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Abstract

In this paper we put forward a new time series model, which describes nonlinearity and seasonality

simultaneously. We discuss its representation, estimation of the parameters and inference. This

seasonal STAR (SEASTAR) model is examined for its practical usefulness by applying it to 18

quarterly industrial production series. The data are tested for smooth-transition nonlinearity and

for time-varying seasonality. We �nd that the model �ts the data well for 14 of the 18 series. We

also consider out-of-sample forecasting where we compare forecasts from the SEASTAR models

with forecasts from nested models. It turns out that the SEASTAR model sometimes outperforms

the other models, particularly for large horizons. Finally, we compare the SEASTAR models with

STAR models for the 14 corresponding seasonally adjusted series, and we �nd that the estimated

business cycle chronologies can be markedly di�erent.
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1 Introduction

Additional to a trending pattern, several (quarterly observed) macroeconomic time series

variables display pronounced seasonal uctuations (at least, if they are not seasonally ad-

justed) and sometimes also signs of nonlinearity. The latter feature can be visualized by

the apparent presence of business cycle regimes, where typically recessions cover only a

few quarters while expansions last much longer. Examples of such variables are industrial

production and employment. These variables are usually examined in order to investi-

gate business cycle uctuations in the individual series and to study possible dynamic

correlations across the variables.

It is well known that the quality of the analysis of business cycle uctuations in individ-

ual series can depend on the way one takes care of the trend and the seasonal uctuations.

For example, Canova (1994) shows that various detrending methods lead to di�erent busi-

ness cycle turning points. In a similar vein, Franses (1996) shows that various ways to treat

seasonality lead to di�erent business cycle chronologies. Furthermore, using empirical and

simulated data Franses and Paap (1999) show that nonlinear time series models suggest

di�erent regime-switches, depending on whether the data are seasonally adjusted or not.

In this paper we propose a univariate time series model which incorporates explicit

descriptions of seasonality and nonlinearity. As the concept of a trend in a nonlinear en-

vironment is not yet well de�ned, we assume that one can take care of a trend by �rst

di�erencing the log-transformed data and converting the analysis to growth rates. To

keep matters tractable, for the nonlinear part we apply a Smooth Transition Autoregres-

sion [STAR] model, see Ter�asvirta (1994, 1998) and Granger and Ter�asvirta (1993). To

describe the seasonal uctuations, we consider a combination of deterministic seasonal

dummies and lags at the seasonal frequencies. As we wish to allow for the possibility

that seasonal uctuations change over time, and perhaps change according to the business

cycle as is suggested by the empirical results in Canova and Ghysels (1994), we introduce

a second function that indicates regime-switching behavior, where this function addresses

seasonality. The �nal model is called a Seasonal STAR [SEASTAR] model. In a sense, this
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model is a speci�c version of the Multiple-Regime STAR model, introduced in Van Dijk

and Franses (1999). In this paper, we examine the potential applicability of the SEASTAR

model for various quarterly industrial production series.

The outline of the paper is as follows. In Section 2, we discuss various details concerning

the SEASTAR model for quarterly data. First, we discuss representation, and next we

outline a potentially useful speci�cation strategy. We illustrate this speci�cation strategy,

which builds on the method proposed in Ter�asvirta (1994) for the basic STAR model,

for 18 country-speci�c quarterly industrial production series. Based on the relevant p-

values of the LM-type test statistics, we �nd ample evidence of STAR-type nonlinearity

and of non-constant seasonal uctuations. In Section 3, we outline how one can estimate

the parameters in the SEASTAR model and which diagnostic measures can be used to

evaluate the empirical adequacy of the SEASTAR model. We present the estimation and

diagnostic results for 14 of the 18 variables, as the model does not seem to �t well for 4

series. To save space, we give graphs for only three countries, that is, for the US, Canada

and Italy. Detailed results for the other countries can be obtained from the authors. In

Section 4, we outline how one can generate one-step and multi-step ahead forecasts from

a SEASTAR model. A comparison of these forecasts for the 14 series with forecasts from

linear models and from STAR models with constant seasonality shows that the SEASTAR

model certainly deserves attention in practice. In Section 5, we investigate if STAR models

can be �tted to the seasonally adjusted equivalents of the 14 variables considered, where

we speci�cally compare the estimated business cycles. Finally, in Section 6, we conclude

the paper with some remarks.

2 Representation and speci�cation

In this section we �rst briey discuss a STARmodel, then we put forward our representation

of a SEASTAR model, and �nally we discuss an empirical speci�cation strategy. We

describe all material while having an application to quarterly growth rates of industrial

production in mind. In the �nal subsection we focus on our illustrative variables.
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2.1 A STAR model

Our SEASTAR model is a rather straightforward extension of the well-known STAR model

(Ter�asvirta, 1994). A STAR model of order p for a non-trending time series variable yt is

de�ned as

yt = F (zt�d; ; �)(�
E
0 + �

E
1 yt�1 + �

E
2 yt�2 + : : :+ �

E
p yt�p)

+ [1� F (zt�d; ; �)](�
R
0 + �

R
1 yt�1 + �

R
2 yt�2 + : : :+ �

R
p yt�p) + �t; (1)

where �t � IID(0; �2� ). The transition function F (�) can be de�ned as the logistic function

F (zt�d; ; �) =
1

1 + exp[�(zt�d � �)]
;  > 0; (2)

and this is also what we will do in the sequel. The transition variable zt�d can be, for

example, a lagged variable yt�d. The function value approaches 0 if zt�d << �. For

increasing values of zt�d, F (zt�d; ; �) attains increasing values between 0 and 1, where

F (zt�d; ; �) = 0:5 for zt�d = �. The function F (zt�d; ; �) approaches 1 if zt�d >> �. The

parameter  determines the smoothness of the function F (�). A large value of , relative

to the values of zt�d, implies less smoothness.

The STAR model is capable of describing time series data which experience two di�erent

regimes. Within these regimes, the data are described by two di�erent AR processes, and

across the regimes transitions can occur more or less smoothly. When analyzing economic

time series variables, we are tempted to call the two regimes recessions and expansions.

If zt�d is a monotonical increasing function of past growth in industrial production, im-

plying that when zt�d is below some � there is not enough growth, one might consider

the corresponding regime a recession. Therefore, we label the parameters in (1) with the

superscripts R and E.
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2.2 Representation

The STAR model can be useful for nonseasonal (or seasonally adjusted) data, which display

STAR type nonlinearity. The SEASTAR model nests the STAR model, but it is also

applicable to time series data with a seasonal pattern. In this paper we will focus on

quarterly data, but a generalization of the model for data with a di�erent frequency is

straightforward.

