1t), . . . , F̂N(xNt)),

2For test consistency, it is important to differentiate between the Ho as stated in (1) and the null of a specific

copula family. The test may not be consistent against false copula densities such that H(θo)+C(θo) = 0. This

seems to be a feature of all information matrix based tests. We thank a referee for pointing this out to us.
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j = 1, . . . , p, k = 1, . . . , p,

evaluated at θ̂.

An important problem is the well-documented poor finite sample properties of the test,

especially of the TR2 form (see, e.g., Taylor, 1987; Hall, 1989; Chesher and Spady, 1991;

Davidson and MacKinnon, 1992). Horowitz (1994), for example, points out to large deviations

of the finite-sample size of various forms of the White test from their nominal size based on

asymptotic critical values and suggests using bootstrapped critical values instead. Of course

our test will inherit this problem.

4 Power Study

In this section, we study the size and power properties of the test statistic we derived in

Proposition 1. We remark on how this test compares with other copula goodness-of-fit tests

discussed in Genest et al. (2009) but we do not compare here the various alternative forms of

the test statistic such as the TR2 form. We start by plotting size-power curves under various

copula families (see, e.g., Davidson and MacKinnon, 1998, for a comparison of this and other

graphical ways of studying test properties). We generate K realizations of the test statistic I

using a data-generating process (DGP). Denote these simulated values by Ij, j = 1, . . . , K.

Our size-power curves are based on the empirical distribution function (EDF) of the simulated

p-value of Ij, pj ≡ p(Ij), i.e. the probability that I is greater than or equal to Ij according

to its simulated distribution. At any point y in the (0, 1) interval, the EDF of the p-values is

defined by

F̂ (y) ≡ 1

K

K∑
j=1

I(pj ≤ y).

We choose the following values for yi, i = 1, . . . ,m:

yi = 0.001, 0.002, . . . , 0.010, 0.015, . . . , 0.990, 0.991, . . . , 0.999 (m = 215),

where we follow Davidson and MacKinnon (1998) and use a smaller grid near 0 and 1 in order

to study the tail behavior more closely.
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The point of drawing size-power curves is to plot power against true, rather than nominal,

size. Given the well-documented poor finite sample size property of the information matrix

test, this is useful because we can display the test power in situations when the nominal size

is definitely incorrect. Two values of the test statistic are computed: one under the null DGP

(H0) and the other under the alternative DGP (H1). Let F (y) and F ∗(y) be the probabilities

of getting a p-value less than y under the null and the alternative, respectively, and let F̂ (y)

and F̂ ∗(y) be their empirical counterparts. Given the sample size T , the number of simulation

replications K and the grid of size m, a size-power curve is the set of points (F̂ (yi), F̂
∗(yi)),

i = 1, . . . ,m, on the unit square where the horizontal axis measures size and the vertical axis

measures power.

We keep the grid the same, set K = 10, 000, and vary the sample size T and the strength

of dependence in the various null and alternative DGPs we consider. The various null and

alternative copula families are selected from the list used by Genest et al. (2009) in a large

scale Monte Carlo study and, as usual, the dependence strength is measured by Kendall’s τ ,

where τ = 4E[Cθ(U, V )] − 1. We follow Genest et al. (2009) and use the copula parameter

obtained by inversion of Kendall’s τ . In all considered families the solution is known to be

unique so this produces one parameter value under H0 and one under H1. To preserve space

we report curves for T = 200, 300 and τ = 0.25, 0.33, 0.5, 0.75 only.

Figure 1 shows what happens as we change the strength of dependence holding T fixed

at 300. Panel (a) displays the size-power curves under H0: Normal copula and H1: Clayton

copula, panel (b) displays the curves for H0: Normal and H1: Frank, panel (c) is for the test

of H0: Clayton against H1: Normal, and panel (d) is for H0: Clayton against H1: Frank.

