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Abstract

This article proposes an improved method for the construction of diffusion indexes in
macroeconomic forecasting using principal component regression. The method aims to
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sion indexes, by matching the data windows used for constructing the principal components
and for estimating the diffusion index models. The method is analyzed by means of exten-
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1 INTRODUCTION

One of the basic questions in empirical forecasting is which information should be included

in the forecast model. For instance, in many macroeconomic and financial applications, a

large number of predictor variables is available. The forecaster then faces the challenge to

employ the available information in the best possible way. Various methods for forecasting

with many predictors have been proposed in the literature, including forecast combination,

model averaging, variable selection, and predictor combination. We refer to Stock and Watson

(in press) for a survey. Several empirical studies in macroeconomic forecasting indicate that,

on average, the best forecast results are obtained by principal component regression (PCR), see

Stock and Watson (1999, 2005) and Lin and Tsay (2005), among others. In PCR, the predictors

are summarized by means of a limited number of factor components.

In this article, we show that further gains in the forecast accuracy of PCR can be achieved by

constructing the principal components somewhat differently as compared to the method usually

employed in the literature. We call our method ‘matched PCR’ (MPCR), as it matches two data

windows that are used in PCR. More precisely, the distinction between PCR and MPCR lies in

the construction of the factors. In PCR, the h-step ahead forecast made at time T is based on the

principal components computed from the (standardized) predictor variables using observations

up to and including time T . The diffusion index forecast model, however, is estimated using

the observations only up to time T − h. In MPCR, the data window used for constructing the

principal components is matched with the data window used for estimating the diffusion index

models, by extracting the principal components from the (standardized) predictor variables up

to time T − h. This modification better achieves the goal of principal components, namely, to
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retain the maximal amount of variance of the original predictor variables.

The article is structured as follows. In Section 2, we outline the current method of forecast-

ing with diffusion indexes and we present our method of matched PCR. The relative forecast

performance of the original and matched PCR methods is evaluated in Section 3 by means of

a simulation experiment, based on Stock and Watson (2002b). Section 4 contains an empirical

application involving forecasts of four real economic variables and four price variables from a set

of 146 macroeconomic predictor variables, using the data set from Stock and Watson (2002a).

Section 5 concludes.

2 FORECASTING WITH DIFFUSION INDEXES

2.1 Diffusion index models

In this section, we briefly summarize the method of principal component regression (PCR)

proposed by Stock and Watson (1999, 2002a,b), to which we refer for further details. The

corresponding forecast models are also called ‘diffusion index’ models, as the principal compo-

nents can be interpreted as indexes that summarize the common movements in the underlying

macroeconomic predictor variables.

Let y denote the economic variable of interest and let X denote a set of N predictor variables.

In PCR, the information in the N predictor variables is summarized by means of k factors f ,

with k (much) smaller than N . These factors are used to forecast y by means of a linear

regression model. Let h be the forecast horizon and let t denote the current time moment, then
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the h-step-ahead forecast model is written as

yh
t+h = α +

m∑

j=1

β′jft−j+1 +
p∑

j=1

γjyt−j+1 + εh
t+h. (1)

Here yh
t+h denotes the h-step-ahead variable to be forecasted. Following Stock and Watson

(1999, 2002a,b), we will forecast the h-period average of yt, so that yh
t+h = 1

h

∑h
j=1 yt+j . The

model (1) is denoted by DI-AR-Lag. DI-AR is the model without lagged factors (m = 1), and

DI is the model with ft as the only regressor variable (m = 1 and p = 0). Let data on y and X

be available over a period of length T , then yh
t+h can be computed for t ≤ T − h. Regression

in (1) requires that the effective sample size is at least as large as the number of unknown

parameters, so that T − h ≥ 1 + km + p. In particular, this requires that

T − h > km. (2)

The PCR forecast at time T is computed in two steps. First, the factors f are estimated

by means of the leading k principal components of X over the time interval [1, T ], where

the predictor variables are standardized to have zero mean and unit variance on this interval.

Second, the parameters in (1) are estimated by a regression on the time interval [l + 1, T − h],

where l = max(m − 1, p − 1), replacing the terms ft−j+1 by their corresponding principal

component values. In practice, appropriate values for k, m, and p have to be selected, for

instance, by means of the Bayes Information Criterion (BIC) over a set of models with k ≤ K,

m ≤ M and p ≤ P . The results in Ng and Perron (2005) motivate the use of equal effective

sample sizes for all candidate models, so that all models are estimated on the time interval

[L + 1, T − h] where L = max(M − 1, P − 1) is the maximum considered lag.
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2.2 Modified factor construction

The quality of the PCR forecasts depends on the quality of (i) the forecast model (1), (ii) the

estimates of the factors ft, and (iii) the estimates of the parameters (α, βj , γj). The use of

principal components in (ii) can be motivated by the fact that these components account for

the largest possible variance of the predictor variables, see Anderson (1984) and Jolliffe (2002).

This property is of importance, as a larger predictor variance reduces the standard errors of

the parameter estimates in (1) and, therefore, the forecast variance. However, PCR maximizes

the accounted predictor variance over the time interval [1, T ], whereas the parameter estimates

in (1) are obtained from observations on the smaller interval [L + 1, T − h], using the factor

components for t = L−M + 2, . . . , T − h. This imbalance motivates our modification, that is,

to construct the principal components on the relevant estimation interval.