Denote Ds;t (s = 1; 2; 3; 4) as quarterly seasonal dummy variables with Ds;t = 1 when

time t corresponds with season s, and Ds;t = 0 otherwise. The seasonal STAR [SEASTAR]

model, for a time series variable yt, is now given by

yt = Fs(wt�ds ; s; �s)(Æ
E
1 D1;t + Æ

E
2 D2;t + Æ

E
3 D3;t + Æ

E
4 D4;t)

+ [1� Fs(wt�ds; s; �s)](Æ
R
1 D1;t + Æ

R
2 D2;t + Æ

R
3 D3;t + Æ

R
4 D4;t)

+Fc(zt�dc ; c; �c)(�
E
1 yt�1 + �

E
2 yt�2 + : : :+ �

E
p yt�p)

+ [1� Fc(zt�dc ; c; �c)](�
R
1 yt�1 + �

R
2 yt�2 + : : :+ �

R
p yt�p) + �t; (3)

where �t has been de�ned before, and where wt also denotes a transition variable. Notice

that, compared to (1), the intercepts �R0 and �
E
0 are redundant because of the inclusion

of two times four seasonal dummies in the model. We de�ne the two transition functions

Fs(�) for changing deterministic seasonal variation and Fc(�) for the business cycle by the

logistic functions

Fs(wt�ds ; s; �s) =
1

1 + exp[�s(wt�ds � �s)]
; s > 0 (4)

and

Fc(zt�dc ; c; �c) =
1

1 + exp[�c(zt�dc � �c)]
; c > 0: (5)

The transition variables wt and zt in (3) can be a function of (yt; yt�1; : : :), like for example

�4yt = yt � yt�4, or a linear deterministic trend t. When wt = t, the function value of

the seasonal transition function Fs(�) changes smoothly from 0 to 1 as time progresses,
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and thus represents a smooth structural break in the deterministic seasonality in the data.

The delay parameters ds � 1 and dc � 1 are included to represent the possibility that the

dependent variable yt correlates with some delay with changes in the respective transition

variables. In principle, c 6= s; dc 6= ds and �c 6= �s, although parameter restrictions can be

imposed in practice. Notice that the SEASTAR model focuses on changing deterministic

seasonality. Obviously, if a SEASTAR model is truly generating the data, one may �nd

the presence of seasonal unit roots in an otherwise linear model.

The SEASTAR model is a straightforward generalization of the STAR model (1)-(2).

When s = 0 in (4) the function value of Fs(�) is constant and equal to 0.5 for all values of

wt. In this case the seasonal pattern in the data is described by the four seasonal dummies

with respective coeÆcients (ÆEs + Æ
R
s )=2, for s = 1; 2; 3; 4. The resulting model is a STAR

model without regime switches in the seasonal component, that is,

yt = Æ1D1;t + Æ2D2;t + Æ3D3;t + Æ4D4;t

+Fc(zt�dc ; c; �c)(�
E
1 yt�1 + �

E
2 yt�2 + : : :+ �

E
p yt�p)

+ [1� Fc(zt�dc ; c; �c)](�
R
1 yt�1 + �

R
2 yt�2 + : : :+ �

R
p yt�p) + �t: (6)

Another noteworthy restricted variant of the general SEASTAR model in (3) is the model

with s = c = 0. In this case, (3) results in the linear seasonal model, that is,

yt = Æ1D1;t + Æ2D2;t + Æ3D3;t + Æ4D4;t

+�1yt�1 + �2yt�2 + : : :+ �pyt�p + �t; (7)

which is a model with constant seasonal dummy parameters and AR(p) dynamics. Fur-

thermore, one can consider a restricted SEASTAR model with Fc(�) = Fs(�), that is,

yt = F (wt�d; ; �)(Æ
E
1 D1;t + Æ

E
2 D2;t + Æ

E
3 D3;t + Æ

E
4 D4;t + �

E
1 yt�1 + : : :+ �

E
p yt�p)

+ [1� F (wt�d; ; �)](Æ
R
1 D1;t + Æ

R
2 D2;t + Æ

R
3 D3;t + Æ

R
4 D4;t + �

R
1 yt�1 + : : :+ �

R
p yt�p)

+�t: (8)
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In this last model it is assumed that deterministic seasonality changes with the business

cycle. Additional to the SEASTAR model, we will also use the three restricted variants

(6), (7) and (8) in our empirical study below.

2.3 Speci�cation strategy

Before �tting a speci�c nonlinear model to time series data, it is common practice �rst to

test whether this model can be suitable for the data instead of a linear model. Now, the null

hypothesis of linearity can be expressed as equality of the autoregressive parameters in the

two business cycle regimes and at the same time equality of the seasonal parameters in the

two seasonal regimes in (3), that isH0 : �
E
i = �

R
i ; (i = 1; : : : ; p) and ÆEj = Æ

R
j ; (j = 1; 2; 3; 4).

This is to be tested against the alternative hypothesis H1 : �Ei 6= �
R
i and/or ÆEj 6= Æ

R
j

for at least one value of i; j. Notice that under H0 the parameters s, �s, c and �c

are unidenti�ed. To circumvent this problem we propose a test that expands on the

one proposed in Ter�asvirta (1994), which tests for STAR-type nonlinearity in nonseasonal

time series data. Our test discriminates between the linear seasonal model (7) and the

SEASTAR model (3). The procedure is as follows. First, one should decide which order

p is appropriate for a linear seasonal model for the data. A possible method is to choose

the AR-order p which corresponds with a minimum value for AIC. Another possibility is

to a priori set the order at a chosen value, for example p = 4 or p = 5 for quarterly data.

Second, one should decide which variables may be suitable as transition variables zt�dc and

wt�ds in (3). Previous experience with the STAR model has indicated that zt�dc = �4yt�dc

can be a good choice for the business cycle part, see Ter�asvirta and Anderson (1992) for

example. As the seasonal transition variable wt�ds, one can opt for �4yt�ds or t. The last

option results into what is called a Time-Varying STAR model. Notice that the proposed

transition variables should be, at least approximately, free of seasonality. This is important

for the assumption that there are smooth transitions from one regime to the other.

The linearity tests make use of the following auxiliary regression, which is obtained

from the SEASTAR model (3)-(5) by replacing the transition functions by a Taylor ap-

proximation, that is,
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yt =
4X

s=1

(ÆsDs;t + Æs;1Ds;twt�ds + Æs;2Ds;tw
2
t�ds

+ Æs;3Ds;tw
3
t�ds

)

+
pX

i=1

(�iyt�i + �i;1yt�izt�dc + �i;2yt�iz
2
t�dc

+ �i;3yt�iz
3
t�dc

) + ut: (9)

The test amounts to the familiar F -test for the signi�cance of the cross-product variables

Ds;twt�ds , Ds;tw
2
t�ds

, Ds;tw
3
t�ds

, (s = 1; : : : ; 4) and/or the cross-product variables yt�izt�dc ,

yt�iz
2
t�dc

, yt�iz
3
t�dc

, (i = 1; : : : ; p), where the �rst test concerns the seasonal cycle (Fs) and

the second the business cycle (Fc). If these variables are signi�cant, a SEASTAR model

can be considered for the data.

