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Abstract

In addition to clear�cut seasonality in mean and variance� weekly Dutch tem�

perature data appear to have a strong asymmetry in the impact of unexpect�

edly high or low temperatures on conditional volatility� Furthermore� this

asymmetry also shows fairly pronounced seasonal variation� To describe these

features� we propose a univariate seasonal time series model with asymmetric
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conditionally heteroskedastic errors� We �t this �and other� nested� model�s�
to �	 years of weekly data� We evaluate its forecasting performance for 	

years of hold�out data and �nd that the imposed asymmetry leads to better

out�of�sample forecasts of temperature volatility�

�



� Introduction

High frequency temperature data� like daily or weekly data� have several charac�

teristic features� First and most obvious� the mean temperature shows substantial

seasonal variation� In The Netherlands for example� daytime temperatures range

between � and � degrees Celsius in winter� while daytime temperatures vary from ��

to �� degrees Celsius in summer� Second� the volatility of temperatures is not con�

stant within the year but appears to follow a fairly regular seasonal pattern as well�

At the beginning of Dutch winters� the standard deviation of weekly temperatures

is almost twice as large as at the end of summer� This implies that temperatures

are less predictable in winter than in summer�

A third feature of Dutch temperature data� documented in Tol 	�

��� is that

large 	small� absolute deviations from the mean tend to cluster� As a consequence�

the conditional forecastability of temperatures also varies within summer and winter�

Interestingly� the same feature holds for many high frequency �nancial time series

	such as daily stock market returns and interest rates�� To describe this volatility

clustering in empirical �nance one often uses the so�called Autoregressive Condi�

tionally Heteroskedastic ARCH� model put forward by Engle 	�
���� Over the last

�fteen years� this model has been the subject of intensive research� see the surveys of

Bollerslev� Chou and Kroner 	�

��� Bera and Higgins 	�

��� and Bollerslev� Engle

and Nelson 	�

��� among others� A popular extension of the basic ARCH model

is the Generalized ARCH GARCH� model� see Bollerslev 	�
���� To capture time�

varying predictability� Tol 	�

�� �ts a GARCH model to daily Dutch temperature

data in winter and summer periods� and demonstrates its usefulness for describing

the volatility clustering feature of the data�

In the present paper we show that Dutch temperature data have yet another

feature� This fourth property is that the impact of temperatures lower than expected

on conditional volatility is di�erent from the impact of temperatures higher than

expected� Furthermore� this impact is changing over the year as well� In particular�

�



the correlation between conditional volatility and the �surprise� in the temperature is

negative in winter and positive in summer� Hence� in winter 	summer� temperatures

lower than expected lead to larger 	smaller� conditional variance than temperatures

higher than expected�

The aim of this paper is to develop a time series model which is capable of describ�

ing the above�mentioned four features for weekly temperatures in The Netherlands�

observed over a period of �� years� The plan of the rest of this paper is as fol�

lows� First� in Section � we discuss the stylized facts of the weekly temperature

data in more detail� In Section �� we introduce a variant of the Quadratic GARCH

QGARCH� model of Engle and Ng 	�

�� and Sentana 	�

�� that can capture all

observed features� Section � presents the in�sample estimation and out�of�sample

forecasting results� We estimate the proposed model and two nested versions using

the �rst �� years of data� while we hold out the last � years to evaluate their fore�

casting performance� Both the in� and out�of�sample evidence suggests that a model

with asymmetric volatility is to be preferred� In Section �� we conclude this paper

with some remarks�

� Weekly Dutch Temperature Data

In this section we document the four characteristic features of Dutch temperature

data mentioned in the Introduction� The time series under scrutiny� denoted yt� is

the mean weekly temperature in The Netherlands� which is constructed from the

daily series analyzed in Tol 	�

�� by simple averaging 	over � days�� The �rst

observation in every year is taken to be the week which starts on the �rst day

of February� This month is halfway through the Dutch winter� and usually has

the lowest temperatures� Given this choice we can describe seasonal patterns in

the data quite easily� see below� Due to the fact that there are ��� or ��� daily

observations per year� the ���nd weekly observation concerns an average over � or


 days� respectively� The sample ranges from �
�� until �

�� We use the �rst ��
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years 	���� observations� for estimation of the models to be presented in Section �

and leave out the last � years for forecast evaluation� It should be noted that our