Figure 1 summarizes the data windows for the original PCR and our matched PCR methods.

Note that our modification includes normalizing the original predictor variables X to have mean

zero and unit variance on the interval [L−M+2, T−h] as well. More precisely, the k PCR factors

ft consist of the leading k principal components of the N predictors xt which are normalized on

the interval [1, T ]. These factors consist of linear combinations ft = Axt for 1 ≤ t ≤ T , where A

is a (k ×N) matrix. On the other hand, the MPCR factors fm,t are constructed by extracting

the leading k principal components from xt normalized on the interval [L−M +2, T −h], with

fm,t = Amxt for L−M + 2 ≤ t ≤ T − h, where Am is a (k ×N) matrix. This matrix is then

used to construct the MPCR factors ft = Amxt also for 1 ≤ t < L−M + 2 and T − h < t ≤ T .

<< FIGURE 1 to be inserted somewhere over here. >>
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3 SIMULATION EXPERIMENT

3.1 Monte Carlo design

In this section, we analyze the relative merits of the original and our matched PCR methods

by means of Monte Carlo simulations. As was discussed in Section 2.2, matched PCR is based

on the idea to match the window for extracting the factors with the estimation window of

the forecast equation (1). The simulations are meant to clarify which aspects of the data are

important for the relative forecast quality of the two methods. Relevant design parameters

in this respect are the number of observations (T ), the forecast horizon (h), the number of

predictors (N), the number of latent factors (k) and the number of factor lags (q), as well as

the correlations within the set of predictors and the correlations between the predictors and

the latent factors.

We use a similar Monte Carlo design as in Stock and Watson (2002b). The predictors xit,

the variable of interest yt and the latent factors ft are generated by the equations

xit =
q∑

j=0

λijtft−j + eit, (3)

λijt = λij,t−1 + (c/T )wijt, (4)

ft = αft−1 + ut, (5)

eit = ρei,t−1 + γei−1,t − ργei−1,t−1 + vit, (6)

yt =
q∑

j=0

(1, . . . , 1)ft−j + εt, (7)

where i = 1, . . . , N, t = 1, . . . , T, j = 0, . . . , q, and wijt, vit, εt, and all k components of ut are

mutually independent NID(0,1) random variables. This design corresponds to a dynamic factor

model for the N predictor variables xit in terms of k latent factors ft, with time varying loadings
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(if c 6= 0) and first-order correlations across time (if ρ 6= 0) and across variables (if γ 6= 0).

Initial values of f0 and ei0 are drawn from the (stationary) marginal distributions corresponding

to (5) and (6), with variance vf = 1/(1−α2) and ve = 1/((1−ρ2)(1−γ2)) respectively. Further,

initial values of λij0 are drawn in line with Stock and Watson (2002b, p. 1171), allowing for

varying importance of the predictors and even for irrelevant predictors. That is, for the i-th

predictor variable, λij0 is generated as follows: (i) draw R2
i , with probability π for the value

0 and with probability (1 − π) from the uniform distribution on [0.1, 0.8]; (ii) draw the 1 × k

vector λij0 from N(0, Ir), independent of all other error terms; (iii) define λij0 = diλij0, where

di is chosen such that the fraction of the variance of xi0 explained by the factors f0 is equal to

R2
i . The last step is solved by taking q = 0 in (3), in which case xi0 has variance d2

i vf + ve and

explained variance d2
i vf , so that R2

i = d2
i vf/(d2

i vf + ve) from which di is easily solved in terms

of (R2
i , α, ρ, γ).

The variable to be forecasted is the h-period average yh
t+h = 1

h

∑h
j=1 yt+j . The horizon h

is one of the main parameters of interest in our comparison of PCR and MPCR. To achieve

comparable predictability for different forecast horizons, the value of α is chosen as a function of

h, as follows. Let ŷh
t+h denote the optimal forecast of yh

t+h that is based on exact knowledge of

all design parameters in (3)-(7) and let R2
f = var(ŷt+h)/var(yt+h) be the corresponding forecast

R-squared. A rough approximation is given by R2
f ≈ α2/(h(1 − α2)) (see the appendix), so

that a given forecast R-squared is approximately obtained by taking α =
√

hR2
f/(1 + hR2

f ).
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3.2 Design parameters

The simulation design (3)-(7) has the following ten design parameters (the considered values

are in parentheses and are mostly in line with the specifications in Stock and Watson (2002b,

Table 1)): the forecast horizon h (5, 10, 25, 50), the number of predictors N (50, 100, 250, 500),

the number of observations T (25, 50, 100, 250), the number of latent factors k (5, 10, 20, 40),

the number of factor lags q (0, 1, 2), the forecast R-squared R2
f (0.1, 0.5, 0.9), the correlation

parameters ρ and γ ((0,0), (0.9,0), (0, 0.9), (0.45, 0.45)), the amount of time variation in the

factor loadings c (0, 10), and the fraction of irrelevant predictors π (0, 0.25). This gives a total

of 36864 designs, but the restriction (2) (with m = q + 1) rules out some of them. Further,

because of computing time considerations, we limit the analysis of designs with T = 250 and