2.4 Quarterly industrial production

To illustrate the test procedure, we consider quarterly seasonally unadjusted data on in-

dustrial production for 18 OECD countries, that is, Austria, Belgium, Canada, Finland,

France, Greece, Ireland, Italy, Japan, Luxemburg, The Netherlands, Norway, Portugal,

Spain, Sweden, Switzerland, United Kingdom (UK) and the United States (US). The data

source is Datastream. The sample period covers 1960:1-1997:1. The series for Canada and

Spain start in 1961:1, and for Greece in 1962:1. The series for Austria ends in 1995:4, for

Canada, Greece, Norway and Sweden in 1995:1, for Ireland in 1994:4, and for Luxemburg

and Switzerland the last observation is 1996:4. The data are transformed by taking logs

and �rst di�erences. The seasonal di�erence of a logarithmic transformed series repre-

sents the seasonal growth rate, and, as mentioned before this variable may be useful as a

transition variable.

The �rst-di�erenced and seasonally di�erenced log-transformed series of 3 G7 series,

that is Canada, Italy and the US, are depicted in Figures 1 to 3. For Canada (Figure

1) there are no clear signs of changing seasonality for the �rst-di�erenced log-transformed

series, although the mean growth rate appears to decline over the sample period. The

seasonally di�erenced log-transformed series indicates a clear recession in 1983 and 1991.
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For Italy (Figure 2) seasonality is clearly not constant (upper panel), and we see also

pronounced business cycle uctuations (lower panel). Finally, for the US we see in Figure

3 an outlier in 1975 and recessions in or around the years 1970, 1975, 1982 and 1991. Also,

changing seasonality may be noticed in the upper panel.

We apply the test for SEASTAR nonlinearity to the 18 series. For convenience, the

order p is �xed at 5. We denote xt as the original industrial production series. We con�ne

ourselves to the cases where zt�dc = wt�ds = �4 lnxt�d(dc = ds = d 2 f1; : : : ; 4g), and

zt�dc = �4 lnxt�dc (dc 2 f1; : : : ; 4g); wt�ds = t. For these eight cases we perform the

auxiliary regression (9) and we test for the signi�cance of the cross-product variables. The

resulting p-values are given in Table 1. When for a series the p-values under Fs and Fc are

both small, a SEASTAR model with the combination of the relevant transition variables

is considered suitable for the data. We see that, for the choice wt = t in the right-hand

panel of Table 1, nonlinearity is detected for the seasonal part Fs in all cases. Notice also

that there are series (Belgium, Spain, France, Italy and the US) for which no combination

results in a p-value smaller than 0.10 for both Fs and Fc. As our main interest lies in

examining the possible applicability of the SEASTAR model, we will nevertheless choose

a combination for each of the 18 countries, usually by considering the lowest p-values.

3 Parameter estimation and diagnostics

In this section we elaborate on the estimation of the parameters in the SEASTAR model,

and we discuss some diagnostics on the residuals of a �tted SEASTAR model.

3.1 Parameter estimation

Consider again the SEASTAR model (3)-(5). Call � the vector of model parameters, that

is,

� = f�
R
1 ; : : : ; �

R
p ; �

E
1 ; : : : ; �

E
p ; Æ

R
1 ; : : : ; Æ

R
4 ; Æ

E
1 ; : : : ; Æ

E
4 ; s; �s; c; �cg: (10)
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When the last four elements of � are �xed, the model reduces to a model, which is linear in

the other parameters. In this case, the remaining parameters can be estimated by ordinary

least squares. When we choose a reasonable grid of values for s; �s; c; �c and calculate the

residual variance of every corresponding �tted linear model, we �nd a suboptimal model,

in the sense of least residual variance. The resulting model parameters are then taken to be

the starting values for the next step, that is, nonlinear least squares (NLS) optimization.

This NLS boils down to minimizing the residual sum of squares of a �tted SEASTAR

model, that is,
TX
t=1

(yt �G(It; �))
2
; (11)

with respect to �. Here, It is the information set yt; yt�1; : : :, and G(It; �) is the so-called

skeleton of the SEASTAR model, that is, the right hand side of (3) without the noise term

�t. When the error process �t in (3) is normally distributed, NLS is equivalent to maximum

likelihood estimation.

For the empirical data, we �t SEASTAR models, where the transition variables wt�ds

and zt�dc are set according to the results in Table 1. In some cases, simply taking the

combination of transition variables, which resulted in the smallest p-values for the linearity

test, does not automatically result in satisfactory estimation results. Therefore, we take the

combination of transition variables which correspond with small p-values (< :15) in Table

1, with transition functions in which the two regimes actually appear, and with residual

diagnostics (to be discussed below) that do not suggest misspeci�cation. The order p in

the AR part of the model is determined by AIC. In a few cases it turns out that this p is

larger than the length of all occurring regimes where the business cycle function Fc attains

the value 0. Considering this to be undesirable, we reduce the AR-order in this regime, and

this leads to satisfactory results. Indeed, for Belgium, Canada, Greece, Japan, Luxemburg,

Switzerland and the UK this approach is successful.

For many series it appears impossible to �t a satisfactory SEASTAR model, in the

sense that the residuals show no signi�cant serial correlation and that there are enough

data points in both regimes. For these cases it proves helpful to eliminate the inuence of
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one or a few aberrant data points by including dummy regressors dumt;t�, de�ned by

dumt;t� =

8<
:

1 if t = t
�

0 otherwise,
(12)

where we implicitly assume that the outliers are innovation outliers. For four series this

procedure is still not suÆcient. The French industrial production series has two very

dominant additive outliers. They concern the quarters 1963.1 and 1968.2. We remove

them by replacing the log-value of an outlying observation at time t� by the average of

the log-values at t� � 4 and t
� + 4. As this can be rather inuential to the outcome of

the SEASTAR test, we redo the test for France with the modi�ed series. After these

corrections, we �nd an acceptable SEASTAR model for the French series.