We can clearly see from the figure that as the strength of dependence increases, the power of

the test becomes larger. This agrees with similar observations by Genest et al. (2009) made

for other copula goodness-of-fit tests. Interestingly, there are areas on the plots where the

test actually has power less than its size. This happens at small enough sizes to make this

observation important but the same thing occasionally happens with other “blanket” tests

under weak dependence (for τ = 0.25, see, e.g., Genest et al., 2009, Table 1).

Figure 2 displays the size-power curves for different null and alternative DGPs holding
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(a) H0: Normal; H1: Clayton (b) H0: Normal; H1: Frank

(c) H0: Clayton; H1: Normal (d) H0: Clayton; H1: Frank

Figure 1: Size-power curves for different levels of dependence: Kendall’s τ = 0.25, 0.5 and

0.75. Sample size is T = 300.

both T and τ fixed. The set of nulls and alternatives we report includes H0: Normal vs

H1: Clayton, H0: Normal vs H1: Frank, H0: Clayton vs H1: Normal, H0: Clayton vs H1:

Frank. An interesting observation is that the size-adjusted power of the test varies greatly for

the different nulls and alternatives – something that has been noted for other tests as well.

If we further allow τ to increase holding sample size fixed, the variation in power becomes

much smaller. It is interesting to observe that for the tests that involve the Clayton copula

under H0, the test has much more power than for the other models we consider. Again,

this interesting observation coincides with results of Genest et al. (2009) obtained for other

available “blanket” tests (see their Tables 1-3). Note that the ranking of power of the various
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tests changes as we change strength of dependence, but the two tests involving the Clayton

null remain more powerful than the others.

(a) τ = 0.25 (b) τ = 0.333

(c) τ = 0.5 (d) τ = 0.75

Figure 2: Size-power curves for selected copulas. Sample size is T = 300.

Figure 3 shows how the size-power curves shift as the sample size changes from T = 200

to T = 300. The test in each panel is the same as in Figure 1. Not surprisingly, the power

increases as the sample size grows. Plots for larger samples (not reported here) illustrate that

as the sample size becomes larger, H0 is rejected with probability approaching one whenever

H1 is true, i.e. these tests are consistent.

To compare our test with other “blanket” tests in more detail and also to get an idea about

the extent of size distortions, we construct a size and power table similar to those reported by

Genest et al. (2009). Tables 1 and 2 report size and power of our test at the 5% significance
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(a) H0: Normal; H1: Clayton (b) H0: Normal; H1: Frank

(c) H0: Clayton; H1: Normal (d) H0: Clayton; H1: Frank

Figure 3: Size-power curves for different sample sizes: T = 200 and T = 300. Kendall’s τ =

0.5.

level for T = 200 and T = 1, 000. As before we also vary Kendall’s τ from 0.25 to 0.75. In

each row, we report the percentage of rejections of H0 associated with different tests for the

bootstrap test (Simul.) and the asymptotic test (Asy.). For example, when testing for the

Normal copula against Clayton at T = 200 and τ = 0.75, the chance of the bootstrap test

rejecting the incorrect null is approximately 34.6%.

Similar to analogous entries for other “blanket” tests, the frequencies reported in Tables

1 and 2 show that for these sample sizes the test generally holds its nominal size. Indeed

the frequencies listed in the Simul. columns are virtually equal to the nominal level of 5% no

matter what sample size or copula family. This is hardly suprising since we are bootstrapping
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Table 1: Power(Size) for T=200 at nominal size 5%

Copula

under H0

True

Copula

τ = 0.25 τ = 0.50 τ = 0.75

Simul. Asy. Simul. Asy. Simul. Asy.