N = 250 or 500. We will analyze the simulation outcomes for three sets of designs, that is, (i)

all designs with T ≤ 100, (ii) ’simple’ designs, and (iii) ’complex’ designs. Here we define the

design to be simple if it is close to the assumptions of principal component analysis, and we

define this set by the conditions that R2
f = 0.5 and ρ = γ = c = π = 0. This gives 768 simple

designs in total, some of which are eliminated because of (2). An equally large set of complex

designs is defined by the conditions that R2
f = 0.5 and ρ = γ = 0.45, c = 10 and π = 0.25, in

which case the predictors are correlated across time and across variables, a considerable part of

them is irrelevant, and the factor loadings are time varying. This set may be of most interest

for practical applications, as many data sets contain correlated predictors and time varying

characteristics.

For each specific configuration of the design parameters, we perform 1000 replications with

fixed time T to forecast (at estimation time T − h). The number k of factors is given, but
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the number of lags q is selected by BIC. For reasons of computational efficiency, the number of

factors is not selected from the data, as the considered designs have up to forty latent factors.

However, we performed also simulations where k and q are jointly determined by BIC, and the

outcomes are similar to the ones with given value of k. This finding is in line with the results

in Stock and Watson (2002b, Table 1).

Finally, we mention that we also considered h-step-ahead forecasting with yh
t+h = yt+h. The

results are qualitatively very much the same as for the case considered in this paper, that is,

the relative forecast performance of MPCR as compared to PCR is affected in the same way

by the various design parameters. The effects are even quite comparable in quantitative terms,

but to save space we will not discuss this any further (details are available on request).

3.3 Forecast results

We compare the forecast accuracy of MPCR with that of PCR in terms of the relative mean

squared prediction error (MSE). For each specific design, the MSE is defined by
∑

i e2
m,i/

∑
i e2

i ,

where em,i is the forecast error of MPCR in the i-th replication and ei is the corresponding

forecast error of PCR (i = 1, . . . , 1000). Tables 1-3 show mean MSE values over different sets

of designs, controlling for one or several of the design parameters. The MSE is expressed in

percentage form, so that values less than 100 indicate better performance of MPCR as compared

to PCR.

<< TABLES 1-3 to be inserted around here. >>

MPCR performs, on average, better than PCR for every considered design parameter, as all

average MSE values in Table 1 are smaller than 100. The gain is larger for complex designs
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(23.6% on average) than for simple designs (10.2%). Further, MPCR gains more if the ob-

servation interval (T ) is short, the number of predictor variables (N) is large, the number of

latent factors and lags (k, q) is large, the factor loadings are time varying (c 6= 0), and some

of the predictors are irrelevant (π 6= 0). The forecast R-squared (R2
f ) has hardly any effect.

The same is true for the predictor correlations (ρ, γ), except for the case (ρ, γ) = (0, 0.9) where

the gains are relatively smaller. The results for the forecast horizon (h) in Table 1 seem to

suggest that MPCR gains more for small horizons. However, this is misleading, because the

restriction (2), with m = q + 1, implies that some designs with large values for (k, q) are ruled

out if h is large and T is small. This restriction causes a positive correlation between h and

T over the considered sets of simulation designs, as small values of T rule out large values of

h. The correlation between h and T is 35% for the set of all designs and 23% for the sets of

simple and complex designs. Therefore, the joint effect of the design parameters (h, T, N) is

analyzed in more detail in Table 3. For T = 250, (2) imposes no restriction on the considered

designs, and in this case the gains of MPCR tend to be larger for larger h, as expected. Note

that, e.g. for T = 100, designs with (k, q) = (40, 1) give k(q + 1) = 80, so that estimation is

possible only for h ≤ 10 and not for h ≥ 25. As a consequence, the MSE values for T = 100 in

Table 3 tend to decrease from h = 5 to h = 10 (as expected), but then increase for h ≥ 25, as a

set of designs is ruled out where the differences between MPCR and PCR are more prominent.

Similar arguments explain the results for T = 250, 50 and 25. Table 3 clearly illustrates that

the gains of MPCR tend to be larger for a small observation interval and for a large number of

predictors.

Table 2 shows further statistics, where we consider also the subsets of designs where MPCR
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performs worse than PCR and where it performs at least twice as well. MPCR performs better

than PCR in the far majority of cases (98.3% for the set of all designs and for the set of complex

designs, and 91.7% for the set of simple designs). In the few cases where MPCR performs worse,

the loss is often very small, with a median of around 1% for all three design classes. The worst

case is a loss of 43.6%, which occurs for a design with h = 5, T = 25, N = 500, k = 5 and q = 2.

In this case, the forecast equation (7), with a constant included, contains 1 + k(q + 1) = 16

parameters, and the effective sample size is T = 25 for PCR and T − h = 20 for MPCR. So the

number of degrees of freedom is 9 for PCR and only 4 for MPCR, which explains the relatively

bad forecast performance of MPCR in this case. Table 2 shows further that large forecast gains

(with factor two or larger) are mostly obtained within the classes of all designs and complex

designs.