Norway exhibits a prominent additive outlier in the second quarter of 1975. Removing

this in the same manner as for France, however, does not result in an acceptable SEASTAR

model. The estimated Fc-function attains the value 0 almost everywhere, which would

suggest a permanent recession. For Finland and Sweden the �tted SEASTAR models

feature estimated parameters in both regimes which do not di�er much from each other

in both the business cycle part and the seasonal part. This indicates that no distinction

between the regimes can be made, and thus that a SEASTAR model is not adequate for

these data sets. The estimated transition function values Fc(zt�dc) are almost always equal

to 0. Finally, for Japan we �nd AR parameters which suggest explosive behavior. Hence,

we decide to discard the four countries in our further analysis. The location of the supposed

outliers in the remaining 14 series is given in Table 2.

The results of our estimation procedure can be found in Table 3. As we want to

analyze the out-of-sample forecasting performance of the models, we only estimate the

parameters for samples ending in 1988.4. Notice that no standard errors are given for

the estimated smoothness parameters s and c. The reason for this is that it can be

extremely diÆcult to estimate these parameters accurately. Particularly for large values

of the smoothness parameter, the associated transition function approaches the indicator

function. Comparing the parameters �̂Ri with �̂
E
i and Æ̂

R
j with Æ̂

E
j , we see that in almost
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all cases there are di�erent regimes in seasonality. Only the seasonal regimes for Austria

show some similarity.

In Figures 4 to 6 we present the estimated transition functions for Canada, Italy and

the US. For Canada (Figure 4) we see that Fc and Fs are almost the same. This comes as

no surprise, as the transition variables zt�dc and wt�ds are equal and also the estimated c

and s as well as �c and �s are almost equal, see Table 3. The Fc for Italy (Figure 5) shows

regular uctuations until 1981, after which a long recession follows. Finally, the transition

functions for the US in Figure 6 indicate four very clear recessions: 1971, 1975, 1981 and

1983.

3.2 Diagnostics

Evaluating estimated SEASTAR models involves the properties of the resulting residuals,

for example by testing whether the residuals are serially correlated. The standard Ljung-

Box test for residual serial correlation does not apply when the data are generated by a

STAR, see Eitrheim and Ter�asvirta (1996). In the same paper, these authors therefore

propose a proper LM-test for residual correlation, and we will follow their suggestion.

Testing whether the residuals are approximately Gaussian by calculating the Jarque-Bera

statistic may also indicate the correctness of the model speci�cation. Aberrant observations

in the data may have an impact on the estimation results. Outliers have already been taken

into account in the estimation phase, but only in an informal manner. Therefore, we also

look at the skewness of the residuals. If the residuals are skewed, this may indicate the

presence of remaining outliers. Finally, we test for ARCH.

The residuals of the 14 �tted models are tested for normality, autocorrelation and

ARCH. The resulting p-values can be found in Table 4. We see that most test results do

not give reason for concern, when utilizing a con�dence level of 95%. An exception is the

ARCH test result for Canada. In sum, it seems that we can successfully �t SEASTAR

models to 14 of the 18 industrial production series initially considered.
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4 Forecasting

In this section we examine if the �tted SEASTAR models perform well in terms of fore-

casting. First, we outline how one can generate out-of-sample forecasts.

4.1 Generating forecasts

For ease of notation, in this section we write Fs(�) for Fs(�; s; �s), and Fc(�) for Fc(�; c; �c).

We assume that all the parameters in (3)-(5) are known. Of course, this is in practice

generally not the case, giving cause to extra uncertainty. Call T the forecast origin, and

IT the information set available at time T , that is IT = yT ; yT�1; : : :. The minimum mean

squared error (MMSE) conditional h-step-ahead point forecast ŷT+hjT is given by

ŷT+hjT = E[yT+hjIT ]: (13)

For h = 1, this results in

ŷT+1jT = Fs(wT+1�ds)(
4X
i=1

Æ
E
i Di;T+1) + [1� Fs(wT+1�ds)](

4X
i=1

Æ
R
i Di;T+1)

+Fc(zT+1�dc)(
pX
i=1

�
E
i yT�i+1) + [1� Fc(zT+1�dc)](

pX
i=1

�
R
i yT�i+1); (14)

where we have used that E[f(yT )jIT ] = f(yT ) 8f; T and E[�T+jjIT ] = 0; (j > 0). This

means that the 1-step-ahead MMSE forecast can be calculated straightforwardly. As all

terms on the right hand side of (14) are known at T , the variance of this prediction is equal

to the variance of �T+1, which is �2� .

For h-step-ahead forecasting, matters become more complicated. In case ds; dc � h,

Fs(wT+h�ds) and Fc(zT+h�dc) belong to IT , and are thus given. In this case, one has

ŷT+hjT = Fs(wT+h�ds)(
4X
i=1

Æ
E
i Di;T+h) + [1� Fs(wT+h�ds)](

4X
i=1

Æ
R
i Di;T+h)

+Fc(zT+h�dc)(
pX

i=1

�
E
i ŷT+h�ijT ) + [1� Fc(zT+h�dc)](

pX
i=1

�
R
i ŷT+h�ijT ): (15)
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Note that if p � h, ŷT jT ; : : : ; ŷT+h�pjT can be replaced by their actual values yT ; : : : ; yT+h�p.

When ds < h or dc < h, forecasting is not as straightforward, that is,

ŷT+hjT = E[Fs(wT+h�ds)jIT ](
4X

i=1

Æ
E
i Di;T+h) + E[1� Fs(wT+h�ds)jIT ](

4X
i=1

Æ
R
i Di;T+h)

+E[Fc(zT+h�dc)(
pX
i=1

�
E
i yT+h�i)jIT ] + E[(1� Fc(zT+h�dc))(

pX
i=1

�
R
i yT+h�i)jIT ]:

(16)

As Fs(�) and Fc(�) are nonlinear functions, we can not replace E[Fs(�)] by Fs(E[�]), or

E[Fc(�)] by Fc(E[�]). A few approximating methods have been proposed, see for example De

Gooijer and de Bruin (1998). A �rst is the naive method, where for every forecast horizon

h the noise term �T+h is put to zero. A second method is the Monte Carlo method. The

expected value of yT+h conditional on IT can be approximated with the help of computer

simulations. Let M be a large number, and y
(i)
T+1; (i = 1; : : : ;M) be simulated realizations

of yT+1, making use of (3), where the noise terms, say �
(i)
T+1, are produced by a random

number generator and drawn from the assumed distribution of the noise terms. In a similar

vein, y
(i)
T+2; (i = 1; : : : ;M) can be produced, where in the underlying process yT+1 is �lled

in by y
(i)
T+1. Continuing this way to h steps, the Monte Carlo h-step-ahead forecast is the

geometric mean, given by

ŷ
mc
T+h =

1

M

MX
i=1

y
(i)
T+h (17)

Finally, one can consider the bootstrap method. This is similar to the Monte Carlo method,

but this time the noise terms �
(i)
T+h are not produced by a random number generator, but

drawn randomly from the residuals of the �tted model. This has the advantage that no

assumptions have to be made about the noise distribution. As our diagnostic test results

do not reject the approximate normality of the estimated residuals, we consider the Monte

Carlo method in the sequel.
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4.2 Empirical results

The Monte Carlo forecasting method is applied to the 14 industrial production series at

hand. As we are dealing with quarterly data, we are interested in 1-step-ahead, in 4-,

8- and 12-step-ahead forecasts. As mentioned before, for the speci�cation and estimation

procedure of SEASTAR models, the data up to and including 1988.4 (in the following

indicated by T ) are used. When an empirical series contains, say, N data points, then

there are for every series still a suÆcient number, N � T , of data available for out-of-

sample forecasting purposes. We do not re-estimate the parameters in the models when

the forecast origin shifts from T + 1 to N � 1.