Normal Clayton 4.9(5) 7.7(7) 21.7(5) 34.8(8) 34.6(5) 62.9(10)

Frank 2.5(5) 4.0(7) 3.8(5) 7.8(7) 16.5(5) 42.0(9)

Gumbel 6.8(5) 9.6(6) 9.2(5) 18.3(8) 9.1(5) 26.7(10)

Clayton Normal 1.3(5) 12.2(10) 29.8(5) 85.06(11) 86.1(5) 99.2(11)

Frank 4.2(5) 26.4(10) 41.6(5) 93.2(11) 64.2(5) 94.6(11)

Gumbel 8.6(5) 36.5(10) 60.4(5) 96.5(12) 86.4(5) 98.4(10)

Frank Normal 6.5(5) 8.2(6) 9.2(5) 14.6(9) 3.1(5) 8.0(10)

Clayton 4.0(5) 5.3(6) 1.5(5) 5.7(9) 2.7(5) 22.4(10)

Gumbel 4.8(5) 5.8(6) 1.8(5) 5.4(9) 1.0(5) 8.7(10)

Gumbel Normal 2.9(5) 5.1(8) 1.3(5) 5.2(9) 1.0(5) 9.9(10)

Clayton 16.9(5) 30.4(8) 37.5(5) 80.0(10) 79.1(5) 97.2(10)

Frank 3.5(5) 8.0(8) 6.3(5) 31.2(9) 32.7(5) 80.2(10)

an asymptotically pivotal statistic using as many as 10,000 replications. In this setting, the

bootstrap test is very close to the exact test for a sufficiently large number of replications,

regardless of the specific null or the specific sample size (see, e.g., Hall and Hart, 1990, Table

1). The same result would be expected for a sample of as few as 20 observations. On the

other hand, the frequencies shown in the Asy. columns are often substantially higher than

5%, suggesting oversize distortions. As expected, the distortions clearly reduce as the sample

size increases.

Compared to equivalent entries in Tables 1 to 3 of Genest et al. (2009), the power of

our test statistic is generally lower than that of the other “blanket” tests available in the

literature. However, at the sample size equal to 1, 000, our test power is usually reasonably

high. Similar to other “blanket” tests, the performance of our test varies greatly with the

DGPs. For some combinations of copulas under the null hypothesis and the alternative, the

test’s power is remarkably low. For example, if the null hypothesis is Frank and the true

copula is Normal, the power of our test at T = 1, 000 is as low as 4-6% even for τ = 0.75.

Interestingly, the power of other “blanket” tests is not very high for some combinations either,

14



Table 2: Power(Size) for T=1000 at nominal size 5%

Copula

under H0

True

Copula

τ = 0.25 τ = 0.50 τ = 0.75

Simul. Asy. Simul. Asy. Simul. Asy.

Normal Clayton 44.0(5) 5(6) 96.9(5) 98.8(7) 93.2(5) 99.0(12)

Frank 10.7(5) 16.2(7) 65.2(5) 80.0(8) 90.3(5) 98.1(12)

Gumbel 58.0(5) 63.4(6) 83.4(5) 92.3(8) 78.8(5) 94.7(11)

Clayton Normal 83.5(5) 87.8(6) 100(5) 100(7) 100(5) 100(7)

Frank 98.6(5) 99.3(7) 100(5) 100(7) 100(5) 100(7)

Gumbel 99.6(5) 99.8(6) 100(5) 100(7) 100(5) 100(7)

Frank Normal 10.1(5) 10.7(5) 21.2(5) 24.0(6) 4.3(5) 5.4(6)

Clayton 8.5(5) 9.6(6) 17.2(5) 19.9(6) 93.5(5) 95.8(6)

Gumbel 20.2(5) 21.4(5) 14.9(5) 17.3(6) 53.8(5) 64.4(7)

Gumbel Normal 8.3(5) 9.4(6) 20.9(5) 25.7(6) 68.3(5) 72.8(6)

Clayton 98.2(5) 98.6(6) 100(5) 100(6) 100(5) 100(6)

Frank 50.8(5) 53.7(6) 99.2(5) 99.5(6) 100(5) 100(6)

and for some combinations of copulas and some sample sizes, Genest et al. (2009) report even

lower percentages of rejection. In such cases, the results of more than one “blanket” test

should probably be considered together.

5 Application

To demonstrate how the test procedure in Section 3 can be applied in practice, in this section

we test whether the bivariate Gaussian copula is appropriate for modeling dependence between

an American and an European stock index. The power study demonstrated that the proposed

test of the null of Normal copula has power against commonly used alternatives such as the

Clayton, Frank and Gumbel copulas.