The results in Tables 1-3 concern average effects. It is also of interest to investigate partial

effects. Because of the large number of design parameters, we use response surfaces as in Boivin

and Ng (2006). A response surface is obtained by regressing the relative MSE on the set of

ten design parameters. The resulting regression coefficients measure the partial effect of each

design parameter on the relative MSE. Table 4 shows estimation results for several response

surfaces (the table contains also some other results that will be discussed in the next section).

The regression coefficients are displayed only if they are significant at the 0.01% level, using

robust standard errors. Apart from linear surfaces, we consider also a second-order one. This

surface has in principle ten linear and fifty-five second-order terms, but for simplicity we present

only the signs of the coefficients of a restricted specification, including interactions between the

’data’ characteristics (h,N, T ) and between the ’estimation’ characteristics (h, T, k, q) in the
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restriction (2), with m = q +1. The linear response surface for the set of all designs shows that

MPCR gains more for larger values of (h,N, k, q, c, π) and for smaller values of (T, γ), whereas

the effects of R2
f and ρ are not significant. These results are in line with the ones in Tables

1-3. The quadratic response surface has linear terms that mostly have the same sign as in the

linear specification. The signs of (h2, T 2, N2) are opposite to those of (h, T,N), indicating that

the marginal effects of these parameters level off. The negative sign of the interaction term kq

means that the effects of k and q enforce each other, which is because the number of coefficients

in the forecast equation (7) is k(q + 1). The positive sign of the interaction terms Tk and Tq

means that the effects of k and q are smaller for larger T , which is because the number of

degrees of freedom in (7) is T − k(q + 1) for PCR and T − h− k(q + 1) for MPCR.

3.4 Other evaluation criteria

Apart from the MSE, Table 4 contains also results of linear response surfaces for some other

criteria. For each criterion, the surface is obtained by regressing the relevant performance

index on the set of ten design parameters. For a given design configuration and criterion, the

performance index is computed as follows. The criterion value is computed, for both PCR and

MPCR, in 1000 replications, and the performance index is obtained by dividing the resulting

mean for MPCR over the 1000 replications by the mean for PCR.

We use three criteria to evaluate the estimation accuracy of the forecast equation (7). We

include a constant term in estimating this equation, so that the number of regressors is d =

k(q + 1) + 1. The regression (7) can be written in matrix form as y = Zβ + ε, where β is the

d × 1 vector of parameters and Z has d columns. The variance of the OLS estimate b of β
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is var(b) = s2(Z ′Z)−1, and the first estimation criterion is the (size-adjusted) determinant of

this variance, varb = (det(var(b)))1/d. The determinant is raised to the power (1/d) to remove

size effects, as the determinant is the product of the d eigenvalues of var(b). The other two

estimation criteria are the two components of the variance, that is, the residual variance s2 and

the predictor contribution pdet = (det(Z ′Z)−1)1/d to the variance.

Another criterion is related to the fact that the aim of principal components is to maximize

the ‘variance accounted for’ (VAF), that is, the amount of variance of the original predictor

variables that is captured by the factors. The VAF is defined as the sum, over all predictor

variables, of the explained sum of squares obtained by regressing each predictor variable on the

constructed set of factors. As criterion we consider the relative VAF, that is, the multivariate

R-squared defined by the total explained sum of squares divided by the total sum of squares

of all predictors. Further, we use criteria to evaluate the accuracy of the constructed factors,

both at the forecast time T and on the estimation interval [1, T − h]. We define the ‘forecast

R-squared’ R2
F at time T by the squared correlation between the k(q + 1) × 1 vector of true

factors and their lags (fT , . . . , fT−q) and the corresponding vector of estimated factors and their

lags. Further, let F be the k × (T − h) matrix of true factors f over the period [1, T − h], and

let F̂ be the corresponding matrix of estimated factors. We define the ‘estimation R-squared’

R2
E as the total explained sum of squares of the regression of each estimated factor (column

of F̂ ) on the set of true factors (all columns of F ), divided by the total sum of squares of all

elements of F̂ .

<< TABLE 4 to be inserted around here. >>

Table 4 shows some characteristics of the linear response surfaces of the six discussed criteria.
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The reported mean value is the relative performance of MPCR with respect to PCR, averaged

over the set of considered simulation designs. For simplicity, we report only the sign of the

coefficients that are significant at the 0.01% level, using robust standard errors. The estimation

criteria show that MPCR achieves a substantial reduction, of 40.1% on average, in the variance

of the estimated coefficients of the forecast equation (7). Most of this gain is due to a reduction

(of 38.2%) in the contribution of the factors to this variance. This gain is larger for larger

values of (h,N, k, q, R2
f , ρ, c, π) and for smaller values of (T, γ). This reflects the fact that

MPCR differs relatively more from PCR for larger (h, k, q) and smaller T . The factor criteria

show that MPCR has a slightly better (3.5%) ‘variance accounted for’, slightly better (3.4%)

forecast factors, and somewhat worse (8.3%) factors on the estimation interval. This loss is

due to the fact that the factor loadings are time-invariant in 50% of the designs, and PCR uses

h more observations than MPCR in estimating the factors. Further, the case of time varying

loadings does not help MPCR, because of the negative coefficient of c in the response surface

for R2
E .