In order to quantify the accuracy of forecasts produced by the SEASTAR model for a

series, a comparison is made between the forecasts of a SEASTAR model and the restricted

model (6), that is, the STAR model with constant seasonality and (7), that is, the linear

model. These restricted models are also �tted to the industrial production data up to

1988.4, where we take the same value of p as for the SEASTAR model. For some countries

we also �t (8) when the transition variables and delay parameters are the same. In Table

5, we give the AIC and BIC values for the various models. Upon using AIC, one would

prefer the SEASTAR model in 13 of the 14 cases. In case of Canada, one would select the

model with seasonality changing with the business cycle. Interestingly, and in contrast to

many diagnostic test results for nonlinearity in Table 1, when using BIC one would prefer

a linear model in 8 of the 14 cases. Still, for Spain, Italy, Luxemburg, The Netherlands,

Portugal and the UK one would select a SEASTAR model based on BIC.

We generate forecasts for the SEASTAR model and for (6) and (7). The mean squared

prediction error is calculated. For h-steps-ahead, this MSPE is de�ned as

MSPE =
1

N � T � h+ 1

N�TX
j=h

(ŷT+jjT+j�h� yT+j)
2 (18)

The forecast evaluation results are given in Table 6. For one-step-ahead forecasts, the

SEASTAR model outperforms its competitors for Belgium, France, The UK and the US.

The linear model is seen to generate rather good forecasts, as compared with the SEASTAR

14



and STAR model. The SEASTAR model yields considerably poor results for the Nether-

lands.

The forecast performance of the SEASTAR improves considerably if the forecast hori-

zon is extended to four, eight and twelve steps. The model seems particularly useful for

Belgium, Italy, The UK and the US. In general we can conclude that the SEASTAR model

can sometimes outperform the STAR model and the linear model. For some countries,

however, the linear model is hard to beat.

5 E�ects of seasonal adjustment

In this penultimate section we briey investigate the inuence of seasonal adjustment

on estimated regime shifts in the data. For this purpose we obtain the corresponding

seasonally adjusted industrial production data for the 14 countries. We test for STAR

type nonlinearity in the growth rates, following the method described in Ter�asvirta (1994).

This test is essentially the same as the SEASTAR test in subsection 2.3, where now all

seasonal dummies are left out. The resulting p-values can be found in Table 7. STAR

models are �tted, where the delay of the transition variable, which is the annual growth

rate of the seasonally adjusted series, follows from Table 7.

The resulting transition function values for the STAR models for adjusted data are

compared with the function values of Fc for the SEASTAR models for the corresponding

seasonally unadjusted series. A measure of agreement across the functions is calculated.

The results can be found in Table 8. We �nd that, apart from Austria and France, there

is substantial agreement, but also that this agreement is not perfect. The values of kappa

di�er signi�cantly from 1 for all series. This can be interpreted as that there are quite a

number of observations which get di�erent classi�cations. Apart from Austria, this usually

amounts to about 5% to 12% of the data points. Hence, it seems that the SEASTAR model

for unadjusted data and the STAR model for adjusted data can lead to di�erent business

cycle chronologies.
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6 Concluding remarks

In this paper we introduced a new STAR-type nonlinear model with two components,

that is, a component for the business cycle and a component for changing deterministic

seasonality. When illustrated for 14 quarterly industrial production series, we found that

the resultant SEASTAR model had good in-sample �t and did not get rejected when

using residual diagnostics. Its out-of-sample forecasts turned out to be a good competitor

in some cases to more restricted models. Finally, the estimated business cycle from a

SEASTAR model could be quite di�erent from that estimated from a STAR model for

adjusted data. In general, we found almost no evidence that seasonal uctuations changed

with the business cycle.

In our further work we aim to extend the univariate SEASTAR model to a multivariate

setting. This can be useful for the analysis of common business cycles and/or common

seasonal uctuations across variables.
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Table 1: The p-values of SEASTAR type nonlinearity tests for 18 quarterly industrial
production series (based on all observations)

zt�dc = wt�ds = �4 lnxt�d zt�d = �4 lnxt�d; wt = t

d = 1 d = 2 d = 3 d = 4 d = 1 d = 2 d = 3 d = 4

Country Fs Fc Fs Fc Fs Fc Fs Fc Fs Fc Fs Fc Fs Fc Fs Fc

Austria .082 .088 .819 .117 .462 .169 .772 .429 .001 .006 .005 .235 .002 .288 .009 .764

Belgium .718 .116 .338 .685 .166 .529 .602 .446 .000 .156 .000 .463 .000 .164 .000 .115

Canada .000 .001 .101 .012 .565 .295 .687 .382 .000 .175 .000 .110 .000 .176 .001 .337

Spain .111 .252 .156 .220 .377 .610 .551 .433 .020 .805 .009 .668 .003 .208 .009 .118

Finland .058 .111 .532 .280 .603 .922 .537 .397 .001 .170 .001 .052 .002 .093 .001 .033

France .103 .001 .268 .123 .225 .485 .403 .199 .000 .247 .000 .632 .000 .345 .000 .338

Greece .368 .438 .019 .034 .084 .088 .941 .562 .000 .692 .000 .820 .002 .086 .000 .057

Ireland .691 .454 .120 .120 .033 .026 .422 .754 .000 .198 .000 .194 .000 .210 .000 .311

Italy .165 .122 .564 .838 .839 .751 .798 .311 .001 .611 .000 .907 .001 .149 .005 .373

Japan .745 .796 .156 .150 .322 .011 .881 .916 .000 .000 .000 .004 .000 .027 .000 .530

Luxemburg .941 .475 .962 .727 .204 .269 .056 .008 .010 .003 .015 .106 .002 .331 .013 .045

The Netherlands .569 .166 .124 .043 .068 .009 .007 .012 .076 .331 .004 .070 .047 .233 .011 .444

Norway .094 .226 .649 .701 .530 .198 .097 .037 .001 .006 .001 .024 .001 .066 .017 .383

Portugal .251 .236 .729 .430 .074 .024 .123 .810 .002 .384 .002 .045 .000 .054 .009 .874

Sweden .539 .774 .654 .845 .109 .104 .507 .178 .023 .858 .007 .999 .011 .168 .000 .001

Switzerland .002 .007 .037 .530 .509 .813 .601 .420 .058 .178 .082 .223 .058 .113 .058 .060

UK .200 .038 .260 .465 .214 .338 .025 .084 .000 .011 .001 .883 .000 .505 .000 .132

US .235 .061 .845 .735 .830 .671 .517 .291 .005 .109 .003 .126 .046 .223 .032 .193

Note: The test procedure is discussed in subsection 2.3. The AR order p in (9) is �xed at 5. Fs means that
in this column one can �nd the p-values of the test for redundant cross-product variables with seasonal
components. Fc means the same, but now with respect to the cyclical cross-product variables.