time series ends in December �

�� so that our hold�out sample contains ��� and

not ��� weekly observations�

� insert Figure � about here �

In Figure � the weekly temperatures for the estimation sample �
����
�� are

plotted against the week of observation� Obviously� there is a clear�cut seasonal

pattern in the data� with the lowest values being attained in January and February�

and the highest values in July and August�

� insert Figure � about here �

Closer inspection of Figure � also suggests that the variation in temperatures is

larger in winter than in summer� In Figure � we give the weekly standard deviation�

which is calculated using only the observations for the particular week� It is seen

that the standard deviation at the onset of winter is almost twice as large as at

the end of summer� This suggests that it may be less easy to predict temperatures

during the winter� Also note that the standard deviation is declining from January

until the end of August� approximately� and increasing from September until the end

of December� Hence� the increase in volatility occurs much faster than the decrease�

To obtain some more insight into the seasonal variation of the mean and stan�

dard deviation of the temperature data� we estimate the following nonparametric

regression model with heteroskedastic errors�

yt � m	Tt� � s	Tt��t� t � �� � � � � n� 	��

where m	Tt� and s	Tt� are the conditional mean and standard deviation of yt� re�

spectively� Tt denotes the number of the week� i�e�� Tt � t mod ��� �t are i�i�d�

random variables� E	�t� � �� E	��t � � �� and n denotes sample size� i�e�� n � �����
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The functions m	Tt� and s	Tt� are unknown and are estimated using kernel regres�

sion techniques� To be more precise� we estimate the conditional mean m by the

Nadaraya�Watson estimator

�m	x� �

Pn
t��K		Tt � x��h�ytPn
t��K		Tt � x��h�

� 	��

while the conditional variance s� is estimated by

�s�	x� �

Pn
t��K		Tt � x��h�y�tPn
t��K		Tt � x��h�

� �m�	x�� 	��

For the kernel function K	�� we use the following variant of the Epanechnikov kernel

K	u� �
�

�

h
�� fmin	juj� ��� juj�g�

i
�fjuj��g� 	��

since this kernel takes into account the observed seasonality� see also Hyndman

and Wand 	�

��� The bandwidth h is taken to be four weeks� For an elaborate

discussion of the model given in 	�� and estimators of the functions m	Tt� and

s	Tt� we refer to H�ardle and Tsybakov 	�

��� More general introductions to kernel

regression and other nonparametric techniques can be found in Wand and Jones

	�

�� and Fan and Gijbels 	�

��� among others� The estimates �m	Tt� and �s	Tt�

are shown as solid lines in Figures � and �� respectively� and con�rm the observations

made above�

� insert Figure � about here �

From Figure � we observe that the skewness of the temperature series also varies

throughout the year� Interestingly� there is positive skewness in summer while skew�

ness is negative in winter weeks� This means that one may expect more weeks which

are warmer than average in summer� and more weeks which are colder than average

in winter�

The observations on the variance and skewness made above lead us to consider

the relationship between the level of this week�s temperature and the volatility of

next week�s temperature� In particular� we try to address the questions whether this
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relationship is symmetric� in the sense that an unexpectedly low temperature has

the same e�ect on volatility than an unexpectedly high temperature� and whether

it is constant throughout the year� To investigate this we hypothesize the following

model for the residuals �t � s	Tt��t from 	���

��t � ��	Tt��� � ��	Tt����t�� � ��	Tt����
�
t�� � �t� 	��

where �i	Tt�� i � �� �� � are unknown functions of Tt and �t are i�i�d� random vari�

ables� If the �i	Tt�� i � �� �� �� are constant� the model reduces to the Quadratic

GARCH QGARCH� model of Sentana 	�

��� The purpose of estimating 	�� is to

obtain some preliminary idea as to whether it is worthwhile to specify a QGARCH

model with time�varying coe�cients� We will return to this model in the next sec�

tion� It is useful to note here that� assuming that the distribution of �t is symmetric�

the regressors in 	�� are orthogonal� It follows that ��	Tt� � corr��
t
���

t��

	Tt� and

��	Tt� � cov��
t
��t��

	Tt��var�t	Tt�� Hence �� equals the �local� �rst�order autocorrela�

tion of the squared residuals� while �� measures the 	local� asymmetry in the impact