4 EMPIRICAL APPLICATION

4.1 Data and forecast design

We use the data set of Stock and Watson (2002a). Here we mention only the most relevant

aspects, and we refer to Stock and Watson (2002a) for further practical aspects, for instance,

on data vintages, data transformations, and the treatment of outliers.

We apply PCR and MPCR to forecast eight macroeconomic variables. Four of these variables

are real, that is, in the notation of Stock and Watson (2002a, Appendix B): industrial production
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(ip), personal income (gmyxpq), manufacturing and trade sales (msmtq), and nonagricultural

employment (lpnag). The other four variables are prices: the consumer price index (punew), the

consumer price deflator (gmdc), the consumer price index excluding food and energy (puxx), and

the producer price index (pwfsa). The forecasts are based on diffusion index models using a set

of N = 146 macroeconomic predictor variables (their ‘balanced panel’). Monthly observations

are available over the period 1959:01 till 1998:12, with missing values for some of the variables

in the first two months. Therefore, the data are considered over the interval 1959:03 to 1998:12,

giving a total of 478 observations.

The models are estimated, selected, and used in simulated out-of-sample forecasting, as

follows. The considered forecast horizons are h = 6, 12, and 24 months. For a given time

instant T , forecasts of the h-period average ŷh
T+h are constructed using the DI, DI-AR and

DI-AR-Lag models of equation (1), where the number of factors k, the number of lagged factors

(m − 1), and the number of autoregressive terms p are selected using BIC, as discussed in

Section 2.1. Following Stock and Watson (2002a), we take K = 4, M = 3, and P = 6 for

DI-AR-Lag, K = 12 and P = 6 for DI-AR, and K = 12 for DI. At time T , the time interval

used to construct the principal components in PCR runs from 1959:03 to T , and the forecast

model (1) is estimated over the sample period running from 1960:01 to T − h. In MPCR, the

factors are constructed from the predictors on the interval running from 1959:11 (as M = 3)

to T − h. The forecast procedure is applied sequentially, starting at 1970:01 and running until

1998:12− h, and the forecast quality is evaluated by means of the mean squared forecast error

(MSE) of the resulting 348− h forecasts.

15



4.2 Forecast results

Table 5 reports the percentage gains in MSE of MPCR as compared to PCR, which is summa-

rized by means of two boxplots in Figure 2. MPCR achieves positive gains in the majority of

cases, and on average the gain is larger for the real variables than for the price variables. The

gains are, in general, larger for longer forecast horizons, which is in line with the fact that the

modification of MPCR becomes more substantial for longer horizons.

<< TABLE 5 and FIGURE 2 to be inserted around here. >>

The main results for the real variables are as follows. Averaged over these four variables, the

gains for horizon h = 24 are around 5% for the DI-AR-Lag model and around 10% for the

DI-AR and DI models. Note that the maximum number of factors is K = 4 for DI-AR-Lag,

whereas K = 12 for the other two models. This distinction may partly explain the relatively

smaller differences between the two methods for DI-AR-Lag. The average gain ranges for one-

year ahead prediction (h = 12) between 3.5% and 7.4%, and for half-a-year ahead prediction

(h = 6) between 5.9% and 9.3%. In some cases, larger gains are obtained, up to more than

15%. As compared to PCR, MPCR gives a reduction in MSE for thirty-five of the thirty-six

real cases, and in a single case there is an increase in MSE (of 2.3%). Overall, MPCR clearly

provides better forecasts than PCR for the four real variables.

The gains are considerably smaller for the four price series, around 1% in most cases. In

some cases, the gain is substantial, up to 14.1%, but in other cases the MSE increases by up to

5.6%. We mention two possible causes for these results. First, the DI model is not appropriate

for the price series, as it neglects the considerable amount of autocorrelation that is present

16



in these series. Stock and Watson (2002a, Tables 3 and 4) report losses in MSE for PCR

(as compared to the AR benchmark) for all four price series, ranging from a loss of 30% for

the consumer price index up to a loss of 144% for the producer price index. Second, the AR

benchmark performs relatively well for the price series, so that the gains of the DI-AR and DI-

AR-Lag models are relatively small, see Stock and Watson (2002a, Tables 1 to 4). Therefore,

the method to construct the factors is less important for these series.

We mention some further results. The reduction of the forecast MSE is largely due to a smaller

forecast variance, whereas the bias is not much affected. For instance, MPCR has a smaller

forecast variance than PCR for all thirty-six forecasts for the real variables, with an average

reduction of around 10%. This result supports the motivation for MPCR, namely, to reduce

the forecast variance by increasing the factor variance over the estimation interval.

We performed the test of Diebold and Mariano (1995), with robust standard errors, to

examine whether MPCR provides a significantly lower MSE than PCR. For the thirty-six series

of forecasts of the real variables, seventeen are significantly better at the 10% level and eight at

the 5% level. For the thirty-six series of forecasts of the price variables, seven are significantly

better at the 10% level and four at the 5% level. Of the twelve cases (out of seventy-two) where

PCR has a smaller MSE than MPCR, none is significant at the 10% level. Summarizing the

results for the considered empirical data, MPCR is significantly better in forecasting than PCR

in some cases, it is better in the far majority of cases, and it is never significantly worse.