17



Table 2: Observations for which a dummy regressor is added to the SEASTAR model

Country

Austria 1972.4,1973.1

Belgium -

Canada -

Spain -

France 1974.4

Greece 1974.2

Ireland 1969.1, 1969.2

Italy 1969.4, 1970.1, 1974.4

Luxemburg -

The Netherlands -

Portugal 1972.3, 1972.4

Switzerland 1974.4, 1975.1, 1975.4

UK 1972.1, 1972.2, 1974.1

US 1974.4, 1975.1

18



Table 3: Estimated parameters in SEASTAR models for 14 industrial production series
(all samples end in 1988.4)

Country

Austria Belgium Canada Spain France Greece Ireland

zt�dc �4 lnxt�1 �4 lnxt�3 �4 lnxt�1 �4 lnxt�4 �4 lnxt�1 �4 lnxt�2 �4 lnxt�3

wt�ds �4 lnxt�1 t �4 lnxt�1 t �4 lnxt�1 �4 lnxt�2 �4 lnxt�3

̂c 488 10827 137.8 335 88.63 8718 311

�̂c .01 (.00) .03 (.00) .03 (.01) .07 (.00) -.01 (.00) .05 (.00) .06 (.00)

̂s 1566 8.89 147.1 1724 115.2 8718 90.83

�̂s .01 (.00) .26 (.10) .03 (.01) .46 (3.87) .00 (.01) .09 (.07) .06 (.01)

�̂
E
1 -.04 (.10) .06 (.11) .11 (.15) -.03 (.14) -.33 (13) -.22 (.11) .11 (.14)

�̂
E
2 .37 (.12) -.26 (.15) -.19 (.10) .13 (.14) -.24 (.11) -.38 (.15)

�̂
E
3 .10 (.10) -.21 (.14) .01 (.10) -.02 (.13) .28 (.10) .24 (.16)

�̂
E
4 -.08 (.10) .61 (.14) .07 (.10) .36 (.13) .51 (.11) .28 (.14)

�̂
E
5 -.07 (.11) -.31 (.13) -.25 (.14) .07 (.11)

�̂
E
6 -.39 (.10)

�̂
R
1 .80 (.20) -.06 (.11) -.05 (.18) -.31 (.11) .65 (.25) .03 (.13) -.22 (.11)

�̂
R
2 -.16 (.10) .58 (.22) .00 (.10) -.53 (.25) -.70 (.10) -.21 (.10)

�̂
R
3 -.07 (.11) .26 (.10) -.45 (.21) -.31 (.12) -.20 (.12)

�̂
R
4 -.16 (.10) .32 (.11) .85 (.36) .47 (.11)

�̂
R
5 -.13 (.11) .30 (.10) -1.53 (.35)

�̂
R
6

Æ̂
E
1 -.07 (.01) .01 (.03) .01 (.01) -.01 (.02) .07 (.02) -.04 (.02) -.09 (.02)

Æ̂
E
2 .08 (.01) .04 (.02) .02 (.01) .05 (.02) -.03 (.02) .00 (.01) .10 (.02)

Æ̂
E
3 -.07 (.01) -.15 (.02) .02 (.01) -.14 (.02) -.11 (.02) .05 (.02) -.11 (.02)

Æ̂
E
4 .11 (.01) .13 (.02) .00 (.01) .12 (.02) .09 (.03) .03 (.01) .10 (.02)

Æ̂
R
1 -.17 (.02) -.06 (.03) -.05 (.01) .04 (.02) .09 (.04) -.02 (.01) .01 (.02)

Æ̂
R
2 .15 (.02) .07 (.02) .08 (.01) .06 (.02) .02 (.05) .05 (.01) .04 (.02)

Æ̂
R
3 -.14 (.01) -.08 (.03) .05 (.01) -.07 (.02) .02 (.06) -.01 (.01) .02 (.02)

Æ̂
R
4 .20 (.02) .13 (.02) -.05 (.01) .09 (.02) -.07 (.09) .02 (.01) .02 (.02)

(continued on next page)
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Table 3: (continued).

Country

Italy Luxemburg The Netherlands Portugal Switzerland UK US

zt�dc �4 lnxt�3 �4 lnxt�4 �4 lnxt�2 �4 lnxt�3 �4 lnxt�1 �4 lnxt�1 �4 lnxt�2

wt�ds t t t t �4 lnxt�1 t t

̂c 126 6222 166.6 5299 539.8 4897 2600

�̂c .07 (.01) .05 (.00) .02 (.01) .01 (.01) -.03 (.00) .00 (.09) -.01 (1.81)

̂s 20.18 1724 6.98 16.90 112.2 1724 108.8

�̂s .57 (.02) .50 (1.54) .60 (.03) .40 (.02) .00 (.01) .66 (1.99) .64 (.01)

�̂
E
1 .18 (.16) .74 (.19) -.14 (.13) -.11 (.09) -.12 (.11) -.07 (.09) .47 (.10)

�̂
E
2 .18 (.10) -.29 (.16) .13 (.11) .06 (.09) -.07 (.11) -.04 (06) -.05 (.12)

�̂
E
3 .20 (.11) .30 (.12) .30 (.11) -.17 (.08) -.01 (.12) .22 (.07) .23 (.12)

�̂
E
4 -.06 (.09) -.02 (.10) .14 (.11) .18 (.09) .39 (.11) .09 (.11)

�̂
E
5 -.51 (.15) -.51 (.18) -.09 (.13) -.26 (.10)

�̂
E
6

�̂
R
1 -.09 (.09) .21 (.11) -.30 (.11) -.01 (.17) -.18 (.16) .02 (.09) .37 (.12)

�̂
R
2 .19 (.08) -.21 (.10) -.36 (.16) .37 (.14) .01 (.12) -.46 (.13)