of positive and negative shocks to the temperature on volatility�

The unknown functions �i	Tt�� i � �� �� �� are estimated using a variant of the

locally weighted regression LWR� technique �rst introduced by Cleveland 	�
�
��

see also Cleveland and Devlin 	�
��� and Cleveland� Devlin and Grosse 	�
����

In the original LWR technique� the variables which determine the parameters are

assumed to be the same as the regressors in the model� while here they are dif�

ferent� We employ the local linear estimator developed by Chen 	�

�� and Cai�

Fan and Yao 	�

�� in the context of autoregressive models to estimate �	x� �

	��	x�� ��	x�� ��	x��
�� which is given by

��	x� � 	X �WxX�
��
X �WxY� 	��

where X � 	X �
�� � � � � X

�
n���

� with Xt � 	�� �t� �
�
t �

�� Y � 	���� � � � � �
�
n�

� and Wx is

a diagonal matrix with t�th diagonal element equal to K		Tt�� � x��h�� which is

computed according to 	��� Again a bandwidth h of four weeks is used� To see the
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intuition behind this estimator� notice that 	�� is the solution to the weighted least

squares problem

��	x� � argmin
�

nX
t��

�
��t �X �

t���
��
K		Tt�� � x��h�� 	��

� insert Figure � about here �

The estimates of �i	x�� i � �� �� � together with 
�� pointwise con�dence bands

are displayed in Figure �� The upper panel shows the by now familiar seasonal

pattern in volatility� The middle panel demonstrates that the relation between this

week�s volatility and last week�s �surprise� in temperature� is nonzero� suggesting that

the impact of temperatures lower and higher than expected is asymmetric indeed�

Furthermore� it appears that this asymmetry shows seasonal variation as well� in

winter it appears to be negative� while in summer it is positive� that is� in winter

	summer� temperatures lower than expected lead to larger 	smaller� conditional

variance than temperatures higher than expected� Finally� the lower panel of this

Figure suggests that the correlation in the squared series ��t is signi�cant	ly positive�

only in the second half of the year�

� insert Figure � about here �

As a �nal characteristic of the temperature series we give the weekly kurtosis�

again measured over the �rst �� years� in Figure �� In contrast to the previous

measures� there is not much seasonal variation in the kurtosis� apart from a few weeks

in summer� Notice also the kurtosis exceeds � 	that is� the kurtosis corresponding

to the normal distribution� in summer weeks� indicating that there have been some

very warm summers in the Netherlands�

� The Models

In this section we introduce the model which is used to describe the various features

of our weekly temperature series� Summarizing the evidence presented in Section

�



� and Tol 	�

��� the model should allow for i� seasonal variation in the mean� ii�

seasonal variation in the variance� iii� volatility clustering� and iv� changing asymme�

try in the relation between last week�s temperature and the volatility of this week�s

temperature�

Given the visual evidence in Figures � and �� we decide to consider simple

parabolic functions to describe the seasonal variation in the mean and variance�

For this purpose we use the variable Tt as de�ned in Section �� which runs from � to

�� in every year� We include Tt as well as its square in both the conditional mean

and conditional variance equation� Furthermore� some preliminary experimentation

shows that we need to include yt�� in the conditional mean equation to accommodate

serial correlation� Hyndman and Wand 	�

�� demonstrate that the correlation for

a daily Australian temperature series is also changing over the year� It appears that

this is not a critical issue for our weekly temperature series � hence� we assume this

correlation to be constant�

The possible presence of volatility clustering 	or� time�varying predictability� in

temperature data can be accommodated by means of a GARCH model� see also

Tol 	�

��� A modi�cation of this model that also allows for asymmetry in the im�

pact of innovations on the conditional variance is the so�called Quadratic GARCH

QGARCH� model� proposed in Engle and Ng 	�

�� and analyzed in detail in Sen�

tana 	�

��� There are several other extensions of the basic GARCH model that

are able to describe this correspondence� see Hentschel 	�

�� for a concise review�

However� in� for example� Franses and Dijk 	�

��� it is found that the QGARCH

model frequently outperforms its rivals in terms of out�of�sample forecasting� We

therefore limit our attention in this paper to the QGARCH model�

In sum� our proposed model for the weekly temperature data is

yt � 	� � 	�Tt � 	�T
�
t � 
yt�� � �t� t � �� �� � � � � ����� 	��

�t � �t�t� 	
�

��t � �� � ��T � ��T
� � 

�
�t�� � �� � ��T � ��T

�
��

� ���t��� 	���
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where y� is the last week of January �
�� and �t again are i�i�d� random variables

with mean zero and variance one� In addition� we assume the �t are normally dis�

tributed� The third equation describes the conditional variance of �t� We follow Tol