We also compared the number of factors k, factor lags (m−1) and autoregressive lags (p−1)

of the forecast model (1) that are selected by BIC. As was mentioned before, the AR terms are

much more important for the price series than for the real series, with an overall average of

17



(p− 1) of around 5 for the price series and below 0 for the real series. The models selected for

PCR and MPCR hardly differ, although MPCR tends to select slightly smaller values for k, m,

and p. This means that the improved forecast performance of MPCR is not due to differences

in the forecast model selected by BIC, but to differences in the constructed factors.

4.3 Comparison of factor spaces

In comparing the factor spaces constructed by PCR and MPCR, we focus on the use of the

factor components in estimating the forecast model (1). For simplicity we consider the model

DI, that is, with m = 1 (no lagged factors) and with p = 0 (no autoregressive terms). At time

T , the forecast model (1) is estimated using the factors over the period [T0, T − h], where the

initial time T0 is 1960:01 in our application. Let Te = T − h− T0 + 1 and let F and Fm denote

the corresponding Te × k factor matrices of PCR and MPCR respectively. We compare these

two factor matrices by means of some of the criteria discussed in Section 3.4.

MPCR has a larger variance accounted for (VAF) than PCR for each time T , with average

gains of about .5% for horizon h = 6 months, 1% for h = 12 and 2% for h = 24. So MPCR

performs consistently better in this respect, although the differences are relatively small.

The standard errors of the regression coefficients in the DI model are proportional to the

inverse of the (k × k) matrices F ′F (for PCR) and F ′mFm (for MPCR). As measured by the

determinant of these inverse matrices, the gains of MPCR as compared to PCR increase consis-

tently for longer forecast horizon and for larger number of factors. This finding is in line with

the fact that MPCR differs more from PCR in these cases. Even for a single factor (k = 1),

the differences are substantial, with gains in the determinant (that is, in this case, a reduction
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of the estimation variance) of 12% for h = 6, 15% for h = 12 and 20% for h = 24.

5 CONCLUSION

In this article, we proposed an improved method for the construction of principal components

in forecasting with diffusion index models. The forecast quality of such models is affected by

the predictor variance on the estimation interval, and our method maximizes this variance.

Simulation experiments and an empirical application to eight macroeconomic variables both

indicate that this modification leads, in general, to better forecasts. The simulations show

that the gains are larger in situations with larger forecast horizon, smaller observation interval,

more predictor variables, more latent factors and factor lags, more time variation in the factor

loadings, and more irrelevant predictors. In the empirical application, the forecast gains are

most notable for the real variables, with a reduction of the mean squared forecast error by

about 5% to 10%, whereas this gain is rather small for the price variables.

As topics for further research, we are interested in developing alternative methods to con-

struct the diffusion indexes. The methods considered in this article are two-step methods, as

the diffusion indexes are constructed without taking the forecast purpose into account. As the

quality of the models is evaluated in terms of their forecast accuracy, it could pay to take this

criterion explicitly into account in constructing the indexes. Another point of interest is the

employed model selection method. Although BIC turns out to work quite well in empirical com-

parisons, this criterion is not directly related to the purpose of forecasting and forecast-based

selection criteria might give better results.
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6 Appendix

In this appendix, we derive the approximation α ≈
√

hR2
f/(1 + hR2

f ) mentioned at the end of

Section 3.1 to stabilize the predictability for different horizons of data generated by (3-7). We

assume for simplicity that q = 0 in (7). Define the k × 1 vector β = (1, . . . , 1)′, then ||β||2 = k.

It follows from (5) and (7) that

yt+i = β′αift + β′
i−1∑

j=0

αjut+i−j + εt+i,

h∑

i=1

yt+i =
h∑

i=1

αiβ′ft + β′Ut+h +
h∑

i=1

εt+i,

where Ut+h = (
∑h−1

i=1 αi)ut+1+(
∑h−2

i=1 αi)ut+2+. . .+ut+h. The explained variance of
∑h

i=1 yt+i

(using the optimal prediction
∑h

i=1 αiβ′ft) is

(
h∑

i=1

αi)2||β||2/(1− α2) = kα2(
h−1∑

i=0

αi)2/(1− α2),

and the error variance (of β′Ut+h+
∑h

i=1 εt+i) is h+k
∑h

j=1(
∑j−1

i=0 αi)2. Define Sj = (
∑j−1

i=0 αi)2 =

(1−αj)2/(1−α)2, then the above results imply that the forecast R2 for the predicted h-period

average yh
t+h = 1

h

∑h
i=1 yt+i is

R2
f =

kα2Sh

kα2Sh + h(1− α2) + k(1− α2)
∑h

j=1 Sj

.