The two time series we use are FTSE100 and DJIA closing quotes from June 26, 2000 to

June 23, 2008. There are 1972 pairs of returns once holidays are eliminated. Table 3 contains

descriptive statistics of the returns. The statistics we use are third (m3) and fourth (m4)

central sample moments and the Ljung-Box Q test statistics for testing autocorrelation of
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Table 3: Summary statistics of returns series

FTSE DJIA

mean 0.0001 -.0001

st.d. 0.107 0.103

m3 0.104 0.020

m4 6.101 6.590

Q(20) p-value 0.000 0.031

Q2(20) p-value 0.000 0.000

up to 20 lags in returns [Q(20)] and in squared returns [Q2(20)]. Both return series display

excess kurtosis and FTSE returns are a bit more skewed than DJIA.

We first apply an AR-GARCH filter to the return data. As shown in Table 4, this accounts

for most of observed autocorrelation in returns and squared returns. The preferred AR-

GARCH models contain up to one lag in the conditional mean equation and a GARCH

(1,1) in the conditional variance with Normal innovations (allowing for Student-t innovations

resulted in a relatively high estimate of the degrees of freedom (over 9) and did not improve

the fit substantially). Table 4 reports the results of the AR-GARCH modeling.

The results of the test are reported in Table 5. They are based on the residuals from the

AR-GARCH models. In principle, this prefiltering should affect the second step estimation

and an adjustment should be required to account for that. However, Chen and Fan (2006a)

show that the limiting distribution of the copula parameter is not affected by the estimation

of dynamic parameters, although as before it is affected by the nonparametric estimation of

marginal distributions. So, in this case, the prefiltering is innocuous.

For the bivariate Gaussian copula, the estimated parameter θ is simply the sample corre-

lation between the margins of the bivariate normal distribution used to construct the copula.

As reported in Table 5, the parameter estimate is not very large, but positive and statistically

significant. Aside from the test statistic, Table 5 reports p-values obtained using both the

asymptotic and the bootstrap distribution based on 10,000 replications. The test statistic is
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Table 4: AR-GARCH estimates and standard errors

FTSE DJIA

µ -0.0006(0.0004) -0.0007(0.0004)

AR(1) -0.0711(0.0230) -0.0455(0.0221)

ω 0.0000(0.0000) 0.0000(0.0000)

α 0.1158(0.0183) 0.0737(0.0167)

β 0.8742(0.0207) 0.9192(0.0196)

ll 6397.001 6438.337

m3 -0.144 -0.096

m4 3.349 3.724

Q(20) p-value 0.320 0.372

Q2(20) p-value 0.711 0.046

Table 5: Testing the Gaussian copula

θ̂ 0.4830(0.0188)

Asy. p− value for I 0.0489

Exact p− value for I 0.2700
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quite large. Based on the asymptotic critical value, we would reject the Gaussian copula at

the 5% significant level. This is a weak rejection (we would not reject at the 1% level, for

example). However, we should keep in mind the reported over-rejection of this test. If we

use the residual-based bootstrap critical value, we fail to reject the Gaussian copula at any

conventional significance level. This is consistent with the finding of Malevergne and Sornette

(2003), who report that when correlation is not very high, Gaussian copula is appropriate for

financial modelling. Indeed, the rank plots for low correlations are very similar for different

copulas. As a visual confirmation of this finding, we provide in Figure 4 the scatter plots of

our data after transforming it into standard uniform and that of simulated data where the

true copula is Gaussian with θ = 0.5. The two plots look very similar.

(a) Scatter plot of data (b) Scatter plot of Gaussian copula

Figure 4: Scatter plots of standard uniform transformed data and Gaussian copula.

6 Concluding remarks

We have proposed a new goodness-of-fit test for copulas and have shown that it has reasonable

properties. The main advantage of the test is its simplicity. Basically, it is the well-studied

White specification test adapted to a two-step semiparametric estimation. As such, it inherits

White test’s benefits and costs. The most costly feature of the test is its poor behavior in

samples smaller than 1, 000. Other potential criticisms include the test’s inability to detect
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all deviations from the null in finite samples, its inability to differentiate between two well-

performing alternatives, and its in-sample nature.