	�

�� and only include �t�� and �
�
t�� to describe the volatility dynamics� The ��� ��

and �� parameters deal with the asymmetric impact of shocks to the temperature

on conditional volatility and with the possible change in this impact over the year�

Notice that 	��� reduces to a standard GARCH	���� model 	with deterministic sea�

sonal variation in the � unconditional � variance� when all three � parameters are

equal to zero� Finally� 	��� can be rewritten in terms of ��t as

��t � �� � ��T � ��T
� �

�
�� � ��T � ��T

�
��

��
�
�� � ��T � ��T

�
�
�t�� � 	 � ����t�� � �t � ��t��� 	���

where �t � ��t ���t � Comparing this with 	��� the similarities of our QGARCH model

with the nonparametric model 	�� are easily seen�

The unrestricted model 	���	��� should be capable of describing all four features

of the temperature series� In addition we estimate two simpler� nested models by

imposing restrictions on some of the parameters� First� we restrict �� and �� equal

to zero to investigate whether the asymmetric impact of shocks in the temperature

on the conditional volatility is changing over the year� Second� �� is also restricted

to zero to check whether there is any asymmetry in this impact at all� Summarizing�

in the next section we compare the following models�

GARCH �� � �� � �� � ��
QGARCH�I no restrictions�
QGARCH�II �� � �� � ��

Given the visual evidence in Figure �� we hypothesize that the QGARCH models

outperform the linear GARCH model�

� Empirical Results

In this section we evaluate the in�sample estimation results and the out�of�sample

forecasting performance of the three competing GARCH models�






��� In�sample estimation

The parameters in the three models are estimated using maximum likelihood meth�

ods� The relevant Gauss�code is available upon request�

In addition to the parameter estimates� we calculate the Box�Pierce test statistic

for residual autocorrelation at lags � to �� for the scaled residuals ��t � ��t���t and

their squares ���t to verify if 	�� and 	��� include enough dynamics to render i�i�d�

residuals� We also calculate the Jarque�Bera test for normality of the scaled residuals�

as assumed in 	
�� Clear rejection of this assumption may lead to consideration of

alternative distributions for �t� Finally� we compute the log likelihood and� the

Akaike Information Criterion AIC� and Schwarz�s BIC in order to compare the

three models�

� insert Table � about here �

The in�sample estimation results are given in Table �� From its bottom panel we

see that the three models pass the residual correlation tests 	the �� critical value

is ���
��� albeit the GARCH model passes the test for the scaled residuals only at

the ���� level� Furthermore� all three models display non�normality of the scaled

residuals at the �� level� but not at the �� level� This last result is perhaps not

unexpected given the large number of observations and the rather small number of

model parameters� To us� assuming alternative distributions for �t therefore does

not seem necessary� Finally� the values of the AIC indicate that the QGARCH�II

model is to be preferred� whereas the values of the BIC suggest to select the GARCH

model� It is well�known that Schwarz�s criterion penalizes the inclusion of additional

parameters rather severely� such that the improvement in �t has to be substantial

in order to be justi�ed�

The top panel of Table � contains the parameter estimates and associated t�ratios�

The parameter  is not signi�cant in the estimated GARCH model� which may be

due to neglected asymmetry� The signi�cant and positive estimates of �� in the
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QGARCH�I and �II models shows that a negative value of the temperature 	after

correction for seasonality and dynamics� implies a larger value of the conditional

variance than does an above average value of the same size� In the QGARCH�I

model the �� and �� parameters are not signi�cant� Hence� the seasonality in the

asymmetry suggested by Figure � appears not to be signi�cant after all�

��� Out�of�sample Forecasting of Volatility

As an alternative way to evaluate the three volatility models and to compare their

ability to describe the features in the temperature series we investigate their out�

of�sample forecasting performance� We calculate one�step ahead forecasts of the

conditional variance �t for the ��� observations in the hold�out sample� For every

forecast� we re�estimate the parameters in the three models� using all observations

prior to the forecast origin� Given the possible presence of aberrant observations

in this hold�out sample� we evaluate the models using the Median Squared Error

	MedSE� criterion� As a measure of the true variance� we use the squared residuals