We now make various rough approximations to derive an approximate expression of α in terms

of h and R2
f . Here, we use that for sufficiently large h there holds Sh ≈ 1/(1 − α)2 and

(1−α)2
∑h

j=1 Sj =
∑h

j=1(1−αj)2 ≈ ∫ h

0
(1−αx)2dx =

∫ h

0
(1+α2x−2αx)dx ≈ h− 1

2 log(α)+
2

log(α) =

h + 3
2 log(α) , as 0 < α < 1. Combining these results, we get for k and h sufficiently large the

approximation

R2
f ≈

kα2

kα2 + h(1− α2)(1− α)2 + kh(1− α2) + 3k(1−α2)
2 log(α)

≈ α2

h(1− α2)
,
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where we neglected all terms in the denominator except the one with the product kh (note that

(1−α2)/ log(α) → −2 for α ↑ 1, so that the last term in the denominator is bounded). Solving

this for α in terms of R2
f , we get α ≈

√
hR2

f/(1 + hR2
f ). The simulation results in Section

3.3 show that, with this choice of α, the value of R2
f does not have a significant effect on the

relative MSE of MPCR as compared to PCR, see Tables 1 and 4. This result is an indication

of the appropriateness of this choice of α as function of the horizon h.
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Figure 1: DATA WINDOWS Time intervals for estimation and for the construction of the
diffusion indexes by means of PCR and MPCR; T is current time, h is the forecast horizon,
M − 1 is the maximal lag of the diffusion indexes in the forecast model, and L is the maximal
lag of the diffusion indexes and of the autoregressive terms in the forecast model.

22



Table 1: AVERAGE MSE PER DESIGN PARAMETER Marginal average forecast
MSE of MPCR relative to PCR (in percentages), for each design parameter and over three
design sets: ‘all’ (T ≤ 100, 13440 designs with average MSE 77.2; the table shows the
number of designs in this set for each fixed parameter value), ‘simple’ (R2

f = 0.5 and
ρ = γ = c = π = 0, 472 designs with average MSE 89.8), and ‘complex’ (R2

f = 0.5,
ρ = γ = 0.45, c = 10 and π = 0.25, 472 designs with average MSE 76.4).

#designs MSE #designs MSE
all all simple complex all all simple complex

h 5 4608 73.5 87.1 72.7 R2
f .1 4480 78.1 · ·

10 4032 74.9 88.6 71.5 .5 4480 76.2 89.8 76.4
25 3072 80.6 90.7 78.3 .9 4480 77.2 · ·
50 1728 86.3 95.1 87.6 (ρ, γ) (0,0) 3360 74.4 89.8 ·

T 25 1344 56.8 64.0 43.9 (.9,0) 3360 74.4 · ·
50 4224 69.1 77.1 58.4 (0,.9) 3360 83.2 · ·

100 7872 85.0 91.3 77.0 (.45,.45) 3360 76.7 · 76.4
250 0 · 98.1 88.8 c 0 6720 82.6 89.8 ·

N 50 3360 82.8 91.9 82.3 10 6720 71.7 · 76.4
100 3360 77.8 90.1 77.1 π 0 6720 79.7 89.8 ·
250 3360 75.2 88.9 73.9 .25 6720 74.6 · 76.4
500 3360 73.9 88.3 72.1

k 5 4992 79.0 90.8 74.2
10 4224 78.2 90.0 76.0
20 2880 76.4 89.3 78.0
40 1344 69.0 88.1 78.9

q 0 5760 82.8 91.6 80.7
1 4416 74.0 88.5 74.1
2 3264 71.5 88.8 73.0

Table 2: STATISTICS OF DESIGNS AND MSE Mean values of design parameters
(h, T, k, q) and statistics (mean, median, maximum, minimum and standard deviation)
of MSE (in percentages) for nine designs. The sets of ‘all’, ‘simple’ and ‘complex’
designs are each considered for three cases: all designs in the set, designs where
MPCR performs worse than PCR (MSE > 100), and designs where MPCR performs
at least twice as well as PCR (MSE < 50).

mean MSE
MSE design #designs %designs h T k q mean med max min std

all all 13440 100 17 77 13 0.8 77.2 83.1 143.6 1.7 20.3
simple 472 100 19 147 16 0.9 89.8 95.5 101.2 11.8 14.3
complex 472 100 19 147 16 0.9 76.4 81.6 106.0 9.1 20.4

> 100 all 226 1.7 12 99 10 1.0 102.3 100.9 143.6 100.0 4.3
simple 39 8.3 10 238 11 1.2 100.3 100.1 101.2 100.0 0.4
complex 8 1.7 50 175 28 0.3 102.3 101.3 106.0 100.2 2.4

< 50 all 1593 11.9 9 52 17 1.2 34.8 36.7 50.0 1.7 10.9
simple 13 2.8 6 44 22 1.0 36.1 41.5 47.5 11.8 10.6
complex 53 11.2 8 53 15 1.3 32.6 34.9 49.6 9.1 11.3
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Table 3: AVERAGE MSE PER (h, T,N) DESIGN Marginal average forecast MSE
for each (h, T, N) design. Some cells are empty: for h ≥ T as forecasting is not possible,
and for some designs with T = 250 and N ≥ 250 due to long computation times.

all simple complex
N h T = 25 50 100 250 T = 25 50 100 250 T = 25 50 100 250

50 5 58.2 71.2 92.1 99.2 58.1 79.8 95.4 100.2 61.0 58.8 86.3 97.7
10 62.2 75.9 87.9 97.7 66.2 82.6 94.3 99.3 51.9 62.0 77.2 95.4
25 · 76.5 88.8 95.6 · 80.4 94.2 98.4 · 76.0 79.4 89.5
50 · · 89.7 96.0 · · 94.2 98.9 · · 91.0 91.2