As in-sample procedures, this and other “blanket” tests can be argued to be susceptible

to overfitting and data mining. However, recent studies in the setting of predictability tests

tend to question the conventional wisdom that out-of-sample tests are more credible than

in-sample (see, e.g., Inoue and Kilian, 2005).

The White test is simple compared to some of the other available “’blanket” tests, which do

not have such a simple asymptotic distribution and are much harder to construct. Obtaining

up to three derivatives of the log-copula density is the main challenge in constructing the test

statistic. However, for some families explicit formulas for the derivatives have been catalogued

(see, e.g., Chen and Fan, 2006b) and, for others, symbolic algebra modules of modern software

can be used to obtain them. Of course there is always the brute force method of calculating

the derivatives numerically. Moreover, the test has many asymptotically equivalent forms,

some of which are derived specifically to reduce the order of derivatives and to make the finite

sample behavior more appealing (see, e.g., Golden et al., 2010). For example, the versions of

Lancaster (1984) and Chesher (1983) do not require the third derivative while the first two

derivatives of the likelihood often arise as byproducts of standard MLE optimization routines.

Overall, the balance of costs and benefits speaks, we believe, in favor of this copula goodness-

of-fit test, especially in large sample settings of a financial application, similar to the one we

have considered.

A Proof of Proposition

We start with N = 2 for simplicity and later give the formulas for any N . Let F̂nt = F̂n(xnt),

n = 1, 2, t = 1, . . . , T , be the empirical cdf’s. Then,

d̂t(θ) = vech[∇2
θ ln c(F̂1t, F̂2t; θ) +∇θ ln c(F̂1t, F̂2t; θ)∇′θ ln c(F̂1t, F̂2t; θ)].

Provided that the derivatives and expectation exist, let

∇Dθ = E∇θdt(θ)
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and

∇D̄θ = T−1
T∑
t=1

∇θd̂t(θ).

First, expand
√
TD̄θ̂ with respect to θ:

√
TD̄θ̂ =

√
TD̄θo +∇Dθo

√
T (θ̂ − θo) + op(1).

Chen and Fan (2006b) show that

√
T (θ̂ − θo)→ N(0, B−1ΣB−1),

where

B = −H(θ0),

Σ = lim
T→∞

V ar(
√
TA∗T ),

A∗T =
1

T

T∑
t=1

(∇θ ln c(F1t, F2t; θ0) +W1(F1t) +W2(F2t)).

Here terms W1(F1t) and W2(F2t) are the adjustments needed to account for the empirical

distributions used in place of the true distributions. These terms are calculated as follows:

W1(F1t) =

∫ 1

0

∫ 1

0

[I{F1t ≤ u} − u]∇2
θ,u ln c(u, v; θ0) c(u, v; θ0)dudv,

W2(F2t) =

∫ 1

0

∫ 1

0

[I{F2t ≤ v} − v]∇2
θ,v ln c(u, v; θ0) c(u, v; θ0)dudv.

So,

√
T (θ̂ − θo) = B−1

√
TA∗T + op(1).

Second, expand
√
TD̄θ0 with respect to F1t and F1t:

√
TD̄θ0 '

1√
T

T∑
t=1

dt(θ0)+
1

T

T∑
t=1

∇F1tdt(θ0)
√
T (F̂1t−F1t)+

1

T

T∑
t=1

∇F2tdt(θ0)
√
T (F̂2t−F2t). (2)
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Under suitable regularity conditions,

1

T

T∑
t=1

∇F1tdt(θ0)
√
T (F̂1t − F1t)

'
∫ 1

0

∫ 1

0

∇uvech[∇2
θ ln c(u, v; θ0) +∇θ ln c(u, v; θ0)∇′θ ln c(u, v; θ0)]

√
T (F̂1(F

−1
1 (u))− u)c(u, v; θ0)dudv

=
1√
T

T∑
t=1

∫ 1

0

∫ 1

0

[I{F1t ≤ u} − u]

∇uvech[∇2
θ ln c(u, v; θ0) +∇θ ln c(u, v; θ0)∇′θ ln c(u, v; θ0)]c(u, v; θ0)dudv.