���t from 	�� 	obtained in each estimation round� when no GARCH model is �tted to

the data�

� insert Table � about here �

The forecasting results are summarized in Table �� The linear GARCH model

appears to be the best for �
��� The QGARCH�I model beats the other models in

�
�� and �
�
� while the QGARCH�II model is best for �
�� and �

�� For the

whole period� the QGARCH�II model clearly outperforms its rivals�

� insert Figure � about here �

Figure � shows the median of the di�erence of the squared forecast errors� which

enables a pair�wise comparison of the three models� The middle panel for example

reveals that the QGARCH�II models achieves the largest gains in forecast accuracy
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relative to the GARCH model in the months July� September and December� The

bottom panel suggests that the main di�erence in the QGARCH�I and QGARCH�II

models occurs in April� These results provides us with additional con�dence in the

usefulness of the nonlinear QGARCH model�

� Concluding Remarks

In this paper we have proposed and evaluated a nonlinear GARCH model for weekly

temperatures in The Netherlands� Both the in�sample estimation results and out�

of�sample forecasting performance suggest that our nonlinear GARCH model is su�

perior to a linear GARCH model� thereby con�rming visual evidence on an asym�

metric relation between this week�s surprise in temperature and the volatility of

next week�s temperature� Our model implies that temperatures lower than expected

lead to larger conditional forecasting intervals 	and hence less predictability� than

do temperatures higher than expected� Whether this empirical observation can be

attributed to certain meteorological phenomena is a topic for further research� Ad�

ditionally� it may be of interest to examine if this model for Dutch data also �ts

temperature data for other countries�
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Table �� In�sample parameter estimates�

Model
Parameters GARCH QGARCH�I QGARCH�II

Autoregressive part

	� ����� ����� �����
	������ 	������ 	����
�

	� ���� ���� ���

	������ 	������ 	������

	� ����� ����� �����
	������� 	������� 	�������


 ���� ���� ����
	������ 	������ 	������

GARCH part

�� ���� ���� ����
	���
� 	����� 	�����

�� ����� ����� �����
	������ 	������ 	������

�� ���� ���� ����
	����� 	����� 	�����

 ���� ���� ����
	���
� 	����� 	�����

� ��
� ��
� ���

	������ 	���
�� 	���

�

�� ���� ��
�
	����� 	�����

�� ����
	�����

�� �����
	������

Diagnostics

BP	��� for ��t ����� ����
 �����
BP	��� for ���t ����� 
��� �����
JB for ��t ��
� 
��� ���

LL ��

��� ��

��� ��

���
AIC ������ ������ ������
BIC �����
 ������ ������
�The various models are estimated using ��		 weekly observa�

tions from ��������� t�statistics are given in parentheses below
the parameter estimates� BP
�	� denotes the Box�Pierce statis�
tic for autocorrelation� JB denotes the Jarque�Bera test for nor�
mality and LL denotes log likelihood� The AIC is computed as
��LL � �k� with k the number of parameters� The BIC is com�
puted as ��LL� k ln
n�n� with n the number of observations�
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Table �� Out�of�sample volatility forecasting perfor�
mance based on the Median Squared Error�

Model
Year GARCH QGARCH�I QGARCH�II
�
�� ����� �
��� ���
�
�
�� ����� ����� �����
�
�� ����� ����� �����
�
�
 ����� ����� ���
�
�

� ����� ����� �����

�
����

� ����� ����� �����
�Entries denote the Median Squared Forecasting Error for

the conditional variance of weekly Dutch temperature� The
squared residuals from estimating 
�� by least squares are used
as measure of true volatility�

��



Figure �� Weekly temperatures

Note� Weekly temperatures in the Netherlands� ����	��
�� plotted against the week of ob	
servation� The solid line is the estimate of the conditional mean function mTt� in ���

��



Figure �� Standard deviation of weekly temperatures

Note� Estimates of the conditional� standard deviation for weekly temperatures in the
Netherlands� The estimates shown by circles are obtained using only the observations from
each individual week� The solid line is the estimate of the conditional standard deviation
sTt� in ���

��



Figure �� Skewness of weekly temperatures

Note� Estimated skewness of weekly temperatures in the
Netherlands� ����	��
�� The estimates are obtained by com	
puting the skewness using only the observations from a par	
ticular week�

�




Figure �� Correlation and asymmetry in the volatility of weekly temperatures

Note� Nonparametric estimates of the unknown functions ��x�� ��x� and ��x� from top to bottom� in
the model �� solid lines�� together with upper and lower limits of ��� con�dence intervals dashed lines��
The estimates are obtained from �� using �� as kernel with the bandwidth h equal to four weeks�

��



Figure �� Kurtosis of weekly temperatures