100 5 55.1 66.5 87.0 97.3 65.6 75.2 92.6 99.5 35.0 52.4 78.0 95.1
10 59.7 72.6 81.9 94.8 62.7 81.4 90.2 98.1 48.9 57.0 67.5 91.7
25 · 73.4 85.8 92.9 · 74.8 91.9 97.4 · 77.0 75.0 85.4
50 · · 87.2 94.2 · · 92.3 98.5 · · 89.5 87.8

250 5 54.0 62.6 84.4 · 63.8 72.8 92.0 98.8 35.3 48.1 74.7 92.9
10 57.4 69.2 78.8 · 66.0 78.8 88.1 97.3 48.6 51.5 63.9 89.1
25 · 69.7 84.6 · · 76.6 89.7 97.0 · 71.6 72.4 81.4
50 · · 85.1 · · · 89.7 97.2 · · 89.9 83.1

500 5 53.6 61.4 83.1 · 64.4 71.5 90.4 98.6 32.4 45.6 72.6 92.5
10 56.0 68.2 77.4 · 66.3 79.1 86.9 97.1 41.6 49.0 61.8 87.0
25 · 68.2 83.9 · · 74.7 88.9 96.6 · 68.4 71.0 80.2
50 · · 83.1 · · · 89.3 97.0 · · 89.4 81.5

Table 4: RESPONSE SURFACES Performance criteria (columns, MPCR as
percentage of PCR) and simulation design (rows) are related by linear regression
(except a quadratic one for MSE, with quadratic terms shown in column ‘(qdr)’).
The row ‘MPCR’ shows which sign of the coefficients corresponds to better perfor-
mance of MPCR. The row ‘mean’ shows the percentage average score for MPCR as
compared to PCR for the MSE and for the other six performance criteria. The row
‘100R2’ shows the R-squared (multiplied by 100) of the regression of the correspond-
ing response surface. Table values + (-, 0) stand for positive (negative, insignificant)
coefficients.
criterion estimation factors

MSE varb s2 pdet VAF R2
F R2

E

design all simple complex all all all all all all all
surface lin lin lin qdr lin lin lin lin lin lin
MPCR - - - - (-) - - - + + +
mean 77.2 89.8 76.4 77.2 59.6 95.6 61.8 103.5 103.4 91.7
100R2 60.3 45.1 47.8 76.8 88.1 32.6 88.4 53.1 21.6 77.7

1 (qdr) 70.27 82.26 64.49
h/10 (h2) -0.37 0 1.82 - (+) - - - + 0 -
T/10 (T 2) 4.71 1.09 1.46 + (-) + + + - - +
N/10 (N2) -0.15 0 -0.19 - (+) - 0 - - - 0
k/10 (k2) -8.30 -3.09 -1.97 - (-) - + - - + +
q (q2) -10.45 -3.51 -6.42 - (0) - + - + + -
R2

f (hN) 0 - (0) - 0 - + + -
ρ (hT ) 0 0 (0) - - - - - -
γ (NT ) 8.95 + (0) + 0 + - - +
c (hk) -1.09 - (+) - - - - - -
π (hq) -20.24 - (-) - - - + 0 -

(Tk) (+)
(Tq) (+)
(kq) (-)
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Table 5: EMPIRICAL FORECAST GAINS Percentage gains in MSE of MPCR
as compared to PCR for eight economic variables (four real variables and four price
variables), with averages (columns ‘av.’).

Real variables Price variables
Model ip gmyxpq msmtq lpnag av. punew gmdc puxx pwfsa av.

Horizon h = 6
DI-AR-Lag 6.41 4.08 1.90 11.38 5.94 -0.06 0.97 1.03 2.22 1.04
DI-AR 9.35 2.27 9.22 16.54 9.34 -0.06 1.95 1.03 0.47 0.85
DI 9.37 2.28 1.02 15.65 7.08 -1.02 1.30 0.78 3.19 1.06

Horizon h = 12
DI-AR-Lag 2.70 6.63 3.08 1.63 3.51 -2.53 3.34 6.99 -5.36 0.61
DI-AR 5.41 11.42 4.87 8.08 7.44 -4.22 2.46 6.58 -1.62 0.80
DI 2.02 11.42 0.23 5.59 4.81 1.68 -1.72 1.50 1.71 0.79

Horizon h = 24
DI-AR-Lag 5.97 2.00 13.19 -2.30 4.71 -5.57 -4.29 14.10 1.12 1.34
DI-AR 8.03 8.01 15.94 7.26 9.81 1.98 3.04 12.35 5.25 5.66
DI 9.83 8.01 15.75 7.94 10.38 -0.59 0.20 2.80 2.98 1.34

Real variables Price variables
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Figure 2: EMPIRICAL FORECAST GAINS Boxplots of the percentage gain in MSE of
MPCR as compared to PCR, for real variables and for price variables; each boxplot contains
the thirty-six (real or price) MSE values in Table 5.
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