�̂
R
3 -.02 (.08) .09 (.10) -.19 (.17) .00 (.16) .57 (.37) .23 (.13)

�̂
R
4 -.07 (.08) -.26 (.17) .20 (.15) -.39 (.14)

�̂
R
5 -.21 (.09) -.65 (.16) -.13 (.13)

�̂
R
6

Æ̂
E
1 .13 (.03) -.05 (.02) .22 (.05) .05 (.02) -.04 (.01) .02 (.01) .01 (.00)

Æ̂
E
2 -.02 (.02) .10 (.02) -.11 (.04) -.03 (.02) .03 (.01) -.05 (.01) -.01 (.00)

Æ̂
E
3 -.23 (.02) -.16 (.02) -.29 (.05) -.10 (.02) -.02 (.01) -.05 (.01) .02 (.00)

Æ̂
E
4 .14 (.03) .14 (.02) .15 (.04) .12 (.02) .04 (.01) .10 (.01) -.01 (.00)

Æ̂
R
1 .05 (.02) -.01 (.01) -.02 (.02) -.04 (.01) -.11 (.03) .00 (.01) -.01 (.01)

Æ̂
R
2 .03 (.01) .07 (.01) .03 (.02) .06 (.01) .07 (.03) .00 (.01) .03 (.01)

Æ̂
R
3 -.13 (.01) -.07 (.01) -.08 (.02) .04 (.01) -.02 (.02) -.10 (.01) -.02 (.01)

Æ̂
R
4 .11 (.02) .04 (.01) .12 (.02) .00 (.01) .12 (.04) .12 (.01) .02 (.01)

Note: The SEASTAR model is given in (3)-(5). The model is �tted to the data up to and including
1988.4. The standard errors are given in parentheses.
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Table 4: Diagnostics on residuals of �tted SEASTAR models: p-values

Serial correlation JB SK ARCH

Country 1 2 3 4 1 2 3 4

Austria .32 .49 .67 .26 .13 .05 .18 .20 .35 .44

Belgium .51 .59 .65 .37 .91 .49 .08 .17 .10 .00

Canada .28 .54 .50 .36 .73 .42 .00 .00 .00 .00

Spain .43 .17 .30 .12 .14 .17 .52 .69 .83 .84

France .70 .71 .52 .66 .13 .04 .51 .69 .71 .27

Greece .25 .35 .53 .45 .90 .34 .12 .04 .06 .09

Ireland .09 .10 .10 .01 .15 .42 .32 .54 .74 .72

Italy .30 .46 .56 .33 .54 .24 .18 .14 .19 .14

Luxemburg .26 .27 .28 .45 .39 .08 .49 .62 .05 .04

The Netherlands .37 .46 .64 .68 .10 .09 .45 .64 .73 .59

Portugal .08 .16 .29 .39 .44 .18 .76 .87 .69 .34

Switzerland .23 .47 .67 .35 .52 .44 .89 .85 .84 .66

UK .11 .06 .06 .11 .21 .45 .34 .36 .52 .20

US .06 .07 .16 .29 .42 .13 .51 .73 .64 .73

Note: The LM test for serial correlation considers lag 1, lags 1-2, : : :,
and lags 1-4. JB denotes the Jarque-Bera test for normality, where SK
concerns the skewness. ARCH test is considered up to order 4.
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Table 5: Evaluating the �t of the SEASTAR model as compared to various nested models
using AIC and BIC

AIC BIC

Country SEASTAR STAR-S Lin-S Fs = Fc SEASTAR STAR-S Lin-S Fs = Fc

Austria �8:120� -7.975 -7.969 -8.080 -7.718 -7.723 �7:793� -7.729

Belgium �7:548� -7.470 -7.415 - -6.970 -7.017 �7:164� -

Canada -8.499 -8.421 -8.456 �8:535� -8.010 -8.061 �8:224� -8.097

Spain �7:484� -7.119 -7.074 - �6:917� -6.759 -6.868 -

France �7:858� -7.832 -7.737 -7.845 -7.280 -7.404 �7:485� -7.317

Greece �6:954� -6.868 -6.877 -6.829 -6.426 -6.499 �6:640� -6.355

Ireland �6:774� -6.676 -6.739 -6.745 -6.221 -6.274 �6:488� -6.243

Italy �7:258� -6.799 -6.779 - �6:629� -6.346 -6.477 -

Luxemburg �6:754� -6.438 -6.363 - �6:252� -6.061 -6.137 -

The Netherlands �7:335� -6.913 -6.838 - �6:783� -6.511 -6.611 -

Portugal �7:138� -6.695 -6.782 - �6:585� -6.318 -6.531 -

Switzerland �7:482� -7.467 -7.454 -7.400 -6.929 -7.040 �7:177� -6.923

UK �7:635� -7.365 -7.339 - �7:157� -6.988 -7.088 -

US �8:421� -8.200 -8.174 - -7.818 -7.747 �7:898� -

Note: The SEASTAR model is given in (3)-(5). The restricted models are the STAR model with de-
terministic seasonality (6), represented by STAR-S, the linear seasonal model (7), represented by Lin-S,
and the SEASTAR model with Fs = Fc. A

� indicates the lowest AIC or BIC values across the three (or
four) models.
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Table 6: Ratios of mean squared prediction errors

1-step 4-step 8-step 12-step

Country M1=M2 M1=M3 M1=M2 M1=M3 M1=M2 M1=M3 M1=M2 M1=M3

Austria 1.131 1.170 0.919 0.921 1.012 0.993 1.015 1.004

Belgium 0.805 0.815 0.962 0.909 0.857 0.845 0.801 0.827

Canada 0.971 1.469 0.966 1.065 0.970 1.004 0.820 0.827

Spain 1.167 1.472 1.075 1.464 1.285 1.656 1.489 1.779

France 0.703 0.820 0.925 1.066 1.201 1.059 1.451 1.209

Greece 1.023 1.126 0.834 0.920 0.987 0.972 0.938 0.920

Ireland 1.249 1.210 1.017 1.105 0.893 0.976 0.990 1.033

Italy 1.387 1.419 1.058 0.934 0.800 0.760 0.707 0.683

Luxemburg 1.300 1.544 1.278 1.354 0.772 0.863 0.788 0.885

The Netherlands 13.051 13.862 7.848 10.182 5.165 11.336 2.315 8.389

Portugal 1.529 1.610 1.879 1.795 2.415 2.359 2.396 2.296

Switzerland 0.950 1.157 0.890 1.121 1.079 1.165 1.104 1.076

UK 0.487 0.545 0.626 0.610 0.531 0.517 0.511 0.516

US 0.930 0.775 1.107 0.850 0.828 0.676 0.881 0.674

Note: The elements are ratios of the MSPEs of the di�erent models. M1 denotes the MSPE of the
SEASTAR model (3), M2 denotes the MSPE of the restricted model with s = 0 (6), M3 denotes the
MSPE of the linear seasonal model (7).
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Table 7: The p-values of STAR-type nonlinearity tests for the growth rates of seasonally
adjusted industrial production series