Denote

M1(F1t) =

∫ 1

0

∫ 1

0

[I{F1t ≤ u} − u]

∇uvech[∇2
θ ln c(u, v; θ0) +∇θ ln c(u, v; θ0)∇′θ ln c(u, v; θ0)]c(u, v; θ0)dudv,

then

1

T

T∑
t=1

∇F1tdt(θ0)
√
T (F̂1t − F1t) =

1√
T

T∑
t=1

M1(F1t).

Similarly, denote

M2(F2t) =

∫ 1

0

∫ 1

0

[I{F2t ≤ v} − v]

∇vvech[∇2
θ ln c(u, v; θ0) +∇θ ln c(u, v; θ0)∇′θ ln c(u, v; θ0)]c(u, v; θ0)dudv,

then

1

T

T∑
t=1

∇F2tdt(θ0)
√
T (F̂2t − F2t) =

1√
T

T∑
t=1

M2(F2t).

Therefore, equation (2) can be rewritten as

√
TD̄θ0 =

1√
T

T∑
t=1

d(θ0) +
√
TB∗T + op(1),

where

B∗T =
1

T

T∑
t=1

[M1(F1t) +M2(F2t)].

21



Finally, combining the expansions gives

√
TD̄θ̂ =

1√
T

T∑
t=1

d(θ0) +
√
TB∗T +∇Dθ0B

−1
√
TA∗T + op(1).

So

√
TD̄θ̂ → N(0, Vθ0),

or, equivalently,

TD̄′
θ̂
V −1θ0

D̄θ̂ → χ2
p(p+1)/2,

where

Vθ0 = E {dt(θ0) +M1(F1t) +M2(F2t)

+∇Dθ0B
−1 [∇θ ln c(F1t, F2t; θ0) +W1(F1t) +W2(F2t)]

}
× {dt(θ0) +M1(F1t) +M2(F2t)

+∇Dθ0B
−1 [∇θ ln c(F1t, F2t; θ0) +W1(F1t) +W2(F2t))]

}′
.

Extension to N ≥ 2 is straightforward. Now

dt(θ) = vech[∇2
θ ln c(F1t, F2t, . . . , FNt; θ)+∇θ ln c(F1t, F2t, . . . , FNt; θ)∇′θ ln c(F1t, F2t, . . . , FNt; θ)],

and the asymptotic variance matrix becomes

Vθ0 = E

{
dt(θ0) +∇Dθ0B

−1

[
∇θ ln c(F1t, F2t, . . . , FNt; θ0) +

N∑
n=1

Wn(Fnt)

]
+

N∑
n=1

Mn(Fnt)

}

×

{
dt(θ0) +∇Dθ0B

−1

[
∇θ ln c(F1t, F2t, . . . , FNt; θ0) +

N∑
n=1

Wn(Fnt)

]
+

N∑
n=1

Mn(Fnt)

}′
,

(3)

where, for n = 1, 2, . . . , N ,

Wn(Fnt) =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

[I{Fnt ≤ un} − un]∇2
θ,un ln c(u1, u2, . . . , uN ; θ0)

c(u1, u2, . . . , uN ; θ0)du1du2 · · · duN ,
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and

Mn(Fnt) =

∫ 1

0

∫ 1

0

· · ·
∫ 1

0

[I{Fnt ≤ un} − un]∇unvech[∇2
θ ln c(u1, u2, . . . , uN ; θ0)

+∇θ ln c(u1, u2, . . . , uN ; θ0)∇′θ ln c(u1, u2, . . . , uN ; θ0)]

c(u1, u2, . . . , uN ; θ0)du1du2 · · · duN .
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Sklar, A. (1959): “Fonctions de répartition à n dimensions et leurs marges,” Publications de l’Institut de

Statistique de l’Université de Paris, 8, 229–231.
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