zt�d = �4 lnxt�d

Country d = 1 d = 2 d = 3 d = 4

Austria .003 .311 .354 .639

Belgium .147 .125 .270 .110

Canada .045 .053 .171 .374

Spain .561 .325 .079 .002

France .000 .000 .002 .021

Greece .104 .485 .476 .074

Ireland .368 .059 .785 .483

Italy .229 .235 .029 .136

Luxemburg .001 .104 .074 .000

The Netherlands .070 .092 .054 .748

Portugal .325 .088 .010 .183

Switzerland .001 .001 .007 .007

UK .013 .444 .038 .000

US .000 .009 .018 .076

Note: The test procedure can be found in Ter�asvirta
(1994). It is essentially the same as the SEASTAR
test in subsection 2.3, where all seasonal dummies
are left out. The AR order p is �xed at 5. Notice
that zt and xt concern seasonally adjusted variables.
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Table 8: Agreement on the nonlinear cycle in industrial production. The cells contain
frequencies

States indicated for SA and NSA data, respectively

Country (0; 0)a (1,0) (0,1) (1,1) Agreementb Kappac (ase)
d

Austria 0.236 0.547 0.009 0.208 0.443 0.136 (0.043)

Belgium 0.519 0.113 0.019 0.349 0.868 0.730 (0.066)

Canada 0.235 0.049 0.059 0.657 0.892 0.738 (0.074)

Spain 0.637 0.108 0.000 0.255 0.892 0.751 (0.069)

France 0.028 0.000 0.104 0.868 0.896 0.321 (0.142)

Greece 0.418 0.000 0.051 0.531 0.949 0.897 (0.045)

Ireland 0.304 0.000 0.152 0.543 0.848 0.685 (0.104)

Italy 0.689 0.028 0.019 0.264 0.953 0.885 (0.050)

Luxemburg 0.679 0.047 0.009 0.264 0.943 0.863 (0.054)

The Netherlands 0.340 0.047 0.019 0.594 0.934 0.859 (0.051)

Portugal 0.144 0.000 0.058 0.798 0.942 0.800 (0.077)

Switzerland 0.057 0.000 0.028 0.915 0.972 0.785 (0.119)

UK 0.142 0.000 0.123 0.736 0.877 0.629 (0.089)

US 0.123 0.000 0.066 0.811 0.934 0.751 (0.088)

Notes:
a (0,0) denotes that the switching function in the model for NSA data takes a value
of 0 and that this also holds true for a similar function in the model for SA data. The
switching function value is set to 0 when Fc < 0:5. The number in the cells is the
number of observations with (0,0), divided by the total number of observations. The
cells under the header (1,0), (0,1) and (1,1) are de�ned similarly.
b Agreement is de�ned as the sum of the percentages in the columns (1,1) and (0,0).
c The Kappa is de�ned as (oa� ea)=(1� ea), where oa denotes observed agreement
and ea denotes expected agreement, see Cohen (1960).
d The large sample standard error (denoted as ase) is calculated along the lines
suggested in Fleiss, Cohen and Everitt (1969), see also Schouten (1982).
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Figure 1: Industrial production: �rst-di�erenced logged (dln(IP)) and seasonally di�er-

enced log-transformed series (d4ln(IP)): Canada
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Figure 2: Industrial production: �rst-di�erenced logged (dln(IP)) and seasonally di�er-

enced log-transformed series (d4ln(IP)): Italy
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Figure 3: Industrial production: �rst-di�erenced logged (dln(IP)) and seasonally di�er-

enced log-transformed series (d4ln(IP)): The US
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Figure 4: The estimated business cycle transition function Fc (left) and the seasonal tran-

sition function Fs (right) from the SEASTAR model : Canada
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Figure 5: The estimated business cycle transition function Fc (left) and the seasonal tran-

sition function Fs (right) from the SEASTAR model : Italy
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Figure 6: The estimated business cycle transition function Fc (left) and the seasonal tran-

sition function Fs (right) from the SEASTAR model : The US

31



References

[1] Canova, F. (1994), Detrending and turning points, European Economic Review, 38,

614-623.

[2] Canova, F. and E. Ghysels (1994), Changes in seasonal patterns: are they cyclical?,

Journal of Economic Dynamics and Control, 18, 1143-1171.

[3] Cohen, J. (1960), A coeÆcient of agreement for nominal scales, Educational and Psy-

chological Measurement, 20, 37-46.

[4] De Gooijer, J.G. and P.T. de Bruin (1998), On forecasting SETAR processes, Statistics

and Probability Letters, 37, 7-14.

[5] Eitrheim, �. and T. Ter�asvirta (1996), Testing the adequacy of smooth transition

autoregressive models, Journal of Econometrics, 74, 59-76.

[6] Fleiss, J.L., J. Cohen and B.S. Everitt (1969), Large sample standard errors of kappa

and weighted kappa, Psychological Bulletin, 72, 323-327.

[7] Franses, P.H. (1996), Periodicity and Stochastic Trends in Economic Time Series,

Oxford: Oxford University Press.

[8] Franses, P.H. and R. Paap (1999), Does seasonality inuence the dating of business

cycle turning points?, Journal of Macroeconomics, 21, 79-92.

[9] Granger, C.W.J. and T. Ter�asvirta, T. (1993), Modelling Nonlinear Economic Rela-

tionships, Oxford: Oxford University Press.

[10] Schouten, H.J.A. (1982), Measuring pairwise interobserved agreement when all sub-

jects are judged by the same observers, Statistica Neerlandica, 36, 45-61.

[11] Ter�asvirta, T. (1994), Speci�cation, Estimation, and Evaluation of Smooth Transition

Autoregressive Models, Journal of the American Statistical Association, 89, 208-18.

32



[12] Ter�asvirta, T. (1998), Modelling economic relationships with smooth transition regres-

sions, in A. Ullah and D.E.A. Giles (editors), Handbook of Applied Economic Statistics,

New York: Marcel Dekker, pp. 507-552.

[13] Ter�asvirta, T. and H.M. Anderson (1992), Characterizing nonlinearities in business cy-

cles using smooth transition autoregressive models, Journal of Applied Econometrics,

7, S119-S136.

[14] Van Dijk, D. and P.H. Franses (1999), Modeling Multiple Regimes in the Business

Cycle, Macroeconomic Dynamics, 3, 311-340.

33


